1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0

/*!
This module contains path related types and functions for the run-time library.
*/

use crate::items::PathEvent;
#[cfg(feature = "rtti")]
use crate::rtti::*;
use auto_enums::auto_enum;
use const_field_offset::FieldOffsets;
use i_slint_core_macros::*;

#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathMoveTo describes the event of setting the cursor on the path to use as starting
/// point for sub-sequent events, such as `LineTo`. Moving the cursor also implicitly closes
/// sub-paths and therefore beings a new sub-path.
pub struct PathMoveTo {
    #[rtti_field]
    /// The x coordinate where the current position should be.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate where the current position should be.
    pub y: f32,
}

#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathLineTo describes the event of moving the cursor on the path to the specified location
/// along a straight line.
pub struct PathLineTo {
    #[rtti_field]
    /// The x coordinate where the line should go to.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate where the line should go to.
    pub y: f32,
}

#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
/// x/y coordinates, with the specified x/y radius and additional properties.
pub struct PathArcTo {
    #[rtti_field]
    /// The x coordinate where the arc should end up.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate where the arc should end up.
    pub y: f32,
    #[rtti_field]
    /// The radius on the x-axis of the arc.
    pub radius_x: f32,
    #[rtti_field]
    /// The radius on the y-axis of the arc.
    pub radius_y: f32,
    #[rtti_field]
    /// The rotation along the x-axis of the arc in degrees.
    pub x_rotation: f32,
    #[rtti_field]
    /// large_arc indicates whether to take the long or the shorter path to complete the arc.
    pub large_arc: bool,
    #[rtti_field]
    /// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
    /// otherwise counter-clockwise.
    pub sweep: bool,
}

#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathCubicTo describes a smooth Bézier curve from the path's current position
/// to the specified x/y location, using two control points.
pub struct PathCubicTo {
    #[rtti_field]
    /// The x coordinate of the curve's end point.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate of the curve's end point.
    pub y: f32,
    #[rtti_field]
    /// The x coordinate of the curve's first control point.
    pub control_1_x: f32,
    #[rtti_field]
    /// The y coordinate of the curve's first control point.
    pub control_1_y: f32,
    #[rtti_field]
    /// The x coordinate of the curve's second control point.
    pub control_2_x: f32,
    #[rtti_field]
    /// The y coordinate of the curve's second control point.
    pub control_2_y: f32,
}

#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathCubicTo describes a smooth Bézier curve from the path's current position
/// to the specified x/y location, using one control points.
pub struct PathQuadraticTo {
    #[rtti_field]
    /// The x coordinate of the curve's end point.
    pub x: f32,
    #[rtti_field]
    /// The y coordinate of the curve's end point.
    pub y: f32,
    #[rtti_field]
    /// The x coordinate of the curve's control point.
    pub control_x: f32,
    #[rtti_field]
    /// The y coordinate of the curve's control point.
    pub control_y: f32,
}

#[repr(C)]
#[derive(Clone, Debug, PartialEq, derive_more::From)]
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
pub enum PathElement {
    /// The MoveTo variant sets the current position on the path.
    MoveTo(PathMoveTo),
    /// The LineTo variant describes a line.
    LineTo(PathLineTo),
    /// The PathArcTo variant describes an arc.
    ArcTo(PathArcTo),
    /// The CubicTo variant describes a Bézier curve with two control points.
    CubicTo(PathCubicTo),
    /// The QuadraticTo variant describes a Bézier curve with one control point.
    QuadraticTo(PathQuadraticTo),
    /// Indicates that the path should be closed now by connecting to the starting point.
    Close,
}

struct ToLyonPathEventIterator<'a> {
    events_it: core::slice::Iter<'a, PathEvent>,
    coordinates_it: core::slice::Iter<'a, lyon_path::math::Point>,
    first: Option<&'a lyon_path::math::Point>,
    last: Option<&'a lyon_path::math::Point>,
}

impl<'a> Iterator for ToLyonPathEventIterator<'a> {
    type Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>;
    fn next(&mut self) -> Option<Self::Item> {
        use lyon_path::Event;

