i_slint_core/graphics/
image.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0

/*!
This module contains image decoding and caching related types for the run-time library.
*/

use crate::lengths::{PhysicalPx, ScaleFactor};
use crate::slice::Slice;
use crate::{SharedString, SharedVector};

use super::{IntRect, IntSize};
use crate::items::{ImageFit, ImageHorizontalAlignment, ImageTiling, ImageVerticalAlignment};

#[cfg(feature = "image-decoders")]
pub mod cache;
#[cfg(target_arch = "wasm32")]
mod htmlimage;
#[cfg(feature = "svg")]
mod svg;

#[allow(missing_docs)]
#[vtable::vtable]
#[repr(C)]
pub struct OpaqueImageVTable {
    drop_in_place: fn(VRefMut<OpaqueImageVTable>) -> Layout,
    dealloc: fn(&OpaqueImageVTable, ptr: *mut u8, layout: Layout),
    /// Returns the image size
    size: fn(VRef<OpaqueImageVTable>) -> IntSize,
    /// Returns a cache key
    cache_key: fn(VRef<OpaqueImageVTable>) -> ImageCacheKey,
}

#[cfg(feature = "svg")]
OpaqueImageVTable_static! {
    /// VTable for RC wrapped SVG helper struct.
    pub static PARSED_SVG_VT for svg::ParsedSVG
}

#[cfg(target_arch = "wasm32")]
OpaqueImageVTable_static! {
    /// VTable for RC wrapped HtmlImage helper struct.
    pub static HTML_IMAGE_VT for htmlimage::HTMLImage
}

OpaqueImageVTable_static! {
    /// VTable for RC wrapped SVG helper struct.
    pub static NINE_SLICE_VT for NineSliceImage
}

/// SharedPixelBuffer is a container for storing image data as pixels. It is
/// internally reference counted and cheap to clone.
///
/// You can construct a new empty shared pixel buffer with [`SharedPixelBuffer::new`],
/// or you can clone it from an existing contiguous buffer that you might already have, using
/// [`SharedPixelBuffer::clone_from_slice`].
///
/// See the documentation for [`Image`] for examples how to use this type to integrate
/// Slint with external rendering functions.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct SharedPixelBuffer<Pixel> {
    width: u32,
    height: u32,
    pub(crate) data: SharedVector<Pixel>,
}

impl<Pixel> SharedPixelBuffer<Pixel> {
    /// Returns the width of the image in pixels.
    pub fn width(&self) -> u32 {
        self.width
    }

    /// Returns the height of the image in pixels.
    pub fn height(&self) -> u32 {
        self.height
    }

    /// Returns the size of the image in pixels.
    pub fn size(&self) -> IntSize {
        [self.width, self.height].into()
    }
}

impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
    /// Return a mutable slice to the pixel data. If the SharedPixelBuffer was shared, this will make a copy of the buffer.
    pub fn make_mut_slice(&mut self) -> &mut [Pixel] {
        self.data.make_mut_slice()
    }
}

impl<Pixel: Clone + rgb::Pod> SharedPixelBuffer<Pixel>
where
    [Pixel]: rgb::ComponentBytes<u8>,
{
    /// Returns the pixels interpreted as raw bytes.
    pub fn as_bytes(&self) -> &[u8] {
        use rgb::ComponentBytes;
        self.data.as_slice().as_bytes()
    }

    /// Returns the pixels interpreted as raw bytes.
    pub fn make_mut_bytes(&mut self) -> &mut [u8] {
        use rgb::ComponentBytes;
        self.data.make_mut_slice().as_bytes_mut()
    }
}

impl<Pixel> SharedPixelBuffer<Pixel> {
    /// Return a slice to the pixel data.
    pub fn as_slice(&self) -> &[Pixel] {
        self.data.as_slice()
    }
}

impl<Pixel: Clone + Default> SharedPixelBuffer<Pixel> {
    /// Creates a new SharedPixelBuffer with the given width and height. Each pixel will be initialized with the value
    /// that [`Default::default()`] returns for the Pixel type.
    pub fn new(width: u32, height: u32) -> Self {
        Self {
            width,
            height,
            data: core::iter::repeat(Pixel::default())
                .take(width as usize * height as usize)
                .collect(),
        }
    }
}

impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
    /// Creates a new SharedPixelBuffer by cloning and converting pixels from an existing
    /// slice. This function is useful when another crate was used to allocate an image
    /// and you would like to convert it for use in Slint.
    pub fn clone_from_slice<SourcePixelType>(
        pixel_slice: &[SourcePixelType],
        width: u32,
        height: u32,
    ) -> Self
    where
        [SourcePixelType]: rgb::AsPixels<Pixel>,
    {
        use rgb::AsPixels;
        Self { width, height, data: pixel_slice.as_pixels().into() }
    }
}

/// Convenience alias for a pixel with three color channels (red, green and blue), each
/// encoded as u8.
pub type Rgb8Pixel = rgb::RGB8;
/// Convenience alias for a pixel with four color channels (red, green, blue and alpha), each
/// encoded as u8.
pub type Rgba8Pixel = rgb::RGBA8;

/// SharedImageBuffer is a container for images that are stored in CPU accessible memory.
///
/// The SharedImageBuffer's variants represent the different common formats for encoding
/// images in pixels.
#[derive(Clone, Debug)]
#[repr(C)]
/// TODO: Make this non_exhaustive before making the type public!
pub enum SharedImageBuffer {
    /// This variant holds the data for an image where each pixel has three color channels (red, green,
    /// and blue) and each channel is encoded as unsigned byte.
    RGB8(SharedPixelBuffer<Rgb8Pixel>),
    /// This variant holds the data for an image where each pixel has four color channels (red, green,
    /// blue and alpha) and each channel is encoded as unsigned byte.
    RGBA8(SharedPixelBuffer<Rgba8Pixel>),
    /// This variant holds the data for an image where each pixel has four color channels (red, green,
    /// blue and alpha) and each channel is encoded as unsigned byte. In contrast to [`Self::RGBA8`],
    /// this variant assumes that the alpha channel is also already multiplied to each red, green and blue
    /// component of each pixel.
    /// Only construct this format if you know that your pixels are encoded this way. It is more efficient
    /// for rendering.
    RGBA8Premultiplied(SharedPixelBuffer<Rgba8Pixel>),
}

impl SharedImageBuffer {
    /// Returns the width of the image in pixels.
    #[inline]
    pub fn width(&self) -> u32 {
        match self {
            Self::RGB8(buffer) => buffer.width(),
            Self::RGBA8(buffer) => buffer.width(),
            Self::RGBA8Premultiplied(buffer) => buffer.width(),
        }
    }

