1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
/*!
This module contains brush related types for the run-time library.
*/
use super::Color;
use crate::properties::InterpolatedPropertyValue;
use crate::SharedVector;
use euclid::default::{Point2D, Size2D};
#[cfg(not(feature = "std"))]
use num_traits::float::Float;
/// A brush is a data structure that is used to describe how
/// a shape, such as a rectangle, path or even text, shall be filled.
/// A brush can also be applied to the outline of a shape, that means
/// the fill of the outline itself.
#[derive(Clone, PartialEq, Debug, derive_more::From)]
#[repr(C)]
#[non_exhaustive]
pub enum Brush {
/// The color variant of brush is a plain color that is to be used for the fill.
SolidColor(Color),
/// The linear gradient variant of a brush describes the gradient stops for a fill
/// where all color stops are along a line that's rotated by the specified angle.
LinearGradient(LinearGradientBrush),
/// The radial gradient variant of a brush describes a circle variant centered
/// in the middle
RadialGradient(RadialGradientBrush),
}
/// Construct a brush with transparent color
impl Default for Brush {
fn default() -> Self {
Self::SolidColor(Color::default())
}
}
impl Brush {
/// If the brush is SolidColor, the contained color is returned.
/// If the brush is a LinearGradient, the color of the first stop is returned.
pub fn color(&self) -> Color {
match self {
Brush::SolidColor(col) => *col,
Brush::LinearGradient(gradient) => {
gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
}
Brush::RadialGradient(gradient) => {
gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
}
}
}
/// Returns true if this brush contains a fully transparent color (alpha value is zero)
///
/// ```
/// # use i_slint_core::graphics::*;
/// assert!(Brush::default().is_transparent());
/// assert!(Brush::SolidColor(Color::from_argb_u8(0, 255, 128, 140)).is_transparent());
/// assert!(!Brush::SolidColor(Color::from_argb_u8(25, 128, 140, 210)).is_transparent());
/// ```
pub fn is_transparent(&self) -> bool {
match self {
Brush::SolidColor(c) => c.alpha() == 0,
Brush::LinearGradient(_) => false,
Brush::RadialGradient(_) => false,
}
}
/// Returns true if this brush is fully opaque
///
/// ```
/// # use i_slint_core::graphics::*;
/// assert!(!Brush::default().is_opaque());
/// assert!(!Brush::SolidColor(Color::from_argb_u8(25, 255, 128, 140)).is_opaque());
/// assert!(Brush::SolidColor(Color::from_rgb_u8(128, 140, 210)).is_opaque());
/// ```
pub fn is_opaque(&self) -> bool {
match self {
Brush::SolidColor(c) => c.alpha() == 255,
Brush::LinearGradient(g) => g.stops().all(|s| s.color.alpha() == 255),
Brush::RadialGradient(g) => g.stops().all(|s| s.color.alpha() == 255),
}
}
/// Returns a new version of this brush that has the brightness increased
/// by the specified factor. This is done by calling [`Color::brighter`] on
/// all the colors of this brush.
#[must_use]
pub fn brighter(&self, factor: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.brighter(factor)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops().map(|s| GradientStop {
color: s.color.brighter(factor),
position: s.position,
}),
)),
Brush::RadialGradient(g) => {
Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
GradientStop { color: s.color.brighter(factor), position: s.position }
})))
}
}
}
/// Returns a new version of this brush that has the brightness decreased
/// by the specified factor. This is done by calling [`Color::darker`] on
/// all the color of this brush.
#[must_use]
pub fn darker(&self, factor: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.darker(factor)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops()
.map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
)),
Brush::RadialGradient(g) => Brush::RadialGradient(RadialGradientBrush::new_circle(
g.stops()
.map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
)),
}
}
/// Returns a new version of this brush with the opacity decreased by `factor`.
///
/// The transparency is obtained by multiplying the alpha channel by `(1 - factor)`.
