i_slint_core/graphics/image.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
/*!
This module contains image decoding and caching related types for the run-time library.
*/
use crate::lengths::{PhysicalPx, ScaleFactor};
use crate::slice::Slice;
use crate::{SharedString, SharedVector};
use super::{IntRect, IntSize};
use crate::items::{ImageFit, ImageHorizontalAlignment, ImageTiling, ImageVerticalAlignment};
#[cfg(feature = "image-decoders")]
pub mod cache;
#[cfg(target_arch = "wasm32")]
mod htmlimage;
#[cfg(feature = "svg")]
mod svg;
#[allow(missing_docs)]
#[vtable::vtable]
#[repr(C)]
pub struct OpaqueImageVTable {
drop_in_place: fn(VRefMut<OpaqueImageVTable>) -> Layout,
dealloc: fn(&OpaqueImageVTable, ptr: *mut u8, layout: Layout),
/// Returns the image size
size: fn(VRef<OpaqueImageVTable>) -> IntSize,
/// Returns a cache key
cache_key: fn(VRef<OpaqueImageVTable>) -> ImageCacheKey,
}
#[cfg(feature = "svg")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped SVG helper struct.
pub static PARSED_SVG_VT for svg::ParsedSVG
}
#[cfg(target_arch = "wasm32")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped HtmlImage helper struct.
pub static HTML_IMAGE_VT for htmlimage::HTMLImage
}
OpaqueImageVTable_static! {
/// VTable for RC wrapped SVG helper struct.
pub static NINE_SLICE_VT for NineSliceImage
}
/// SharedPixelBuffer is a container for storing image data as pixels. It is
/// internally reference counted and cheap to clone.
///
/// You can construct a new empty shared pixel buffer with [`SharedPixelBuffer::new`],
/// or you can clone it from an existing contiguous buffer that you might already have, using
/// [`SharedPixelBuffer::clone_from_slice`].
///
/// See the documentation for [`Image`] for examples how to use this type to integrate
/// Slint with external rendering functions.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct SharedPixelBuffer<Pixel> {
width: u32,
height: u32,
pub(crate) data: SharedVector<Pixel>,
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Returns the width of the image in pixels.
pub fn width(&self) -> u32 {
self.width
}
/// Returns the height of the image in pixels.
pub fn height(&self) -> u32 {
self.height
}
/// Returns the size of the image in pixels.
pub fn size(&self) -> IntSize {
[self.width, self.height].into()
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Return a mutable slice to the pixel data. If the SharedPixelBuffer was shared, this will make a copy of the buffer.
pub fn make_mut_slice(&mut self) -> &mut [Pixel] {
self.data.make_mut_slice()
}
}
impl<Pixel: Clone + rgb::Pod> SharedPixelBuffer<Pixel>
where
[Pixel]: rgb::ComponentBytes<u8>,
{
/// Returns the pixels interpreted as raw bytes.
pub fn as_bytes(&self) -> &[u8] {
use rgb::ComponentBytes;
self.data.as_slice().as_bytes()
}
/// Returns the pixels interpreted as raw bytes.
pub fn make_mut_bytes(&mut self) -> &mut [u8] {
use rgb::ComponentBytes;
self.data.make_mut_slice().as_bytes_mut()
}
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Return a slice to the pixel data.
pub fn as_slice(&self) -> &[Pixel] {
self.data.as_slice()
}
}
impl<Pixel: Clone + Default> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer with the given width and height. Each pixel will be initialized with the value
/// that [`Default::default()`] returns for the Pixel type.
pub fn new(width: u32, height: u32) -> Self {
Self {
width,
height,
data: core::iter::repeat(Pixel::default())
.take(width as usize * height as usize)
.collect(),
}
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer by cloning and converting pixels from an existing
/// slice. This function is useful when another crate was used to allocate an image
/// and you would like to convert it for use in Slint.
pub fn clone_from_slice<SourcePixelType>(
pixel_slice: &[SourcePixelType],
width: u32,
height: u32,
) -> Self
where
[SourcePixelType]: rgb::AsPixels<Pixel>,
{
use rgb::AsPixels;
Self { width, height, data: pixel_slice.as_pixels().into() }
}
}
/// Convenience alias for a pixel with three color channels (red, green and blue), each
/// encoded as u8.
pub type Rgb8Pixel = rgb::RGB8;
/// Convenience alias for a pixel with four color channels (red, green, blue and alpha), each
/// encoded as u8.
pub type Rgba8Pixel = rgb::RGBA8;
/// SharedImageBuffer is a container for images that are stored in CPU accessible memory.