    /// Returns the height of the image in pixels.
    #[inline]
    pub fn height(&self) -> u32 {
        match self {
            Self::RGB8(buffer) => buffer.height(),
            Self::RGBA8(buffer) => buffer.height(),
            Self::RGBA8Premultiplied(buffer) => buffer.height(),
        }
    }

    /// Returns the size of the image in pixels.
    #[inline]
    pub fn size(&self) -> IntSize {
        match self {
            Self::RGB8(buffer) => buffer.size(),
            Self::RGBA8(buffer) => buffer.size(),
            Self::RGBA8Premultiplied(buffer) => buffer.size(),
        }
    }
}

impl PartialEq for SharedImageBuffer {
    fn eq(&self, other: &Self) -> bool {
        match self {
            Self::RGB8(lhs_buffer) => {
                matches!(other, Self::RGB8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
            }
            Self::RGBA8(lhs_buffer) => {
                matches!(other, Self::RGBA8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
            }
            Self::RGBA8Premultiplied(lhs_buffer) => {
                matches!(other, Self::RGBA8Premultiplied(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
            }
        }
    }
}

#[repr(u8)]
#[derive(Clone, PartialEq, Debug, Copy)]
/// The pixel format of a StaticTexture
pub enum PixelFormat {
    /// red, green, blue. 24bits.
    Rgb,
    /// Red, green, blue, alpha. 32bits.
    Rgba,
    /// Red, green, blue, alpha. 32bits. The color are premultiplied by alpha
    RgbaPremultiplied,
    /// Alpha map. 8bits. Each pixel is an alpha value. The color is specified separately.
    AlphaMap,
    /// Distance field. 8bit interpreted as i8.
    /// The range is such that i8::MIN corresponds to 3 pixels outside of the shape,
    /// and i8::MAX corresponds to 3 pixels inside the shape.
    /// The array must be width * height +1 bytes long. (the extra bit is read but never used)
    SignedDistanceField,
}

impl PixelFormat {
    /// The number of bytes in a pixel
    pub fn bpp(self) -> usize {
        match self {
            PixelFormat::Rgb => 3,
            PixelFormat::Rgba => 4,
            PixelFormat::RgbaPremultiplied => 4,
            PixelFormat::AlphaMap => 1,
            PixelFormat::SignedDistanceField => 1,
        }
    }
}

#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// Some raw pixel data which is typically stored in the binary
pub struct StaticTexture {
    /// The position and size of the texture within the image
    pub rect: IntRect,
    /// The pixel format of this texture
    pub format: PixelFormat,
    /// The color, for the alpha map ones
    pub color: crate::Color,
    /// index in the data array
    pub index: usize,
}

#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// A texture is stored in read-only memory and may be composed of sub-textures.

pub struct StaticTextures {
    /// The total size of the image (this might not be the size of the full image
    /// as some transparent part are not part of any texture)
    pub size: IntSize,
    /// The size of the image before the compiler applied any scaling
    pub original_size: IntSize,
    /// The pixel data referenced by the textures
    pub data: Slice<'static, u8>,
    /// The list of textures
    pub textures: Slice<'static, StaticTexture>,
}

/// A struct that provides a path as a string as well as the last modification
/// time of the file it points to.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(C)]
pub struct CachedPath {
    path: SharedString,
    /// SystemTime since UNIX_EPOC as secs
    last_modified: u64,
}

impl CachedPath {
    #[cfg(feature = "std")]
    fn new<P: AsRef<std::path::Path>>(path: P) -> Self {
        let path_str = SharedString::from(path.as_ref().to_string_lossy().as_ref());
        let timestamp = std::fs::metadata(path)
            .and_then(|md| md.modified())
            .unwrap_or(std::time::UNIX_EPOCH)
            .duration_since(std::time::UNIX_EPOCH)
            .map(|t| t.as_secs())
            .unwrap_or_default();
        Self { path: path_str, last_modified: timestamp }
    }
}

/// ImageCacheKey encapsulates the different ways of indexing images in the
/// cache of decoded images.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(u8)]
pub enum ImageCacheKey {
    /// This variant indicates that no image cache key can be created for the image.
    /// For example this is the case for programmatically created images.
    Invalid = 0,
    /// The image is identified by its path on the file system and the last modification time stamp.
    Path(CachedPath) = 1,
    /// The image is identified by a URL.
    #[cfg(target_arch = "wasm32")]
    URL(SharedString) = 2,
    /// The image is identified by the static address of its encoded data.
    EmbeddedData(usize) = 3,
}

impl ImageCacheKey {
    /// Returns a new cache key if decoded image data can be stored in image cache for
    /// the given ImageInner.
    pub fn new(resource: &ImageInner) -> Option<Self> {
        let key = match resource {
            ImageInner::None => return None,
            ImageInner::EmbeddedImage { cache_key, .. } => cache_key.clone(),
            ImageInner::StaticTextures(textures) => {
                Self::from_embedded_image_data(textures.data.as_slice())
            }
            #[cfg(feature = "svg")]
            ImageInner::Svg(parsed_svg) => parsed_svg.cache_key(),
            #[cfg(target_arch = "wasm32")]
            ImageInner::HTMLImage(htmlimage) => Self::URL(htmlimage.source().into()),
            ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).cache_key(),
            #[cfg(not(target_arch = "wasm32"))]
            ImageInner::BorrowedOpenGLTexture(..) => return None,
            ImageInner::NineSlice(nine) => vtable::VRc::borrow(nine).cache_key(),
        };
        if matches!(key, ImageCacheKey::Invalid) {
            None
        } else {
            Some(key)
        }
    }

    /// Returns a cache key for static embedded image data.
    pub fn from_embedded_image_data(data: &'static [u8]) -> Self {
        Self::EmbeddedData(data.as_ptr() as usize)
    }
}

/// Represent a nine-slice image with the base image and the 4 borders
pub struct NineSliceImage(pub ImageInner, pub [u16; 4]);

impl NineSliceImage {
    /// return the backing Image
    pub fn image(&self) -> Image {
        Image(self.0.clone())
    }
}

impl OpaqueImage for NineSliceImage {
    fn size(&self) -> IntSize {
        self.0.size()
    }
    fn cache_key(&self) -> ImageCacheKey {
        ImageCacheKey::new(&self.0).unwrap_or(ImageCacheKey::Invalid)
    }
}