///
/// See also [`Color::transparentize`]
#[must_use]
pub fn transparentize(&self, amount: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.transparentize(amount)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops().map(|s| GradientStop {
color: s.color.transparentize(amount),
position: s.position,
}),
)),
Brush::RadialGradient(g) => {
Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
GradientStop { color: s.color.transparentize(amount), position: s.position }
})))
}
}
}
/// Returns a new version of this brush with the related color's opacities
/// set to `alpha`.
#[must_use]
pub fn with_alpha(&self, alpha: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.with_alpha(alpha)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops().map(|s| GradientStop {
color: s.color.with_alpha(alpha),
position: s.position,
}),
)),
Brush::RadialGradient(g) => {
Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
GradientStop { color: s.color.with_alpha(alpha), position: s.position }
})))
}
}
}
}
/// The LinearGradientBrush describes a way of filling a shape with different colors, which
/// are interpolated between different stops. The colors are aligned with a line that's rotated
/// by the LinearGradient's angle.
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct LinearGradientBrush(SharedVector<GradientStop>);
impl LinearGradientBrush {
/// Creates a new linear gradient, described by the specified angle and the provided color stops.
///
/// The angle need to be specified in degrees.
/// The stops don't need to be sorted as this function will sort them.
pub fn new(angle: f32, stops: impl IntoIterator<Item = GradientStop>) -> Self {
let stop_iter = stops.into_iter();
let mut encoded_angle_and_stops = SharedVector::with_capacity(stop_iter.size_hint().0 + 1);
// The gradient's first stop is a fake stop to store the angle
encoded_angle_and_stops.push(GradientStop { color: Default::default(), position: angle });
encoded_angle_and_stops.extend(stop_iter);
Self(encoded_angle_and_stops)
}
/// Returns the angle of the linear gradient in degrees.
pub fn angle(&self) -> f32 {
self.0[0].position
}
/// Returns the color stops of the linear gradient.
/// The stops are sorted by positions.
pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
// skip the first fake stop that just contains the angle
self.0.iter().skip(1)
}
}
/// The RadialGradientBrush describes a way of filling a shape with a circular gradient
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct RadialGradientBrush(SharedVector<GradientStop>);
impl RadialGradientBrush {
/// Creates a new circle radial gradient, centered in the middle and described
/// by the provided color stops.
pub fn new_circle(stops: impl IntoIterator<Item = GradientStop>) -> Self {
Self(stops.into_iter().collect())
}
/// Returns the color stops of the linear gradient.
pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
self.0.iter()
}
}
/// GradientStop describes a single color stop in a gradient. The colors between multiple
/// stops are interpolated.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct GradientStop {
/// The color to draw at this stop.
pub color: Color,
/// The position of this stop on the entire shape, as a normalized value between 0 and 1.
pub position: f32,
}
/// Returns the start / end points of a gradient within a rectangle of the given size, based on the angle (in degree).
