i_slint_core/graphics/
brush.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0

/*!
This module contains brush related types for the run-time library.
*/

use super::Color;
use crate::properties::InterpolatedPropertyValue;
use crate::SharedVector;
use euclid::default::{Point2D, Size2D};

#[cfg(not(feature = "std"))]
use num_traits::float::Float;

/// A brush is a data structure that is used to describe how
/// a shape, such as a rectangle, path or even text, shall be filled.
/// A brush can also be applied to the outline of a shape, that means
/// the fill of the outline itself.
#[derive(Clone, PartialEq, Debug, derive_more::From)]
#[repr(C)]
#[non_exhaustive]
pub enum Brush {
    /// The color variant of brush is a plain color that is to be used for the fill.
    SolidColor(Color),
    /// The linear gradient variant of a brush describes the gradient stops for a fill
    /// where all color stops are along a line that's rotated by the specified angle.
    LinearGradient(LinearGradientBrush),
    /// The radial gradient variant of a brush describes a circle variant centered
    /// in the middle
    RadialGradient(RadialGradientBrush),
}

/// Construct a brush with transparent color
impl Default for Brush {
    fn default() -> Self {
        Self::SolidColor(Color::default())
    }
}

impl Brush {
    /// If the brush is SolidColor, the contained color is returned.
    /// If the brush is a LinearGradient, the color of the first stop is returned.
    pub fn color(&self) -> Color {
        match self {
            Brush::SolidColor(col) => *col,
            Brush::LinearGradient(gradient) => {
                gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
            }
            Brush::RadialGradient(gradient) => {
                gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
            }
        }
    }

    /// Returns true if this brush contains a fully transparent color (alpha value is zero)
    ///
    /// ```
    /// # use i_slint_core::graphics::*;
    /// assert!(Brush::default().is_transparent());
    /// assert!(Brush::SolidColor(Color::from_argb_u8(0, 255, 128, 140)).is_transparent());
    /// assert!(!Brush::SolidColor(Color::from_argb_u8(25, 128, 140, 210)).is_transparent());
    /// ```
    pub fn is_transparent(&self) -> bool {
        match self {
            Brush::SolidColor(c) => c.alpha() == 0,
            Brush::LinearGradient(_) => false,
            Brush::RadialGradient(_) => false,
        }
    }

    /// Returns true if this brush is fully opaque
    ///
    /// ```
    /// # use i_slint_core::graphics::*;
    /// assert!(!Brush::default().is_opaque());
    /// assert!(!Brush::SolidColor(Color::from_argb_u8(25, 255, 128, 140)).is_opaque());
    /// assert!(Brush::SolidColor(Color::from_rgb_u8(128, 140, 210)).is_opaque());
    /// ```
    pub fn is_opaque(&self) -> bool {
        match self {
            Brush::SolidColor(c) => c.alpha() == 255,
            Brush::LinearGradient(g) => g.stops().all(|s| s.color.alpha() == 255),
            Brush::RadialGradient(g) => g.stops().all(|s| s.color.alpha() == 255),
        }
    }

    /// Returns a new version of this brush that has the brightness increased
    /// by the specified factor. This is done by calling [`Color::brighter`] on
    /// all the colors of this brush.
    #[must_use]
    pub fn brighter(&self, factor: f32) -> Self {
        match self {
            Brush::SolidColor(c) => Brush::SolidColor(c.brighter(factor)),
            Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
                g.angle(),
                g.stops().map(|s| GradientStop {
                    color: s.color.brighter(factor),
                    position: s.position,
                }),
            )),
            Brush::RadialGradient(g) => {
                Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
                    GradientStop { color: s.color.brighter(factor), position: s.position }
                })))
            }
        }
    }

    /// Returns a new version of this brush that has the brightness decreased
    /// by the specified factor. This is done by calling [`Color::darker`] on
    /// all the color of this brush.
    #[must_use]
    pub fn darker(&self, factor: f32) -> Self {
        match self {
            Brush::SolidColor(c) => Brush::SolidColor(c.darker(factor)),
            Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
                g.angle(),
                g.stops()
                    .map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
            )),
            Brush::RadialGradient(g) => Brush::RadialGradient(RadialGradientBrush::new_circle(
                g.stops()
                    .map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
            )),
        }
    }