/// A resource is a reference to binary data, for example images. They can be accessible on the file
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
/// is necessary before they can be used.
/// cbindgen:prefix-with-name
#[derive(Clone, Debug, Default)]
#[repr(u8)]
#[allow(missing_docs)]
pub enum ImageInner {
    /// A resource that does not represent any data.
    #[default]
    None = 0,
    EmbeddedImage {
        cache_key: ImageCacheKey,
        buffer: SharedImageBuffer,
    } = 1,
    #[cfg(feature = "svg")]
    Svg(vtable::VRc<OpaqueImageVTable, svg::ParsedSVG>) = 2,
    StaticTextures(&'static StaticTextures) = 3,
    #[cfg(target_arch = "wasm32")]
    HTMLImage(vtable::VRc<OpaqueImageVTable, htmlimage::HTMLImage>) = 4,
    BackendStorage(vtable::VRc<OpaqueImageVTable>) = 5,
    #[cfg(not(target_arch = "wasm32"))]
    BorrowedOpenGLTexture(BorrowedOpenGLTexture) = 6,
    NineSlice(vtable::VRc<OpaqueImageVTable, NineSliceImage>) = 7,
}

impl ImageInner {
    /// Return or render the image into a buffer
    ///
    /// `target_size_for_scalable_source` is the size to use if the image is scalable.
    /// (when unspecified, will default to the intrinsic size of the image)
    ///
    /// Returns None if the image can't be rendered in a buffer or if the image is empty
    pub fn render_to_buffer(
        &self,
        _target_size_for_scalable_source: Option<euclid::Size2D<u32, PhysicalPx>>,
    ) -> Option<SharedImageBuffer> {
        match self {
            ImageInner::EmbeddedImage { buffer, .. } => Some(buffer.clone()),
            #[cfg(feature = "svg")]
            ImageInner::Svg(svg) => match svg.render(_target_size_for_scalable_source) {
                Ok(b) => Some(b),
                // Ignore error when rendering a 0x0 image, that's just an empty image
                Err(resvg::usvg::Error::InvalidSize) => None,
                Err(err) => {
                    eprintln!("Error rendering SVG: {err}");
                    None
                }
            },
            ImageInner::StaticTextures(ts) => {
                let mut buffer =
                    SharedPixelBuffer::<Rgba8Pixel>::new(ts.size.width, ts.size.height);
                let stride = buffer.width() as usize;
                let slice = buffer.make_mut_slice();
                for t in ts.textures.iter() {
                    let rect = t.rect.to_usize();
                    for y in 0..rect.height() {
                        let slice = &mut slice[(rect.min_y() + y) * stride..][rect.x_range()];
                        let source = &ts.data[t.index + y * rect.width() * t.format.bpp()..];
                        match t.format {
                            PixelFormat::Rgb => {
                                let mut iter = source.chunks_exact(3).map(|p| Rgba8Pixel {
                                    r: p[0],
                                    g: p[1],
                                    b: p[2],
                                    a: 255,
                                });
                                slice.fill_with(|| iter.next().unwrap());
                            }
                            PixelFormat::RgbaPremultiplied => {
                                let mut iter = source.chunks_exact(4).map(|p| Rgba8Pixel {
                                    r: p[0],
                                    g: p[1],
                                    b: p[2],
                                    a: p[3],
                                });
                                slice.fill_with(|| iter.next().unwrap());
                            }
                            PixelFormat::Rgba => {
                                let mut iter = source.chunks_exact(4).map(|p| {
                                    let a = p[3];
                                    Rgba8Pixel {
                                        r: (p[0] as u16 * a as u16 / 255) as u8,
                                        g: (p[1] as u16 * a as u16 / 255) as u8,
                                        b: (p[2] as u16 * a as u16 / 255) as u8,
                                        a,
                                    }
                                });
                                slice.fill_with(|| iter.next().unwrap());
                            }
                            PixelFormat::AlphaMap => {
                                let col = t.color.to_argb_u8();
                                let mut iter = source.iter().map(|p| {
                                    let a = *p as u32 * col.alpha as u32;
                                    Rgba8Pixel {
                                        r: (col.red as u32 * a / (255 * 255)) as u8,
                                        g: (col.green as u32 * a / (255 * 255)) as u8,
                                        b: (col.blue as u32 * a / (255 * 255)) as u8,
                                        a: (a / 255) as u8,
                                    }
                                });
                                slice.fill_with(|| iter.next().unwrap());
                            }
                            PixelFormat::SignedDistanceField => {
                                todo!("converting from a signed distance field to an image")
                            }
                        };
                    }
                }
                Some(SharedImageBuffer::RGBA8Premultiplied(buffer))
            }
            ImageInner::NineSlice(nine) => nine.0.render_to_buffer(None),
            _ => None,
        }
    }

    /// Returns true if the image is an SVG (either backed by resvg or HTML image wrapper).
    pub fn is_svg(&self) -> bool {
        match self {
            #[cfg(feature = "svg")]
            Self::Svg(_) => true,
            #[cfg(target_arch = "wasm32")]
            Self::HTMLImage(html_image) => html_image.is_svg(),
            _ => false,
        }
    }

    /// Return the image size
    pub fn size(&self) -> IntSize {
        match self {
            ImageInner::None => Default::default(),
            ImageInner::EmbeddedImage { buffer, .. } => buffer.size(),
            ImageInner::StaticTextures(StaticTextures { original_size, .. }) => *original_size,
            #[cfg(feature = "svg")]
            ImageInner::Svg(svg) => svg.size(),
            #[cfg(target_arch = "wasm32")]
            ImageInner::HTMLImage(htmlimage) => htmlimage.size().unwrap_or_default(),
            ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).size(),
            #[cfg(not(target_arch = "wasm32"))]
            ImageInner::BorrowedOpenGLTexture(BorrowedOpenGLTexture { size, .. }) => *size,
            ImageInner::NineSlice(nine) => nine.0.size(),
        }
    }
}

impl PartialEq for ImageInner {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (
                Self::EmbeddedImage { cache_key: l_cache_key, buffer: l_buffer },
                Self::EmbeddedImage { cache_key: r_cache_key, buffer: r_buffer },
            ) => l_cache_key == r_cache_key && l_buffer == r_buffer,
            #[cfg(feature = "svg")]
            (Self::Svg(l0), Self::Svg(r0)) => vtable::VRc::ptr_eq(l0, r0),
            (Self::StaticTextures(l0), Self::StaticTextures(r0)) => l0 == r0,
            #[cfg(target_arch = "wasm32")]
            (Self::HTMLImage(l0), Self::HTMLImage(r0)) => vtable::VRc::ptr_eq(l0, r0),
            (Self::BackendStorage(l0), Self::BackendStorage(r0)) => vtable::VRc::ptr_eq(l0, r0),
            #[cfg(not(target_arch = "wasm32"))]
            (Self::BorrowedOpenGLTexture(l0), Self::BorrowedOpenGLTexture(r0)) => l0 == r0,
            (Self::NineSlice(l), Self::NineSlice(r)) => l.0 == r.0 && l.1 == r.1,
            _ => false,
        }
    }
}

impl<'a> From<&'a Image> for &'a ImageInner {
    fn from(other: &'a Image) -> Self {
        &other.0
    }
}