///
/// The SharedImageBuffer's variants represent the different common formats for encoding
/// images in pixels.
#[derive(Clone, Debug)]
#[repr(C)]
/// TODO: Make this non_exhaustive before making the type public!
pub enum SharedImageBuffer {
/// This variant holds the data for an image where each pixel has three color channels (red, green,
/// and blue) and each channel is encoded as unsigned byte.
RGB8(SharedPixelBuffer<Rgb8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte.
RGBA8(SharedPixelBuffer<Rgba8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte. In contrast to [`Self::RGBA8`],
/// this variant assumes that the alpha channel is also already multiplied to each red, green and blue
/// component of each pixel.
/// Only construct this format if you know that your pixels are encoded this way. It is more efficient
/// for rendering.
RGBA8Premultiplied(SharedPixelBuffer<Rgba8Pixel>),
}
impl SharedImageBuffer {
/// Returns the width of the image in pixels.
#[inline]
pub fn width(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.width(),
Self::RGBA8(buffer) => buffer.width(),
Self::RGBA8Premultiplied(buffer) => buffer.width(),
}
}
/// Returns the height of the image in pixels.
#[inline]
pub fn height(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.height(),
Self::RGBA8(buffer) => buffer.height(),
Self::RGBA8Premultiplied(buffer) => buffer.height(),
}
}
/// Returns the size of the image in pixels.
#[inline]
pub fn size(&self) -> IntSize {
match self {
Self::RGB8(buffer) => buffer.size(),
Self::RGBA8(buffer) => buffer.size(),
Self::RGBA8Premultiplied(buffer) => buffer.size(),
}
}
}
impl PartialEq for SharedImageBuffer {
fn eq(&self, other: &Self) -> bool {
match self {
Self::RGB8(lhs_buffer) => {
matches!(other, Self::RGB8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8(lhs_buffer) => {
matches!(other, Self::RGBA8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8Premultiplied(lhs_buffer) => {
matches!(other, Self::RGBA8Premultiplied(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
}
}
}
#[repr(u8)]
#[derive(Clone, PartialEq, Debug, Copy)]
/// The pixel format of a StaticTexture
pub enum PixelFormat {
/// red, green, blue. 24bits.
Rgb,
/// Red, green, blue, alpha. 32bits.
Rgba,
/// Red, green, blue, alpha. 32bits. The color are premultiplied by alpha
RgbaPremultiplied,
/// Alpha map. 8bits. Each pixel is an alpha value. The color is specified separately.
AlphaMap,
/// Distance field. 8bit interpreted as i8.
/// The range is such that i8::MIN corresponds to 3 pixels outside of the shape,
/// and i8::MAX corresponds to 3 pixels inside the shape.
/// The array must be width * height +1 bytes long. (the extra bit is read but never used)
SignedDistanceField,
}
impl PixelFormat {
/// The number of bytes in a pixel
pub fn bpp(self) -> usize {
match self {
PixelFormat::Rgb => 3,
PixelFormat::Rgba => 4,
PixelFormat::RgbaPremultiplied => 4,
PixelFormat::AlphaMap => 1,
PixelFormat::SignedDistanceField => 1,
}
}
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// Some raw pixel data which is typically stored in the binary
pub struct StaticTexture {
/// The position and size of the texture within the image
pub rect: IntRect,
/// The pixel format of this texture
pub format: PixelFormat,
/// The color, for the alpha map ones
pub color: crate::Color,
/// index in the data array
pub index: usize,
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// A texture is stored in read-only memory and may be composed of sub-textures.