pub fn line_for_angle(angle: f32, size: Size2D<f32>) -> (Point2D<f32>, Point2D<f32>) {
let angle = (angle + 90.).to_radians();
let (s, c) = angle.sin_cos();
let (a, b) = if s.abs() < f32::EPSILON {
let y = size.height / 2.;
return if c < 0. {
(Point2D::new(0., y), Point2D::new(size.width, y))
} else {
(Point2D::new(size.width, y), Point2D::new(0., y))
};
} else if c * s < 0. {
// Intersection between the gradient line, and an orthogonal line that goes through (height, 0)
let x = (s * size.width + c * size.height) * s / 2.;
let y = -c * x / s + size.height;
(Point2D::new(x, y), Point2D::new(size.width - x, size.height - y))
} else {
// Intersection between the gradient line, and an orthogonal line that goes through (0, 0)
let x = (s * size.width - c * size.height) * s / 2.;
let y = -c * x / s;
(Point2D::new(size.width - x, size.height - y), Point2D::new(x, y))
};
if s > 0. {
(a, b)
} else {
(b, a)
}
}
impl InterpolatedPropertyValue for Brush {
fn interpolate(&self, target_value: &Self, t: f32) -> Self {
match (self, target_value) {
(Brush::SolidColor(source_col), Brush::SolidColor(target_col)) => {
Brush::SolidColor(source_col.interpolate(target_col, t))
}
(Brush::SolidColor(col), Brush::LinearGradient(grad)) => {
let mut new_grad = grad.clone();
for x in new_grad.0.make_mut_slice().iter_mut().skip(1) {
x.color = col.interpolate(&x.color, t);
}
Brush::LinearGradient(new_grad)
}
(a @ Brush::LinearGradient(_), b @ Brush::SolidColor(_)) => {
Self::interpolate(b, a, 1. - t)
}
(Brush::LinearGradient(lhs), Brush::LinearGradient(rhs)) => {
if lhs.0.len() < rhs.0.len() {
Self::interpolate(target_value, self, 1. - t)
} else {
let mut new_grad = lhs.clone();
let mut iter = new_grad.0.make_mut_slice().iter_mut();
{
let angle = &mut iter.next().unwrap().position;
*angle = angle.interpolate(&rhs.angle(), t);
}
for s2 in rhs.stops() {
let s1 = iter.next().unwrap();
s1.color = s1.color.interpolate(&s2.color, t);
s1.position = s1.position.interpolate(&s2.position, t);
}
for x in iter {
x.position = x.position.interpolate(&1.0, t);
}
Brush::LinearGradient(new_grad)
}
}
(Brush::SolidColor(col), Brush::RadialGradient(grad)) => {
let mut new_grad = grad.clone();
for x in new_grad.0.make_mut_slice().iter_mut() {
x.color = col.interpolate(&x.color, t);
}
Brush::RadialGradient(new_grad)
}
(a @ Brush::RadialGradient(_), b @ Brush::SolidColor(_)) => {
Self::interpolate(b, a, 1. - t)
}
(Brush::RadialGradient(lhs), Brush::RadialGradient(rhs)) => {
if lhs.0.len() < rhs.0.len() {
Self::interpolate(target_value, self, 1. - t)
} else {
let mut new_grad = lhs.clone();
let mut iter = new_grad.0.make_mut_slice().iter_mut();
let mut last_color = Color::default();
for s2 in rhs.stops() {
let s1 = iter.next().unwrap();
last_color = s2.color;
s1.color = s1.color.interpolate(&s2.color, t);
s1.position = s1.position.interpolate(&s2.position, t);
}
for x in iter {
x.position = x.position.interpolate(&1.0, t);
x.color = x.color.interpolate(&last_color, t);
}
Brush::RadialGradient(new_grad)
}
}
(a @ Brush::LinearGradient(_), b @ Brush::RadialGradient(_))
| (a @ Brush::RadialGradient(_), b @ Brush::LinearGradient(_)) => {
// Just go to an intermediate color.
let color = Color::interpolate(&b.color(), &a.color(), t);
if t < 0.5 {
Self::interpolate(a, &Brush::SolidColor(color), t * 2.)
} else {
Self::interpolate(&Brush::SolidColor(color), b, (t - 0.5) * 2.)
}
}
}
}
}
#[test]
#[allow(clippy::float_cmp)] // We want bit-wise equality here
fn test_linear_gradient_encoding() {
let stops: SharedVector<GradientStop> = [
GradientStop { position: 0.0, color: Color::from_argb_u8(255, 255, 0, 0) },
GradientStop { position: 0.5, color: Color::from_argb_u8(255, 0, 255, 0) },
GradientStop { position: 1.0, color: Color::from_argb_u8(255, 0, 0, 255) },
]
.into();
let grad = LinearGradientBrush::new(256., stops.clone());
assert_eq!(grad.angle(), 256.);
assert!(grad.stops().eq(stops.iter()));
}