/// Error generated if an image cannot be loaded for any reasons.
#[derive(Default, Debug, PartialEq)]
pub struct LoadImageError(());

impl core::fmt::Display for LoadImageError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.write_str("The image cannot be loaded")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for LoadImageError {}

/// An image type that can be displayed by the Image element. You can construct
/// Image objects from a path to an image file on disk, using [`Self::load_from_path`].
///
/// Another typical use-case is to render the image content with Rust code.
/// For this it's most efficient to create a new SharedPixelBuffer with the known dimensions
/// and pass the mutable slice to your rendering function. Afterwards you can create an
/// Image.
///
/// The following example creates a 320x200 RGB pixel buffer and calls an external
/// low_level_render() function to draw a shape into it. Finally the result is
/// stored in an Image with [`Self::from_rgb8()`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgb8Pixel};
///
/// fn low_level_render(width: u32, height: u32, buffer: &mut [u8]) {
///     // render beautiful circle or other shapes here
/// }
///
/// let mut pixel_buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
///
/// low_level_render(pixel_buffer.width(), pixel_buffer.height(),
///                  pixel_buffer.make_mut_bytes());
///
/// let image = Image::from_rgb8(pixel_buffer);
/// ```
///
/// Another use-case is to import existing image data into Slint, by
/// creating a new Image through cloning of another image type.
///
/// The following example uses the popular [image crate](https://docs.rs/image/) to
/// load a `.png` file from disk, apply brightening filter on it and then import
/// it into an [`Image`]:
/// ```no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut cat_image = image::open("cat.png").expect("Error loading cat image").into_rgba8();
///
/// image::imageops::colorops::brighten_in_place(&mut cat_image, 20);
///
/// let buffer = SharedPixelBuffer::<Rgba8Pixel>::clone_from_slice(
///     cat_image.as_raw(),
///     cat_image.width(),
///     cat_image.height(),
/// );
/// let image = Image::from_rgba8(buffer);
/// ```
///
/// A popular software (CPU) rendering library in Rust is tiny-skia. The following example shows
/// how to use tiny-skia to render into a [`SharedPixelBuffer`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// let width = pixel_buffer.width();
/// let height = pixel_buffer.height();
/// let mut pixmap = tiny_skia::PixmapMut::from_bytes(
///     pixel_buffer.make_mut_bytes(), width, height
/// ).unwrap();
/// pixmap.fill(tiny_skia::Color::TRANSPARENT);
///
/// let circle = tiny_skia::PathBuilder::from_circle(320., 240., 150.).unwrap();
///
/// let mut paint = tiny_skia::Paint::default();
/// paint.shader = tiny_skia::LinearGradient::new(
///     tiny_skia::Point::from_xy(100.0, 100.0),
///     tiny_skia::Point::from_xy(400.0, 400.0),
///     vec![
///         tiny_skia::GradientStop::new(0.0, tiny_skia::Color::from_rgba8(50, 127, 150, 200)),
///         tiny_skia::GradientStop::new(1.0, tiny_skia::Color::from_rgba8(220, 140, 75, 180)),
///     ],
///     tiny_skia::SpreadMode::Pad,
///     tiny_skia::Transform::identity(),
/// ).unwrap();
///
/// pixmap.fill_path(&circle, &paint, tiny_skia::FillRule::Winding, Default::default(), None);
///
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// ```
///
/// ### Sending Image to a thread
///
/// `Image` is not [`Send`], because it uses internal cache that are local to the Slint thread.
/// If you want to create image data in a thread and send that to slint, construct the
/// [`SharedPixelBuffer`] in a thread, and send that to Slint's UI thread.
///
/// ```rust,no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// std::thread::spawn(move || {
///     let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
///     // ... fill the pixel_buffer with data as shown in the previous example ...
///     slint::invoke_from_event_loop(move || {
///         // this will run in the Slint's UI thread
///         let image = Image::from_rgba8_premultiplied(pixel_buffer);
///         // ... use the image, eg:
///         // my_ui_handle.upgrade().unwrap().set_image(image);
///     });
/// });
/// ```
#[repr(transparent)]
#[derive(Default, Clone, Debug, PartialEq, derive_more::From)]
pub struct Image(ImageInner);

impl Image {
    #[cfg(feature = "image-decoders")]
    /// Load an Image from a path to a file containing an image
    pub fn load_from_path(path: &std::path::Path) -> Result<Self, LoadImageError> {
        self::cache::IMAGE_CACHE.with(|global_cache| {
            let path: SharedString = path.to_str().ok_or(LoadImageError(()))?.into();
            global_cache.borrow_mut().load_image_from_path(&path).ok_or(LoadImageError(()))
        })
    }

    /// Creates a new Image from the specified shared pixel buffer, where each pixel has three color
    /// channels (red, green and blue) encoded as u8.
    pub fn from_rgb8(buffer: SharedPixelBuffer<Rgb8Pixel>) -> Self {
        Image(ImageInner::EmbeddedImage {
            cache_key: ImageCacheKey::Invalid,
            buffer: SharedImageBuffer::RGB8(buffer),
        })
    }

    /// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
    /// channels (red, green, blue and alpha) encoded as u8.
    pub fn from_rgba8(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
        Image(ImageInner::EmbeddedImage {
            cache_key: ImageCacheKey::Invalid,
            buffer: SharedImageBuffer::RGBA8(buffer),
        })
    }

    /// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
    /// channels (red, green, blue and alpha) encoded as u8 and, in contrast to [`Self::from_rgba8`],
    /// the alpha channel is also assumed to be multiplied to the red, green and blue channels.
    ///
    /// Only construct an Image with this function if you know that your pixels are encoded this way.
    pub fn from_rgba8_premultiplied(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
        Image(ImageInner::EmbeddedImage {
            cache_key: ImageCacheKey::Invalid,
            buffer: SharedImageBuffer::RGBA8Premultiplied(buffer),
        })
    }

    /// Returns the pixel buffer for the Image if available in RGB format without alpha.
    /// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
    pub fn to_rgb8(&self) -> Option<SharedPixelBuffer<Rgb8Pixel>> {
        self.0.render_to_buffer(None).and_then(|image| match image {
            SharedImageBuffer::RGB8(buffer) => Some(buffer),
            _ => None,
        })
    }