pub struct StaticTextures {
/// The total size of the image (this might not be the size of the full image
/// as some transparent part are not part of any texture)
pub size: IntSize,
/// The size of the image before the compiler applied any scaling
pub original_size: IntSize,
/// The pixel data referenced by the textures
pub data: Slice<'static, u8>,
/// The list of textures
pub textures: Slice<'static, StaticTexture>,
}
/// A struct that provides a path as a string as well as the last modification
/// time of the file it points to.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(C)]
pub struct CachedPath {
path: SharedString,
/// SystemTime since UNIX_EPOC as secs
last_modified: u64,
}
impl CachedPath {
#[cfg(feature = "std")]
fn new<P: AsRef<std::path::Path>>(path: P) -> Self {
let path_str = SharedString::from(path.as_ref().to_string_lossy().as_ref());
let timestamp = std::fs::metadata(path)
.and_then(|md| md.modified())
.unwrap_or(std::time::UNIX_EPOCH)
.duration_since(std::time::UNIX_EPOCH)
.map(|t| t.as_secs())
.unwrap_or_default();
Self { path: path_str, last_modified: timestamp }
}
}
/// ImageCacheKey encapsulates the different ways of indexing images in the
/// cache of decoded images.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(u8)]
pub enum ImageCacheKey {
/// This variant indicates that no image cache key can be created for the image.
/// For example this is the case for programmatically created images.
Invalid = 0,
/// The image is identified by its path on the file system and the last modification time stamp.
Path(CachedPath) = 1,
/// The image is identified by a URL.
#[cfg(target_arch = "wasm32")]
URL(SharedString) = 2,
/// The image is identified by the static address of its encoded data.
EmbeddedData(usize) = 3,
}
impl ImageCacheKey {
/// Returns a new cache key if decoded image data can be stored in image cache for
/// the given ImageInner.
pub fn new(resource: &ImageInner) -> Option<Self> {
let key = match resource {
ImageInner::None => return None,
ImageInner::EmbeddedImage { cache_key, .. } => cache_key.clone(),
ImageInner::StaticTextures(textures) => {
Self::from_embedded_image_data(textures.data.as_slice())
}
#[cfg(feature = "svg")]
ImageInner::Svg(parsed_svg) => parsed_svg.cache_key(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => Self::URL(htmlimage.source().into()),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).cache_key(),
#[cfg(not(target_arch = "wasm32"))]
ImageInner::BorrowedOpenGLTexture(..) => return None,
ImageInner::NineSlice(nine) => vtable::VRc::borrow(nine).cache_key(),
};
if matches!(key, ImageCacheKey::Invalid) {
None
} else {
Some(key)
}
}
/// Returns a cache key for static embedded image data.
pub fn from_embedded_image_data(data: &'static [u8]) -> Self {
Self::EmbeddedData(data.as_ptr() as usize)
}
}
/// Represent a nine-slice image with the base image and the 4 borders
pub struct NineSliceImage(pub ImageInner, pub [u16; 4]);
impl NineSliceImage {
/// return the backing Image
pub fn image(&self) -> Image {
Image(self.0.clone())
}
}
impl OpaqueImage for NineSliceImage {
fn size(&self) -> IntSize {
self.0.size()
}
fn cache_key(&self) -> ImageCacheKey {
ImageCacheKey::new(&self.0).unwrap_or(ImageCacheKey::Invalid)
}
}
/// A resource is a reference to binary data, for example images. They can be accessible on the file
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
/// is necessary before they can be used.
/// cbindgen:prefix-with-name
#[derive(Clone, Debug, Default)]
#[repr(u8)]
#[allow(missing_docs)]
pub enum ImageInner {
/// A resource that does not represent any data.
