1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
/*!
This module contains path related types and functions for the run-time library.
*/
use crate::items::PathEvent;
#[cfg(feature = "rtti")]
use crate::rtti::*;
use auto_enums::auto_enum;
use const_field_offset::FieldOffsets;
use i_slint_core_macros::*;
#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathMoveTo describes the event of setting the cursor on the path to use as starting
/// point for sub-sequent events, such as `LineTo`. Moving the cursor also implicitly closes
/// sub-paths and therefore beings a new sub-path.
pub struct PathMoveTo {
#[rtti_field]
/// The x coordinate where the current position should be.
pub x: f32,
#[rtti_field]
/// The y coordinate where the current position should be.
pub y: f32,
}
#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathLineTo describes the event of moving the cursor on the path to the specified location
/// along a straight line.
pub struct PathLineTo {
#[rtti_field]
/// The x coordinate where the line should go to.
pub x: f32,
#[rtti_field]
/// The y coordinate where the line should go to.
pub y: f32,
}
#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
/// x/y coordinates, with the specified x/y radius and additional properties.
pub struct PathArcTo {
#[rtti_field]
/// The x coordinate where the arc should end up.
pub x: f32,
#[rtti_field]
/// The y coordinate where the arc should end up.
pub y: f32,
#[rtti_field]
/// The radius on the x-axis of the arc.
pub radius_x: f32,
#[rtti_field]
/// The radius on the y-axis of the arc.
pub radius_y: f32,
#[rtti_field]
/// The rotation along the x-axis of the arc in degrees.
pub x_rotation: f32,
#[rtti_field]
/// large_arc indicates whether to take the long or the shorter path to complete the arc.
pub large_arc: bool,
#[rtti_field]
/// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
/// otherwise counter-clockwise.
pub sweep: bool,
}
#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathCubicTo describes a smooth Bézier curve from the path's current position
/// to the specified x/y location, using two control points.
pub struct PathCubicTo {
#[rtti_field]
/// The x coordinate of the curve's end point.
pub x: f32,
#[rtti_field]
/// The y coordinate of the curve's end point.
pub y: f32,
#[rtti_field]
/// The x coordinate of the curve's first control point.
pub control_1_x: f32,
#[rtti_field]
/// The y coordinate of the curve's first control point.
pub control_1_y: f32,
#[rtti_field]
/// The x coordinate of the curve's second control point.
pub control_2_x: f32,
#[rtti_field]
/// The y coordinate of the curve's second control point.
pub control_2_y: f32,
}
#[repr(C)]
#[derive(FieldOffsets, Default, SlintElement, Clone, Debug, PartialEq)]
#[pin]
/// PathCubicTo describes a smooth Bézier curve from the path's current position
/// to the specified x/y location, using one control points.
pub struct PathQuadraticTo {
#[rtti_field]
/// The x coordinate of the curve's end point.
pub x: f32,
#[rtti_field]
/// The y coordinate of the curve's end point.
pub y: f32,
#[rtti_field]
/// The x coordinate of the curve's control point.
pub control_x: f32,
#[rtti_field]
/// The y coordinate of the curve's control point.
pub control_y: f32,
}
#[repr(C)]
#[derive(Clone, Debug, PartialEq, derive_more::From)]
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
pub enum PathElement {
/// The MoveTo variant sets the current position on the path.
MoveTo(PathMoveTo),
/// The LineTo variant describes a line.
LineTo(PathLineTo),
/// The PathArcTo variant describes an arc.
ArcTo(PathArcTo),
/// The CubicTo variant describes a Bézier curve with two control points.
CubicTo(PathCubicTo),
/// The QuadraticTo variant describes a Bézier curve with one control point.
QuadraticTo(PathQuadraticTo),
/// Indicates that the path should be closed now by connecting to the starting point.