    /// Returns a new version of this brush with the opacity decreased by `factor`.
    ///
    /// The transparency is obtained by multiplying the alpha channel by `(1 - factor)`.
    ///
    /// See also [`Color::transparentize`]
    #[must_use]
    pub fn transparentize(&self, amount: f32) -> Self {
        match self {
            Brush::SolidColor(c) => Brush::SolidColor(c.transparentize(amount)),
            Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
                g.angle(),
                g.stops().map(|s| GradientStop {
                    color: s.color.transparentize(amount),
                    position: s.position,
                }),
            )),
            Brush::RadialGradient(g) => {
                Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
                    GradientStop { color: s.color.transparentize(amount), position: s.position }
                })))
            }
        }
    }

    /// Returns a new version of this brush with the related color's opacities
    /// set to `alpha`.
    #[must_use]
    pub fn with_alpha(&self, alpha: f32) -> Self {
        match self {
            Brush::SolidColor(c) => Brush::SolidColor(c.with_alpha(alpha)),
            Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
                g.angle(),
                g.stops().map(|s| GradientStop {
                    color: s.color.with_alpha(alpha),
                    position: s.position,
                }),
            )),
            Brush::RadialGradient(g) => {
                Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
                    GradientStop { color: s.color.with_alpha(alpha), position: s.position }
                })))
            }
        }
    }
}

/// The LinearGradientBrush describes a way of filling a shape with different colors, which
/// are interpolated between different stops. The colors are aligned with a line that's rotated
/// by the LinearGradient's angle.
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct LinearGradientBrush(SharedVector<GradientStop>);

impl LinearGradientBrush {
    /// Creates a new linear gradient, described by the specified angle and the provided color stops.
    ///
    /// The angle need to be specified in degrees.
    /// The stops don't need to be sorted as this function will sort them.
    pub fn new(angle: f32, stops: impl IntoIterator<Item = GradientStop>) -> Self {
        let stop_iter = stops.into_iter();
        let mut encoded_angle_and_stops = SharedVector::with_capacity(stop_iter.size_hint().0 + 1);
        // The gradient's first stop is a fake stop to store the angle
        encoded_angle_and_stops.push(GradientStop { color: Default::default(), position: angle });
        encoded_angle_and_stops.extend(stop_iter);
        Self(encoded_angle_and_stops)
    }
    /// Returns the angle of the linear gradient in degrees.
    pub fn angle(&self) -> f32 {
        self.0[0].position
    }
    /// Returns the color stops of the linear gradient.
    /// The stops are sorted by positions.
    pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
        // skip the first fake stop that just contains the angle
        self.0.iter().skip(1)
    }
}

/// The RadialGradientBrush describes a way of filling a shape with a circular gradient
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct RadialGradientBrush(SharedVector<GradientStop>);

impl RadialGradientBrush {
    /// Creates a new circle radial gradient, centered in the middle and described
    /// by the provided color stops.
    pub fn new_circle(stops: impl IntoIterator<Item = GradientStop>) -> Self {
        Self(stops.into_iter().collect())
    }
    /// Returns the color stops of the linear gradient.
    pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
        self.0.iter()
    }
}

/// GradientStop describes a single color stop in a gradient. The colors between multiple
/// stops are interpolated.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct GradientStop {
    /// The color to draw at this stop.
    pub color: Color,
    /// The position of this stop on the entire shape, as a normalized value between 0 and 1.
    pub position: f32,
}

/// Returns the start / end points of a gradient within a rectangle of the given size, based on the angle (in degree).
pub fn line_for_angle(angle: f32, size: Size2D<f32>) -> (Point2D<f32>, Point2D<f32>) {
    let angle = (angle + 90.).to_radians();
    let (s, c) = angle.sin_cos();

    let (a, b) = if s.abs() < f32::EPSILON {
        let y = size.height / 2.;
        return if c < 0. {
            (Point2D::new(0., y), Point2D::new(size.width, y))
        } else {
            (Point2D::new(size.width, y), Point2D::new(0., y))
        };
    } else if c * s < 0. {
        // Intersection between the gradient line, and an orthogonal line that goes through (height, 0)
        let x = (s * size.width + c * size.height) * s / 2.;
        let y = -c * x / s + size.height;
        (Point2D::new(x, y), Point2D::new(size.width - x, size.height - y))
    } else {
        // Intersection between the gradient line, and an orthogonal line that goes through (0, 0)
        let x = (s * size.width - c * size.height) * s / 2.;
        let y = -c * x / s;
        (Point2D::new(size.width - x, size.height - y), Point2D::new(x, y))
    };