#[default]
None = 0,
EmbeddedImage {
cache_key: ImageCacheKey,
buffer: SharedImageBuffer,
} = 1,
#[cfg(feature = "svg")]
Svg(vtable::VRc<OpaqueImageVTable, svg::ParsedSVG>) = 2,
StaticTextures(&'static StaticTextures) = 3,
#[cfg(target_arch = "wasm32")]
HTMLImage(vtable::VRc<OpaqueImageVTable, htmlimage::HTMLImage>) = 4,
BackendStorage(vtable::VRc<OpaqueImageVTable>) = 5,
#[cfg(not(target_arch = "wasm32"))]
BorrowedOpenGLTexture(BorrowedOpenGLTexture) = 6,
NineSlice(vtable::VRc<OpaqueImageVTable, NineSliceImage>) = 7,
}
impl ImageInner {
/// Return or render the image into a buffer
///
/// `target_size_for_scalable_source` is the size to use if the image is scalable.
/// (when unspecified, will default to the intrinsic size of the image)
///
/// Returns None if the image can't be rendered in a buffer or if the image is empty
pub fn render_to_buffer(
&self,
_target_size_for_scalable_source: Option<euclid::Size2D<u32, PhysicalPx>>,
) -> Option<SharedImageBuffer> {
match self {
ImageInner::EmbeddedImage { buffer, .. } => Some(buffer.clone()),
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => match svg.render(_target_size_for_scalable_source) {
Ok(b) => Some(b),
// Ignore error when rendering a 0x0 image, that's just an empty image
Err(resvg::usvg::Error::InvalidSize) => None,
Err(err) => {
eprintln!("Error rendering SVG: {err}");
None
}
},
ImageInner::StaticTextures(ts) => {
let mut buffer =
SharedPixelBuffer::<Rgba8Pixel>::new(ts.size.width, ts.size.height);
let stride = buffer.width() as usize;
let slice = buffer.make_mut_slice();
for t in ts.textures.iter() {
let rect = t.rect.to_usize();
for y in 0..rect.height() {
let slice = &mut slice[(rect.min_y() + y) * stride..][rect.x_range()];
let source = &ts.data[t.index + y * rect.width() * t.format.bpp()..];
match t.format {
PixelFormat::Rgb => {
let mut iter = source.chunks_exact(3).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: 255,
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::RgbaPremultiplied => {
let mut iter = source.chunks_exact(4).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: p[3],
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::Rgba => {
let mut iter = source.chunks_exact(4).map(|p| {
let a = p[3];
Rgba8Pixel {
r: (p[0] as u16 * a as u16 / 255) as u8,
g: (p[1] as u16 * a as u16 / 255) as u8,
b: (p[2] as u16 * a as u16 / 255) as u8,
a,
}
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::AlphaMap => {
let col = t.color.to_argb_u8();
let mut iter = source.iter().map(|p| {
let a = *p as u32 * col.alpha as u32;
Rgba8Pixel {
r: (col.red as u32 * a / (255 * 255)) as u8,
g: (col.green as u32 * a / (255 * 255)) as u8,
b: (col.blue as u32 * a / (255 * 255)) as u8,
a: (a / 255) as u8,
}
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::SignedDistanceField => {
todo!("converting from a signed distance field to an image")
}
};
}
}
Some(SharedImageBuffer::RGBA8Premultiplied(buffer))
}
ImageInner::NineSlice(nine) => nine.0.render_to_buffer(None),
_ => None,
}
}
/// Returns true if the image is an SVG (either backed by resvg or HTML image wrapper).