        self.events_it.next().map(|event| match event {
            PathEvent::Begin => Event::Begin { at: *self.coordinates_it.next().unwrap() },
            PathEvent::Line => Event::Line {
                from: *self.coordinates_it.next().unwrap(),
                to: *self.coordinates_it.next().unwrap(),
            },
            PathEvent::Quadratic => Event::Quadratic {
                from: *self.coordinates_it.next().unwrap(),
                ctrl: *self.coordinates_it.next().unwrap(),
                to: *self.coordinates_it.next().unwrap(),
            },
            PathEvent::Cubic => Event::Cubic {
                from: *self.coordinates_it.next().unwrap(),
                ctrl1: *self.coordinates_it.next().unwrap(),
                ctrl2: *self.coordinates_it.next().unwrap(),
                to: *self.coordinates_it.next().unwrap(),
            },
            PathEvent::EndOpen => {
                Event::End { first: *self.first.unwrap(), last: *self.last.unwrap(), close: false }
            }
            PathEvent::EndClosed => {
                Event::End { first: *self.first.unwrap(), last: *self.last.unwrap(), close: true }
            }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.events_it.size_hint()
    }
}

impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}

struct TransformedLyonPathIterator<EventIt> {
    it: EventIt,
    transform: lyon_path::math::Transform,
}

impl<
        EventIt: Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>>,
    > Iterator for TransformedLyonPathIterator<EventIt>
{
    type Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>;
    fn next(&mut self) -> Option<Self::Item> {
        self.it.next().map(|ev| ev.transformed(&self.transform))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<
        EventIt: Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>>,
    > ExactSizeIterator for TransformedLyonPathIterator<EventIt>
{
}

/// PathDataIterator is a data structure that acts as starting point for iterating
/// through the low-level events of a path. If the path was constructed from said
/// events, then it is a very thin abstraction. If the path was created from higher-level
/// elements, then an intermediate lyon path is required/built.
pub struct PathDataIterator {
    it: LyonPathIteratorVariant,
    transform: lyon_path::math::Transform,
}

enum LyonPathIteratorVariant {
    FromPath(lyon_path::Path),
    FromEvents(crate::SharedVector<PathEvent>, crate::SharedVector<lyon_path::math::Point>),
}

impl PathDataIterator {
    /// Create a new iterator for path traversal.
    #[auto_enum(Iterator)]
    pub fn iter(
        &self,
    ) -> impl Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>> + '_
    {
        match &self.it {
            LyonPathIteratorVariant::FromPath(path) => {
                TransformedLyonPathIterator { it: path.iter(), transform: self.transform }
            }
            LyonPathIteratorVariant::FromEvents(events, coordinates) => {
                TransformedLyonPathIterator {
                    it: ToLyonPathEventIterator {
                        events_it: events.iter(),
                        coordinates_it: coordinates.iter(),
                        first: coordinates.first(),
                        last: coordinates.last(),
                    },
                    transform: self.transform,
                }
            }
        }
    }

    /// Applies a transformation on the elements this iterator provides that tries to fit everything
    /// into the specified width/height, respecting the provided viewbox. If no viewbox is specified,
    /// the bounding rectangle of the path is used.
    pub fn fit(&mut self, width: f32, height: f32, viewbox: Option<lyon_path::math::Box2D>) {
        if width > 0. || height > 0. {
            let viewbox =
                viewbox.unwrap_or_else(|| lyon_algorithms::aabb::bounding_box(self.iter()));
            self.transform = lyon_algorithms::fit::fit_box(
                &viewbox,
                &lyon_path::math::Box2D::from_size(lyon_path::math::Size::new(width, height)),
                lyon_algorithms::fit::FitStyle::Min,
            );
        }
    }
}

#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
/// PathData represents a path described by either high-level elements or low-level
/// events and coordinates.
pub enum PathData {
    /// None is the variant when the path is empty.
    None,
    /// The Elements variant is used to make a Path from shared arrays of elements.
    Elements(crate::SharedVector<PathElement>),
    /// The Events variant describes the path as a series of low-level events and
    /// associated coordinates.
    Events(crate::SharedVector<PathEvent>, crate::SharedVector<lyon_path::math::Point>),
    /// The Commands variant describes the path as a series of SVG encoded path commands.
    Commands(crate::SharedString),
}

impl Default for PathData {
    fn default() -> Self {
        Self::None
    }
}