Close,
}
struct ToLyonPathEventIterator<'a> {
events_it: core::slice::Iter<'a, PathEvent>,
coordinates_it: core::slice::Iter<'a, lyon_path::math::Point>,
first: Option<&'a lyon_path::math::Point>,
last: Option<&'a lyon_path::math::Point>,
}
impl<'a> Iterator for ToLyonPathEventIterator<'a> {
type Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>;
fn next(&mut self) -> Option<Self::Item> {
use lyon_path::Event;
self.events_it.next().map(|event| match event {
PathEvent::Begin => Event::Begin { at: *self.coordinates_it.next().unwrap() },
PathEvent::Line => Event::Line {
from: *self.coordinates_it.next().unwrap(),
to: *self.coordinates_it.next().unwrap(),
},
PathEvent::Quadratic => Event::Quadratic {
from: *self.coordinates_it.next().unwrap(),
ctrl: *self.coordinates_it.next().unwrap(),
to: *self.coordinates_it.next().unwrap(),
},
PathEvent::Cubic => Event::Cubic {
from: *self.coordinates_it.next().unwrap(),
ctrl1: *self.coordinates_it.next().unwrap(),
ctrl2: *self.coordinates_it.next().unwrap(),
to: *self.coordinates_it.next().unwrap(),
},
PathEvent::EndOpen => {
Event::End { first: *self.first.unwrap(), last: *self.last.unwrap(), close: false }
}
PathEvent::EndClosed => {
Event::End { first: *self.first.unwrap(), last: *self.last.unwrap(), close: true }
}
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.events_it.size_hint()
}
}
impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}
struct TransformedLyonPathIterator<EventIt> {
it: EventIt,
transform: lyon_path::math::Transform,
}
impl<
EventIt: Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>>,
> Iterator for TransformedLyonPathIterator<EventIt>
{
type Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>;
fn next(&mut self) -> Option<Self::Item> {
self.it.next().map(|ev| ev.transformed(&self.transform))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
impl<
EventIt: Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>>,
> ExactSizeIterator for TransformedLyonPathIterator<EventIt>
{
}
/// PathDataIterator is a data structure that acts as starting point for iterating
/// through the low-level events of a path. If the path was constructed from said
/// events, then it is a very thin abstraction. If the path was created from higher-level
/// elements, then an intermediate lyon path is required/built.
pub struct PathDataIterator {
it: LyonPathIteratorVariant,
transform: lyon_path::math::Transform,
}
enum LyonPathIteratorVariant {
FromPath(lyon_path::Path),
FromEvents(crate::SharedVector<PathEvent>, crate::SharedVector<lyon_path::math::Point>),
}
impl PathDataIterator {
/// Create a new iterator for path traversal.
#[auto_enum(Iterator)]
pub fn iter(
&self,
) -> impl Iterator<Item = lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>> + '_
{
match &self.it {
LyonPathIteratorVariant::FromPath(path) => {
TransformedLyonPathIterator { it: path.iter(), transform: self.transform }
}
LyonPathIteratorVariant::FromEvents(events, coordinates) => {
TransformedLyonPathIterator {
it: ToLyonPathEventIterator {
events_it: events.iter(),
coordinates_it: coordinates.iter(),
first: coordinates.first(),
last: coordinates.last(),
},
transform: self.transform,
}
}
}
}
/// Applies a transformation on the elements this iterator provides that tries to fit everything
/// into the specified width/height, respecting the provided viewbox. If no viewbox is specified,
/// the bounding rectangle of the path is used.
pub fn fit(&mut self, width: f32, height: f32, viewbox: Option<lyon_path::math::Box2D>) {
if width > 0. || height > 0. {
let viewbox =
viewbox.unwrap_or_else(|| lyon_algorithms::aabb::bounding_box(self.iter()));
self.transform = lyon_algorithms::fit::fit_box(
&viewbox,
&lyon_path::math::Box2D::from_size(lyon_path::math::Size::new(width, height)),
lyon_algorithms::fit::FitStyle::Min,
);
}
}
}
#[repr(C)]
#[derive(Clone, Debug, PartialEq)]
/// PathData represents a path described by either high-level elements or low-level
/// events and coordinates.
pub enum PathData {
/// None is the variant when the path is empty.
None,
/// The Elements variant is used to make a Path from shared arrays of elements.
Elements(crate::SharedVector<PathElement>),
/// The Events variant describes the path as a series of low-level events and
/// associated coordinates.
Events(crate::SharedVector<PathEvent>, crate::SharedVector<lyon_path::math::Point>),
/// The Commands variant describes the path as a series of SVG encoded path commands.