pub fn is_svg(&self) -> bool {
match self {
#[cfg(feature = "svg")]
Self::Svg(_) => true,
#[cfg(target_arch = "wasm32")]
Self::HTMLImage(html_image) => html_image.is_svg(),
_ => false,
}
}
/// Return the image size
pub fn size(&self) -> IntSize {
match self {
ImageInner::None => Default::default(),
ImageInner::EmbeddedImage { buffer, .. } => buffer.size(),
ImageInner::StaticTextures(StaticTextures { original_size, .. }) => *original_size,
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => svg.size(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => htmlimage.size().unwrap_or_default(),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).size(),
#[cfg(not(target_arch = "wasm32"))]
ImageInner::BorrowedOpenGLTexture(BorrowedOpenGLTexture { size, .. }) => *size,
ImageInner::NineSlice(nine) => nine.0.size(),
}
}
}
impl PartialEq for ImageInner {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(
Self::EmbeddedImage { cache_key: l_cache_key, buffer: l_buffer },
Self::EmbeddedImage { cache_key: r_cache_key, buffer: r_buffer },
) => l_cache_key == r_cache_key && l_buffer == r_buffer,
#[cfg(feature = "svg")]
(Self::Svg(l0), Self::Svg(r0)) => vtable::VRc::ptr_eq(l0, r0),
(Self::StaticTextures(l0), Self::StaticTextures(r0)) => l0 == r0,
#[cfg(target_arch = "wasm32")]
(Self::HTMLImage(l0), Self::HTMLImage(r0)) => vtable::VRc::ptr_eq(l0, r0),
(Self::BackendStorage(l0), Self::BackendStorage(r0)) => vtable::VRc::ptr_eq(l0, r0),
#[cfg(not(target_arch = "wasm32"))]
(Self::BorrowedOpenGLTexture(l0), Self::BorrowedOpenGLTexture(r0)) => l0 == r0,
(Self::NineSlice(l), Self::NineSlice(r)) => l.0 == r.0 && l.1 == r.1,
_ => false,
}
}
}
impl<'a> From<&'a Image> for &'a ImageInner {
fn from(other: &'a Image) -> Self {
&other.0
}
}
/// Error generated if an image cannot be loaded for any reasons.
#[derive(Default, Debug, PartialEq)]
pub struct LoadImageError(());
impl core::fmt::Display for LoadImageError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("The image cannot be loaded")
}
}
#[cfg(feature = "std")]
impl std::error::Error for LoadImageError {}
/// An image type that can be displayed by the Image element. You can construct
/// Image objects from a path to an image file on disk, using [`Self::load_from_path`].
///
/// Another typical use-case is to render the image content with Rust code.
/// For this it's most efficient to create a new SharedPixelBuffer with the known dimensions
/// and pass the mutable slice to your rendering function. Afterwards you can create an
/// Image.
///
/// The following example creates a 320x200 RGB pixel buffer and calls an external
/// low_level_render() function to draw a shape into it. Finally the result is
/// stored in an Image with [`Self::from_rgb8()`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgb8Pixel};
///
/// fn low_level_render(width: u32, height: u32, buffer: &mut [u8]) {
/// // render beautiful circle or other shapes here
/// }
///
/// let mut pixel_buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
///
/// low_level_render(pixel_buffer.width(), pixel_buffer.height(),
/// pixel_buffer.make_mut_bytes());
///
/// let image = Image::from_rgb8(pixel_buffer);
/// ```
///
/// Another use-case is to import existing image data into Slint, by
/// creating a new Image through cloning of another image type.
///
/// The following example uses the popular [image crate](https://docs.rs/image/) to
/// load a `.png` file from disk, apply brightening filter on it and then import
/// it into an [`Image`]:
/// ```no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut cat_image = image::open("cat.png").expect("Error loading cat image").into_rgba8();
///
/// image::imageops::colorops::brighten_in_place(&mut cat_image, 20);
///
/// let buffer = SharedPixelBuffer::<Rgba8Pixel>::clone_from_slice(
/// cat_image.as_raw(),
/// cat_image.width(),
/// cat_image.height(),
/// );
/// let image = Image::from_rgba8(buffer);
/// ```
///
/// A popular software (CPU) rendering library in Rust is tiny-skia. The following example shows
/// how to use tiny-skia to render into a [`SharedPixelBuffer`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// let width = pixel_buffer.width();
/// let height = pixel_buffer.height();
/// let mut pixmap = tiny_skia::PixmapMut::from_bytes(
/// pixel_buffer.make_mut_bytes(), width, height
/// ).unwrap();
/// pixmap.fill(tiny_skia::Color::TRANSPARENT);
///
/// let circle = tiny_skia::PathBuilder::from_circle(320., 240., 150.).unwrap();
///
/// let mut paint = tiny_skia::Paint::default();
/// paint.shader = tiny_skia::LinearGradient::new(
/// tiny_skia::Point::from_xy(100.0, 100.0),
/// tiny_skia::Point::from_xy(400.0, 400.0),
/// vec![
/// tiny_skia::GradientStop::new(0.0, tiny_skia::Color::from_rgba8(50, 127, 150, 200)),
/// tiny_skia::GradientStop::new(1.0, tiny_skia::Color::from_rgba8(220, 140, 75, 180)),
/// ],
/// tiny_skia::SpreadMode::Pad,
/// tiny_skia::Transform::identity(),
/// ).unwrap();
///
/// pixmap.fill_path(&circle, &paint, tiny_skia::FillRule::Winding, Default::default(), None);
///
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// ```
///
/// ### Sending Image to a thread
///
/// `Image` is not [`Send`], because it uses internal cache that are local to the Slint thread.