impl PathData {
    /// This function returns an iterator that allows traversing the path by means of lyon events.
    pub fn iter(self) -> Option<PathDataIterator> {
        PathDataIterator {
            it: match self {
                PathData::None => return None,
                PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
                    PathData::build_path(elements.as_slice().iter()),
                ),
                PathData::Events(events, coordinates) => {
                    LyonPathIteratorVariant::FromEvents(events, coordinates)
                }
                PathData::Commands(commands) => {
                    let mut builder = lyon_path::Path::builder();
                    let mut parser = lyon_extra::parser::PathParser::new();
                    match parser.parse(
                        &lyon_extra::parser::ParserOptions::DEFAULT,
                        &mut lyon_extra::parser::Source::new(commands.chars()),
                        &mut builder,
                    ) {
                        Ok(()) => LyonPathIteratorVariant::FromPath(builder.build()),
                        Err(e) => {
                            eprintln!("Error while parsing path commands '{commands}': {e:?}");
                            LyonPathIteratorVariant::FromPath(Default::default())
                        }
                    }
                }
            },
            transform: Default::default(),
        }
        .into()
    }

    fn build_path(element_it: core::slice::Iter<PathElement>) -> lyon_path::Path {
        use lyon_geom::SvgArc;
        use lyon_path::math::{Angle, Point, Vector};
        use lyon_path::traits::SvgPathBuilder;
        use lyon_path::ArcFlags;

        let mut path_builder = lyon_path::Path::builder().with_svg();
        for element in element_it {
            match element {
                PathElement::MoveTo(PathMoveTo { x, y }) => {
                    path_builder.move_to(Point::new(*x, *y));
                }
                PathElement::LineTo(PathLineTo { x, y }) => {
                    path_builder.line_to(Point::new(*x, *y));
                }
                PathElement::ArcTo(PathArcTo {
                    x,
                    y,
                    radius_x,
                    radius_y,
                    x_rotation,
                    large_arc,
                    sweep,
                }) => {
                    let radii = Vector::new(*radius_x, *radius_y);
                    let x_rotation = Angle::degrees(*x_rotation);
                    let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
                    let to = Point::new(*x, *y);

                    let svg_arc = SvgArc {
                        from: path_builder.current_position(),
                        radii,
                        x_rotation,
                        flags,
                        to,
                    };

                    if svg_arc.is_straight_line() {
                        path_builder.line_to(to);
                    } else {
                        path_builder.arc_to(radii, x_rotation, flags, to)
                    }
                }
                PathElement::CubicTo(PathCubicTo {
                    x,
                    y,
                    control_1_x,
                    control_1_y,
                    control_2_x,
                    control_2_y,
                }) => {
                    path_builder.cubic_bezier_to(
                        Point::new(*control_1_x, *control_1_y),
                        Point::new(*control_2_x, *control_2_y),
                        Point::new(*x, *y),
                    );
                }
                PathElement::QuadraticTo(PathQuadraticTo { x, y, control_x, control_y }) => {
                    path_builder.quadratic_bezier_to(
                        Point::new(*control_x, *control_y),
                        Point::new(*x, *y),
                    );
                }
                PathElement::Close => path_builder.close(),
            }
        }

        path_builder.build()
    }
}

#[cfg(not(target_arch = "wasm32"))]
pub(crate) mod ffi {
    #![allow(unsafe_code)]

    use super::super::*;
    use super::*;

    #[allow(non_camel_case_types)]
    type c_void = ();

    #[no_mangle]
    /// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
    pub unsafe extern "C" fn slint_new_path_elements(
        out: *mut c_void,
        first_element: *const PathElement,
        count: usize,
    ) {
        let arr = crate::SharedVector::from(core::slice::from_raw_parts(first_element, count));
        core::ptr::write(out as *mut crate::SharedVector<PathElement>, arr);
    }

    #[no_mangle]
    /// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
    pub unsafe extern "C" fn slint_new_path_events(
        out_events: *mut c_void,
        out_coordinates: *mut c_void,
        first_event: *const PathEvent,
        event_count: usize,
        first_coordinate: *const Point,
        coordinate_count: usize,
    ) {
        let events =
            crate::SharedVector::from(core::slice::from_raw_parts(first_event, event_count));
        core::ptr::write(out_events as *mut crate::SharedVector<PathEvent>, events);
        let coordinates = crate::SharedVector::from(core::slice::from_raw_parts(
            first_coordinate,
            coordinate_count,
        ));
        core::ptr::write(out_coordinates as *mut crate::SharedVector<Point>, coordinates);
    }
}