    /// Returns the pixel buffer for the Image if available in RGBA format.
    /// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
    pub fn to_rgba8(&self) -> Option<SharedPixelBuffer<Rgba8Pixel>> {
        self.0.render_to_buffer(None).map(|image| match image {
            SharedImageBuffer::RGB8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
                width: buffer.width,
                height: buffer.height,
                data: buffer.data.into_iter().map(Into::into).collect(),
            },
            SharedImageBuffer::RGBA8(buffer) => buffer,
            SharedImageBuffer::RGBA8Premultiplied(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
                width: buffer.width,
                height: buffer.height,
                data: buffer
                    .data
                    .into_iter()
                    .map(|rgba_premul| {
                        if rgba_premul.a == 0 {
                            Rgba8Pixel::new(0, 0, 0, 0)
                        } else {
                            let af = rgba_premul.a as f32 / 255.0;
                            Rgba8Pixel {
                                r: (rgba_premul.r as f32 * 255. / af) as u8,
                                g: (rgba_premul.g as f32 * 255. / af) as u8,
                                b: (rgba_premul.b as f32 * 255. / af) as u8,
                                a: rgba_premul.a,
                            }
                        }
                    })
                    .collect(),
            },
        })
    }

    /// Returns the pixel buffer for the Image if available in RGBA format, with the alpha channel pre-multiplied
    /// to the red, green, and blue channels.
    /// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
    pub fn to_rgba8_premultiplied(&self) -> Option<SharedPixelBuffer<Rgba8Pixel>> {
        self.0.render_to_buffer(None).map(|image| match image {
            SharedImageBuffer::RGB8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
                width: buffer.width,
                height: buffer.height,
                data: buffer.data.into_iter().map(Into::into).collect(),
            },
            SharedImageBuffer::RGBA8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
                width: buffer.width,
                height: buffer.height,
                data: buffer
                    .data
                    .into_iter()
                    .map(|rgba| {
                        if rgba.a == 255 {
                            rgba
                        } else {
                            let af = rgba.a as f32 / 255.0;
                            Rgba8Pixel {
                                r: (rgba.r as f32 * af / 255.) as u8,
                                g: (rgba.g as f32 * af / 255.) as u8,
                                b: (rgba.b as f32 * af / 255.) as u8,
                                a: rgba.a,
                            }
                        }
                    })
                    .collect(),
            },
            SharedImageBuffer::RGBA8Premultiplied(buffer) => buffer,
        })
    }

    /// Creates a new Image from an existing OpenGL texture. The texture remains borrowed by Slint
    /// for the duration of being used for rendering, such as when assigned as source property to
    /// an `Image` element. It's the application's responsibility to delete the texture when it is
    /// not used anymore.
    ///
    /// The texture must be bindable against the `GL_TEXTURE_2D` target, have `GL_RGBA` as format
    /// for the pixel data.
    ///
    /// When Slint renders the texture, it assumes that the origin of the texture is at the top-left.
    /// This is different from the default OpenGL coordinate system.
    ///
    /// # Safety
    ///
    /// This function is unsafe because invalid texture ids may lead to undefined behavior in OpenGL
    /// drivers. A valid texture id is one that was created by the same OpenGL context that is
    /// current during any of the invocations of the callback set on [`Window::set_rendering_notifier()`](crate::api::Window::set_rendering_notifier).
    /// OpenGL contexts between instances of [`slint::Window`](crate::api::Window) are not sharing resources. Consequently
    /// [`slint::Image`](Self) objects created from borrowed OpenGL textures cannot be shared between
    /// different windows.
    #[allow(unsafe_code)]
    #[cfg(not(target_arch = "wasm32"))]
    #[deprecated(since = "1.2.0", note = "Use BorrowedOpenGLTextureBuilder")]
    pub unsafe fn from_borrowed_gl_2d_rgba_texture(
        texture_id: core::num::NonZeroU32,
        size: IntSize,
    ) -> Self {
        BorrowedOpenGLTextureBuilder::new_gl_2d_rgba_texture(texture_id, size).build()
    }

    /// Creates a new Image from the specified buffer, which contains SVG raw data.
    #[cfg(feature = "svg")]
    pub fn load_from_svg_data(buffer: &[u8]) -> Result<Self, LoadImageError> {
        let cache_key = ImageCacheKey::Invalid;
        Ok(Image(ImageInner::Svg(vtable::VRc::new(
            svg::load_from_data(buffer, cache_key).map_err(|_| LoadImageError(()))?,
        ))))
    }

    /// Sets the nine-slice edges of the image.
    ///
    /// [Nine-slice scaling](https://en.wikipedia.org/wiki/9-slice_scaling) is a method for scaling
    /// images in such a way that the corners are not distorted.
    /// The arguments define the pixel sizes of the edges that cut the image into 9 slices.
    pub fn set_nine_slice_edges(&mut self, top: u16, right: u16, bottom: u16, left: u16) {
        if top == 0 && left == 0 && right == 0 && bottom == 0 {
            if let ImageInner::NineSlice(n) = &self.0 {
                self.0 = n.0.clone();
            }
        } else {
            let array = [top, right, bottom, left];
            let inner = if let ImageInner::NineSlice(n) = &mut self.0 {
                n.0.clone()
            } else {
                self.0.clone()
            };
            self.0 = ImageInner::NineSlice(vtable::VRc::new(NineSliceImage(inner, array)));
        }
    }

    /// Returns the size of the Image in pixels.
    pub fn size(&self) -> IntSize {
        self.0.size()
    }

    #[cfg(feature = "std")]
    /// Returns the path of the image on disk, if it was constructed via [`Self::load_from_path`].
    ///
    /// For example:
    /// ```
    /// # use std::path::Path;
    /// # use i_slint_core::graphics::*;
    /// let path_buf = Path::new(env!("CARGO_MANIFEST_DIR"))
    ///     .join("../../demos/printerdemo/ui/images/cat.jpg");
    /// let image = Image::load_from_path(&path_buf).unwrap();
    /// assert_eq!(image.path(), Some(path_buf.as_path()));
    /// ```
    pub fn path(&self) -> Option<&std::path::Path> {
        match &self.0 {
            ImageInner::EmbeddedImage {
                cache_key: ImageCacheKey::Path(CachedPath { path, .. }),
                ..
            } => Some(std::path::Path::new(path.as_str())),
            ImageInner::NineSlice(nine) => match &nine.0 {
                ImageInner::EmbeddedImage {
                    cache_key: ImageCacheKey::Path(CachedPath { path, .. }),
                    ..
                } => Some(std::path::Path::new(path.as_str())),
                _ => None,
            },
            _ => None,
        }
    }
}