Commands(crate::SharedString),
}
impl Default for PathData {
fn default() -> Self {
Self::None
}
}
impl PathData {
/// This function returns an iterator that allows traversing the path by means of lyon events.
pub fn iter(self) -> Option<PathDataIterator> {
PathDataIterator {
it: match self {
PathData::None => return None,
PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
PathData::build_path(elements.as_slice().iter()),
),
PathData::Events(events, coordinates) => {
LyonPathIteratorVariant::FromEvents(events, coordinates)
}
PathData::Commands(commands) => {
let mut builder = lyon_path::Path::builder();
let mut parser = lyon_extra::parser::PathParser::new();
match parser.parse(
&lyon_extra::parser::ParserOptions::DEFAULT,
&mut lyon_extra::parser::Source::new(commands.chars()),
&mut builder,
) {
Ok(()) => LyonPathIteratorVariant::FromPath(builder.build()),
Err(e) => {
eprintln!("Error while parsing path commands '{commands}': {e:?}");
LyonPathIteratorVariant::FromPath(Default::default())
}
}
}
},
transform: Default::default(),
}
.into()
}
fn build_path(element_it: core::slice::Iter<PathElement>) -> lyon_path::Path {
use lyon_geom::SvgArc;
use lyon_path::math::{Angle, Point, Vector};
use lyon_path::traits::SvgPathBuilder;
use lyon_path::ArcFlags;
let mut path_builder = lyon_path::Path::builder().with_svg();
for element in element_it {
match element {
PathElement::MoveTo(PathMoveTo { x, y }) => {
path_builder.move_to(Point::new(*x, *y));
}
PathElement::LineTo(PathLineTo { x, y }) => {
path_builder.line_to(Point::new(*x, *y));
}
PathElement::ArcTo(PathArcTo {
x,
y,
radius_x,
radius_y,
x_rotation,
large_arc,
sweep,
}) => {
let radii = Vector::new(*radius_x, *radius_y);
let x_rotation = Angle::degrees(*x_rotation);
let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
let to = Point::new(*x, *y);
let svg_arc = SvgArc {
from: path_builder.current_position(),
radii,
x_rotation,
flags,
to,
};
if svg_arc.is_straight_line() {
path_builder.line_to(to);
} else {
path_builder.arc_to(radii, x_rotation, flags, to)
}
}
PathElement::CubicTo(PathCubicTo {
x,
y,
control_1_x,
control_1_y,
control_2_x,
control_2_y,
}) => {
path_builder.cubic_bezier_to(
Point::new(*control_1_x, *control_1_y),
Point::new(*control_2_x, *control_2_y),
Point::new(*x, *y),
);
}
PathElement::QuadraticTo(PathQuadraticTo { x, y, control_x, control_y }) => {
path_builder.quadratic_bezier_to(
Point::new(*control_x, *control_y),
Point::new(*x, *y),
);
}
PathElement::Close => path_builder.close(),
}
}
path_builder.build()
}
}
#[cfg(not(target_arch = "wasm32"))]
pub(crate) mod ffi {
#![allow(unsafe_code)]
use super::super::*;
use super::*;
#[allow(non_camel_case_types)]
type c_void = ();
#[no_mangle]
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
pub unsafe extern "C" fn slint_new_path_elements(
out: *mut c_void,
first_element: *const PathElement,
count: usize,
) {
let arr = crate::SharedVector::from(core::slice::from_raw_parts(first_element, count));
core::ptr::write(out as *mut crate::SharedVector<PathElement>, arr);
}
#[no_mangle]
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
pub unsafe extern "C" fn slint_new_path_events(
out_events: *mut c_void,
out_coordinates: *mut c_void,
first_event: *const PathEvent,
event_count: usize,
first_coordinate: *const Point,
coordinate_count: usize,
) {
let events =
crate::SharedVector::from(core::slice::from_raw_parts(first_event, event_count));
core::ptr::write(out_events as *mut crate::SharedVector<PathEvent>, events);
let coordinates = crate::SharedVector::from(core::slice::from_raw_parts(
first_coordinate,
coordinate_count,
));
core::ptr::write(out_coordinates as *mut crate::SharedVector<Point>, coordinates);
}
}