    if s > 0. {
        (a, b)
    } else {
        (b, a)
    }
}

impl InterpolatedPropertyValue for Brush {
    fn interpolate(&self, target_value: &Self, t: f32) -> Self {
        match (self, target_value) {
            (Brush::SolidColor(source_col), Brush::SolidColor(target_col)) => {
                Brush::SolidColor(source_col.interpolate(target_col, t))
            }
            (Brush::SolidColor(col), Brush::LinearGradient(grad)) => {
                let mut new_grad = grad.clone();
                for x in new_grad.0.make_mut_slice().iter_mut().skip(1) {
                    x.color = col.interpolate(&x.color, t);
                }
                Brush::LinearGradient(new_grad)
            }
            (a @ Brush::LinearGradient(_), b @ Brush::SolidColor(_)) => {
                Self::interpolate(b, a, 1. - t)
            }
            (Brush::LinearGradient(lhs), Brush::LinearGradient(rhs)) => {
                if lhs.0.len() < rhs.0.len() {
                    Self::interpolate(target_value, self, 1. - t)
                } else {
                    let mut new_grad = lhs.clone();
                    let mut iter = new_grad.0.make_mut_slice().iter_mut();
                    {
                        let angle = &mut iter.next().unwrap().position;
                        *angle = angle.interpolate(&rhs.angle(), t);
                    }
                    for s2 in rhs.stops() {
                        let s1 = iter.next().unwrap();
                        s1.color = s1.color.interpolate(&s2.color, t);
                        s1.position = s1.position.interpolate(&s2.position, t);
                    }
                    for x in iter {
                        x.position = x.position.interpolate(&1.0, t);
                    }
                    Brush::LinearGradient(new_grad)
                }
            }
            (Brush::SolidColor(col), Brush::RadialGradient(grad)) => {
                let mut new_grad = grad.clone();
                for x in new_grad.0.make_mut_slice().iter_mut() {
                    x.color = col.interpolate(&x.color, t);
                }
                Brush::RadialGradient(new_grad)
            }
            (a @ Brush::RadialGradient(_), b @ Brush::SolidColor(_)) => {
                Self::interpolate(b, a, 1. - t)
            }
            (Brush::RadialGradient(lhs), Brush::RadialGradient(rhs)) => {
                if lhs.0.len() < rhs.0.len() {
                    Self::interpolate(target_value, self, 1. - t)
                } else {
                    let mut new_grad = lhs.clone();
                    let mut iter = new_grad.0.make_mut_slice().iter_mut();
                    let mut last_color = Color::default();
                    for s2 in rhs.stops() {
                        let s1 = iter.next().unwrap();
                        last_color = s2.color;
                        s1.color = s1.color.interpolate(&s2.color, t);
                        s1.position = s1.position.interpolate(&s2.position, t);
                    }
                    for x in iter {
                        x.position = x.position.interpolate(&1.0, t);
                        x.color = x.color.interpolate(&last_color, t);
                    }
                    Brush::RadialGradient(new_grad)
                }
            }
            (a @ Brush::LinearGradient(_), b @ Brush::RadialGradient(_))
            | (a @ Brush::RadialGradient(_), b @ Brush::LinearGradient(_)) => {
                // Just go to an intermediate color.
                let color = Color::interpolate(&b.color(), &a.color(), t);
                if t < 0.5 {
                    Self::interpolate(a, &Brush::SolidColor(color), t * 2.)
                } else {
                    Self::interpolate(&Brush::SolidColor(color), b, (t - 0.5) * 2.)
                }
            }
        }
    }
}

#[test]
#[allow(clippy::float_cmp)] // We want bit-wise equality here
fn test_linear_gradient_encoding() {
    let stops: SharedVector<GradientStop> = [
        GradientStop { position: 0.0, color: Color::from_argb_u8(255, 255, 0, 0) },
        GradientStop { position: 0.5, color: Color::from_argb_u8(255, 0, 255, 0) },
        GradientStop { position: 1.0, color: Color::from_argb_u8(255, 0, 0, 255) },
    ]
    .into();
    let grad = LinearGradientBrush::new(256., stops.clone());
    assert_eq!(grad.angle(), 256.);
    assert!(grad.stops().eq(stops.iter()));
}