/// This enum describes the origin to use when rendering a borrowed OpenGL texture.
/// Use this with [`BorrowedOpenGLTextureBuilder::origin`].
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[repr(u8)]
#[non_exhaustive]
pub enum BorrowedOpenGLTextureOrigin {
    /// The top-left of the texture is the top-left of the texture drawn on the screen.
    #[default]
    TopLeft,
    /// The bottom-left of the texture is the top-left of the texture draw on the screen,
    /// flipping it vertically.
    BottomLeft,
}

/// Factory to create [`slint::Image`](crate::graphics::Image) from an existing OpenGL texture.
///
/// Methods can be chained on it in order to configure it.
///
///  * `origin`: Change the texture's origin when rendering (default: TopLeft).
///
/// Complete the builder by calling [`Self::build()`] to create a [`slint::Image`](crate::graphics::Image):
///
/// ```
/// # use i_slint_core::graphics::{BorrowedOpenGLTextureBuilder, Image, IntSize, BorrowedOpenGLTextureOrigin};
/// # let texture_id = core::num::NonZeroU32::new(1).unwrap();
/// # let size = IntSize::new(100, 100);
/// let builder = unsafe { BorrowedOpenGLTextureBuilder::new_gl_2d_rgba_texture(texture_id, size) }
///              .origin(BorrowedOpenGLTextureOrigin::TopLeft);
///
/// let image: slint::Image = builder.build();
/// ```
#[cfg(not(target_arch = "wasm32"))]
pub struct BorrowedOpenGLTextureBuilder(BorrowedOpenGLTexture);

#[cfg(not(target_arch = "wasm32"))]
impl BorrowedOpenGLTextureBuilder {
    /// Generates the base configuration for a borrowed OpenGL texture.
    ///
    /// The texture must be bindable against the `GL_TEXTURE_2D` target, have `GL_RGBA` as format
    /// for the pixel data.
    ///
    /// By default, when Slint renders the texture, it assumes that the origin of the texture is at the top-left.
    /// This is different from the default OpenGL coordinate system. Use the `mirror_vertically` function
    /// to reconfigure this.
    ///
    /// # Safety
    ///
    /// This function is unsafe because invalid texture ids may lead to undefined behavior in OpenGL
    /// drivers. A valid texture id is one that was created by the same OpenGL context that is
    /// current during any of the invocations of the callback set on [`Window::set_rendering_notifier()`](crate::api::Window::set_rendering_notifier).
    /// OpenGL contexts between instances of [`slint::Window`](crate::api::Window) are not sharing resources. Consequently
    /// [`slint::Image`](Self) objects created from borrowed OpenGL textures cannot be shared between
    /// different windows.
    #[allow(unsafe_code)]
    pub unsafe fn new_gl_2d_rgba_texture(texture_id: core::num::NonZeroU32, size: IntSize) -> Self {
        Self(BorrowedOpenGLTexture { texture_id, size, origin: Default::default() })
    }

    /// Configures the texture to be rendered vertically mirrored.
    pub fn origin(mut self, origin: BorrowedOpenGLTextureOrigin) -> Self {
        self.0.origin = origin;
        self
    }

    /// Completes the process of building a slint::Image that holds a borrowed OpenGL texture.
    pub fn build(self) -> Image {
        Image(ImageInner::BorrowedOpenGLTexture(self.0))
    }
}

/// Load an image from an image embedded in the binary.
/// This is called by the generated code.
#[cfg(feature = "image-decoders")]
pub fn load_image_from_embedded_data(data: Slice<'static, u8>, format: Slice<'_, u8>) -> Image {
    self::cache::IMAGE_CACHE.with(|global_cache| {
        global_cache.borrow_mut().load_image_from_embedded_data(data, format).unwrap_or_default()
    })
}

#[test]
fn test_image_size_from_buffer_without_backend() {
    {
        assert_eq!(Image::default().size(), Default::default());
        assert!(Image::default().to_rgb8().is_none());
        assert!(Image::default().to_rgba8().is_none());
        assert!(Image::default().to_rgba8_premultiplied().is_none());
    }
    {
        let buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
        let image = Image::from_rgb8(buffer.clone());
        assert_eq!(image.size(), [320, 200].into());
        assert_eq!(image.to_rgb8().as_ref().map(|b| b.as_slice()), Some(buffer.as_slice()));
    }
}

#[cfg(feature = "svg")]
#[test]
fn test_image_size_from_svg() {
    let simple_svg = r#"<svg width="320" height="200" xmlns="http://www.w3.org/2000/svg"></svg>"#;
    let image = Image::load_from_svg_data(simple_svg.as_bytes()).unwrap();
    assert_eq!(image.size(), [320, 200].into());
    assert_eq!(image.to_rgba8().unwrap().size(), image.size());
}

#[cfg(feature = "svg")]
#[test]
fn test_image_invalid_svg() {
    let invalid_svg = r#"AaBbCcDd"#;
    let result = Image::load_from_svg_data(invalid_svg.as_bytes());
    assert!(result.is_err());
}

/// The result of the fit function
#[derive(Debug)]
pub struct FitResult {
    /// The clip rect in the source image (in source image coordinate)
    pub clip_rect: IntRect,
    /// The scale to apply to go from the source to the target horizontally
    pub source_to_target_x: f32,
    /// The scale to apply to go from the source to the target vertically
    pub source_to_target_y: f32,
    /// The size of the target
    pub size: euclid::Size2D<f32, PhysicalPx>,
    /// The offset in the target in which we draw the image
    pub offset: euclid::Point2D<f32, PhysicalPx>,
    /// When Some, it means the image should be tiled instead of stretched to the target
    /// but still scaled with the source_to_target_x and source_to_target_y factor
    /// The point is the coordinate within the image's clip_rect of the pixel at the offset
    pub tiled: Option<euclid::default::Point2D<u32>>,
}

impl FitResult {
    fn adjust_for_tiling(
        self,
        ratio: f32,
        alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
        tiling: (ImageTiling, ImageTiling),
    ) -> Self {
        let mut r = self;
        let mut tiled = euclid::Point2D::default();
        let target = r.size;
        let o = r.clip_rect.size.cast::<f32>();
        match tiling.0 {
            ImageTiling::None => {
                r.size.width = o.width * r.source_to_target_x;
                if (o.width as f32) > target.width / r.source_to_target_x {
                    let diff = (o.width as f32 - target.width / r.source_to_target_x) as i32;
                    r.clip_rect.size.width -= diff;
                    r.clip_rect.origin.x += match alignment.0 {
                        ImageHorizontalAlignment::Center => diff / 2,
                        ImageHorizontalAlignment::Left => 0,
                        ImageHorizontalAlignment::Right => diff,
                    };
                    r.size.width = target.width;
                } else if (o.width as f32) < target.width / r.source_to_target_x {
                    r.offset.x += match alignment.0 {
                        ImageHorizontalAlignment::Center => {
                            (target.width - o.width as f32 * r.source_to_target_x) / 2.
                        }
                        ImageHorizontalAlignment::Left => 0.,
                        ImageHorizontalAlignment::Right => {
                            target.width - o.width as f32 * r.source_to_target_x
                        }
                    };
                }
            }
            ImageTiling::Repeat => {
                tiled.x = match alignment.0 {
                    ImageHorizontalAlignment::Left => 0,
                    ImageHorizontalAlignment::Center => {
                        ((o.width - target.width / ratio) / 2.).rem_euclid(o.width) as u32
                    }
                    ImageHorizontalAlignment::Right => {
                        (-target.width / ratio).rem_euclid(o.width) as u32
                    }
                };
                r.source_to_target_x = ratio;
            }
            ImageTiling::Round => {
                if target.width / ratio <= o.width * 1.5 {
                    r.source_to_target_x = target.width / o.width;
                } else {
                    let mut rem = (target.width / ratio).rem_euclid(o.width);
                    if rem > o.width / 2. {
                        rem -= o.width;
                    }
                    r.source_to_target_x = ratio * target.width / (target.width - rem * ratio);
                }
            }
        }

        match tiling.1 {
            ImageTiling::None => {
                r.size.height = o.height * r.source_to_target_y;
                if (o.height as f32) > target.height / r.source_to_target_y {
                    let diff = (o.height as f32 - target.height / r.source_to_target_y) as i32;
                    r.clip_rect.size.height -= diff;
                    r.clip_rect.origin.y += match alignment.1 {
                        ImageVerticalAlignment::Center => diff / 2,
                        ImageVerticalAlignment::Top => 0,
                        ImageVerticalAlignment::Bottom => diff,
                    };
                    r.size.height = target.height;
                } else if (o.height as f32) < target.height / r.source_to_target_y {
                    r.offset.y += match alignment.1 {
                        ImageVerticalAlignment::Center => {
                            (target.height - o.height as f32 * r.source_to_target_y) / 2.
                        }
                        ImageVerticalAlignment::Top => 0.,
                        ImageVerticalAlignment::Bottom => {
                            target.height - o.height as f32 * r.source_to_target_y
                        }
                    };
                }
            }
            ImageTiling::Repeat => {
                tiled.y = match alignment.1 {
                    ImageVerticalAlignment::Top => 0,
                    ImageVerticalAlignment::Center => {
                        ((o.height - target.height / ratio) / 2.).rem_euclid(o.height) as u32
                    }
                    ImageVerticalAlignment::Bottom => {
                        (-target.height / ratio).rem_euclid(o.height) as u32
                    }
                };
                r.source_to_target_y = ratio;
            }
            ImageTiling::Round => {
                if target.height / ratio <= o.height * 1.5 {
                    r.source_to_target_y = target.height / o.height;
                } else {
                    let mut rem = (target.height / ratio).rem_euclid(o.height);
                    if rem > o.height / 2. {
                        rem -= o.height;
                    }
                    r.source_to_target_y = ratio * target.height / (target.height - rem * ratio);
                }
            }
        }
        let has_tiling = tiling != (ImageTiling::None, ImageTiling::None);
        r.tiled = has_tiling.then_some(tiled);
        r
    }
}

#[cfg(not(feature = "std"))]
trait RemEuclid {
    fn rem_euclid(self, b: f32) -> f32;
}
#[cfg(not(feature = "std"))]
impl RemEuclid for f32 {
    fn rem_euclid(self, b: f32) -> f32 {
        return num_traits::Euclid::rem_euclid(&self, &b);
    }
}

/// Return an FitResult that can be used to render an image in a buffer that matches a given ImageFit
pub fn fit(
    image_fit: ImageFit,
    target: euclid::Size2D<f32, PhysicalPx>,
    source_rect: IntRect,
    scale_factor: ScaleFactor,
    alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
    tiling: (ImageTiling, ImageTiling),
) -> FitResult {
    let has_tiling = tiling != (ImageTiling::None, ImageTiling::None);
    let o = source_rect.size.cast::<f32>();
    let ratio = match image_fit {
        // If there is any tiling, we ignore image_fit
        _ if has_tiling => scale_factor.get(),
        ImageFit::Fill => {
            return FitResult {
                clip_rect: source_rect,
                source_to_target_x: target.width / o.width,
                source_to_target_y: target.height / o.height,
                size: target,
                offset: Default::default(),
                tiled: None,
            }
        }
        ImageFit::Preserve => scale_factor.get(),
        ImageFit::Contain => f32::min(target.width / o.width, target.height / o.height),
        ImageFit::Cover => f32::max(target.width / o.width, target.height / o.height),
    };

    FitResult {
        clip_rect: source_rect,
        source_to_target_x: ratio,
        source_to_target_y: ratio,
        size: target,
        offset: euclid::Point2D::default(),
        tiled: None,
    }
    .adjust_for_tiling(ratio, alignment, tiling)
}

/// Generate an iterator of  [`FitResult`] for each slice of a nine-slice border image
pub fn fit9slice(
    source_rect: IntSize,
    [t, r, b, l]: [u16; 4],
    target: euclid::Size2D<f32, PhysicalPx>,
    scale_factor: ScaleFactor,
    alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
    tiling: (ImageTiling, ImageTiling),
) -> impl Iterator<Item = FitResult> {
    let fit_to = |clip_rect: euclid::default::Rect<u16>, target: euclid::Rect<f32, PhysicalPx>| {
        (!clip_rect.is_empty() && !target.is_empty()).then(|| {
            FitResult {
                clip_rect: clip_rect.cast(),
                source_to_target_x: target.width() / clip_rect.width() as f32,
                source_to_target_y: target.height() / clip_rect.height() as f32,
                size: target.size,
                offset: target.origin,
                tiled: None,
            }
            .adjust_for_tiling(scale_factor.get(), alignment, tiling)
        })
    };
    use euclid::rect;
    let sf = |x| scale_factor.get() * x as f32;
    let source = source_rect.cast::<u16>();
    if t + b > source.height || l + r > source.width {
        [None, None, None, None, None, None, None, None, None]
    } else {
        [
            fit_to(rect(0, 0, l, t), rect(0., 0., sf(l), sf(t))),
            fit_to(
                rect(l, 0, source.width - l - r, t),
                rect(sf(l), 0., target.width - sf(l) - sf(r), sf(t)),
            ),
            fit_to(rect(source.width - r, 0, r, t), rect(target.width - sf(r), 0., sf(r), sf(t))),
            fit_to(
                rect(0, t, l, source.height - t - b),
                rect(0., sf(t), sf(l), target.height - sf(t) - sf(b)),
            ),
            fit_to(
                rect(l, t, source.width - l - r, source.height - t - b),
                rect(sf(l), sf(t), target.width - sf(l) - sf(r), target.height - sf(t) - sf(b)),
            ),
            fit_to(
                rect(source.width - r, t, r, source.height - t - b),
                rect(target.width - sf(r), sf(t), sf(r), target.height - sf(t) - sf(b)),
            ),
            fit_to(rect(0, source.height - b, l, b), rect(0., target.height - sf(b), sf(l), sf(b))),
            fit_to(
                rect(l, source.height - b, source.width - l - r, b),
                rect(sf(l), target.height - sf(b), target.width - sf(l) - sf(r), sf(b)),
            ),
            fit_to(
                rect(source.width - r, source.height - b, r, b),
                rect(target.width - sf(r), target.height - sf(b), sf(r), sf(b)),
            ),
        ]
    }
    .into_iter()
    .flatten()
}

#[cfg(feature = "ffi")]
pub(crate) mod ffi {
    #![allow(unsafe_code)]

    use super::*;

    // Expand Rgb8Pixel so that cbindgen can see it. (is in fact rgb::RGB<u8>)
    /// Represents an RGB pixel.
    #[cfg(cbindgen)]
    #[repr(C)]
    struct Rgb8Pixel {
        /// red value (between 0 and 255)
        r: u8,
        /// green value (between 0 and 255)
        g: u8,
        /// blue value (between 0 and 255)
        b: u8,
    }

    // Expand Rgba8Pixel so that cbindgen can see it. (is in fact rgb::RGBA<u8>)
    /// Represents an RGBA pixel.
    #[cfg(cbindgen)]
    #[repr(C)]
    struct Rgba8Pixel {
        /// red value (between 0 and 255)
        r: u8,
        /// green value (between 0 and 255)
        g: u8,
        /// blue value (between 0 and 255)
        b: u8,
        /// alpha value (between 0 and 255)
        a: u8,
    }

    #[cfg(feature = "image-decoders")]
    #[no_mangle]
    pub unsafe extern "C" fn slint_image_load_from_path(path: &SharedString, image: *mut Image) {
        core::ptr::write(
            image,
            Image::load_from_path(std::path::Path::new(path.as_str())).unwrap_or(Image::default()),
        )
    }

    #[cfg(feature = "std")]
    #[no_mangle]
    pub unsafe extern "C" fn slint_image_load_from_embedded_data(
        data: Slice<'static, u8>,
        format: Slice<'static, u8>,
        image: *mut Image,
    ) {
        core::ptr::write(image, super::load_image_from_embedded_data(data, format));
    }

    #[no_mangle]
    pub unsafe extern "C" fn slint_image_size(image: &Image) -> IntSize {
        image.size()
    }

    #[no_mangle]
    pub extern "C" fn slint_image_path(image: &Image) -> Option<&SharedString> {
        match &image.0 {
            ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
                ImageCacheKey::Path(CachedPath { path, .. }) => Some(path),
                _ => None,
            },
            ImageInner::NineSlice(nine) => match &nine.0 {
                ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
                    ImageCacheKey::Path(CachedPath { path, .. }) => Some(path),
                    _ => None,
                },
                _ => None,
            },
            _ => None,
        }
    }

    #[no_mangle]
    pub unsafe extern "C" fn slint_image_from_embedded_textures(
        textures: &'static StaticTextures,
        image: *mut Image,
    ) {
        core::ptr::write(image, Image::from(ImageInner::StaticTextures(textures)));
    }

    #[no_mangle]
    pub unsafe extern "C" fn slint_image_compare_equal(image1: &Image, image2: &Image) -> bool {
        return image1.eq(image2);
    }

    /// Call [`Image::set_nine_slice_edges`]
    #[no_mangle]
    pub extern "C" fn slint_image_set_nine_slice_edges(
        image: &mut Image,
        top: u16,
        right: u16,
        bottom: u16,
        left: u16,
    ) {
        image.set_nine_slice_edges(top, right, bottom, left);
    }

    #[no_mangle]
    pub extern "C" fn slint_image_to_rgb8(
        image: &Image,
        data: &mut SharedVector<Rgb8Pixel>,
        width: &mut u32,
        height: &mut u32,
    ) -> bool {
        image.to_rgb8().map_or(false, |pixel_buffer| {
            *data = pixel_buffer.data.clone();
            *width = pixel_buffer.width();
            *height = pixel_buffer.height();
            true
        })
    }

    #[no_mangle]
    pub extern "C" fn slint_image_to_rgba8(
        image: &Image,
        data: &mut SharedVector<Rgba8Pixel>,
        width: &mut u32,
        height: &mut u32,
    ) -> bool {
        image.to_rgba8().map_or(false, |pixel_buffer| {
            *data = pixel_buffer.data.clone();
            *width = pixel_buffer.width();
            *height = pixel_buffer.height();
            true
        })
    }

    #[no_mangle]
    pub extern "C" fn slint_image_to_rgba8_premultiplied(
        image: &Image,
        data: &mut SharedVector<Rgba8Pixel>,
        width: &mut u32,
        height: &mut u32,
    ) -> bool {
        image.to_rgba8_premultiplied().map_or(false, |pixel_buffer| {
            *data = pixel_buffer.data.clone();
            *width = pixel_buffer.width();
            *height = pixel_buffer.height();
            true
        })
    }
}

/// This structure contains fields to identify and render an OpenGL texture that Slint borrows from the application code.
/// Use this to embed a native OpenGL texture into a Slint scene.
///
/// The ownership of the texture remains with the application. It is the application's responsibility to delete the texture
/// when it is not used anymore.
///
/// Note that only 2D RGBA textures are supported.
#[derive(Clone, Debug, PartialEq)]
#[non_exhaustive]
#[cfg(not(target_arch = "wasm32"))]
#[repr(C)]
pub struct BorrowedOpenGLTexture {
    /// The id or name of the texture, as created by [`glGenTextures`](https://registry.khronos.org/OpenGL-Refpages/gl4/html/glGenTextures.xhtml).
    pub texture_id: core::num::NonZeroU32,
    /// The size of the texture in pixels.
    pub size: IntSize,
    /// Origin of the texture when rendering.
    pub origin: BorrowedOpenGLTextureOrigin,
}