/// If you want to create image data in a thread and send that to slint, construct the
/// [`SharedPixelBuffer`] in a thread, and send that to Slint's UI thread.
///
/// ```rust,no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// std::thread::spawn(move || {
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// // ... fill the pixel_buffer with data as shown in the previous example ...
/// slint::invoke_from_event_loop(move || {
/// // this will run in the Slint's UI thread
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// // ... use the image, eg:
/// // my_ui_handle.upgrade().unwrap().set_image(image);
/// });
/// });
/// ```
#[repr(transparent)]
#[derive(Default, Clone, Debug, PartialEq, derive_more::From)]
pub struct Image(ImageInner);
impl Image {
#[cfg(feature = "image-decoders")]
/// Load an Image from a path to a file containing an image
pub fn load_from_path(path: &std::path::Path) -> Result<Self, LoadImageError> {
self::cache::IMAGE_CACHE.with(|global_cache| {
let path: SharedString = path.to_str().ok_or(LoadImageError(()))?.into();
global_cache.borrow_mut().load_image_from_path(&path).ok_or(LoadImageError(()))
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has three color
/// channels (red, green and blue) encoded as u8.
pub fn from_rgb8(buffer: SharedPixelBuffer<Rgb8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGB8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8.
pub fn from_rgba8(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8 and, in contrast to [`Self::from_rgba8`],
/// the alpha channel is also assumed to be multiplied to the red, green and blue channels.
///
/// Only construct an Image with this function if you know that your pixels are encoded this way.
pub fn from_rgba8_premultiplied(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8Premultiplied(buffer),
})
}
/// Returns the pixel buffer for the Image if available in RGB format without alpha.
/// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
pub fn to_rgb8(&self) -> Option<SharedPixelBuffer<Rgb8Pixel>> {
self.0.render_to_buffer(None).and_then(|image| match image {
SharedImageBuffer::RGB8(buffer) => Some(buffer),
_ => None,
})
}
/// Returns the pixel buffer for the Image if available in RGBA format.
/// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
pub fn to_rgba8(&self) -> Option<SharedPixelBuffer<Rgba8Pixel>> {
self.0.render_to_buffer(None).map(|image| match image {
SharedImageBuffer::RGB8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
width: buffer.width,
height: buffer.height,
data: buffer.data.into_iter().map(Into::into).collect(),
},
SharedImageBuffer::RGBA8(buffer) => buffer,
SharedImageBuffer::RGBA8Premultiplied(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
width: buffer.width,
height: buffer.height,
data: buffer
.data
.into_iter()
.map(|rgba_premul| {
if rgba_premul.a == 0 {
Rgba8Pixel::new(0, 0, 0, 0)
} else {
let af = rgba_premul.a as f32 / 255.0;
Rgba8Pixel {
r: (rgba_premul.r as f32 * 255. / af) as u8,
g: (rgba_premul.g as f32 * 255. / af) as u8,
b: (rgba_premul.b as f32 * 255. / af) as u8,
a: rgba_premul.a,
}
}
})
.collect(),
},
})
}
/// Returns the pixel buffer for the Image if available in RGBA format, with the alpha channel pre-multiplied
/// to the red, green, and blue channels.
/// Returns None if the pixels cannot be obtained, for example when the image was created from borrowed OpenGL textures.
pub fn to_rgba8_premultiplied(&self) -> Option<SharedPixelBuffer<Rgba8Pixel>> {
self.0.render_to_buffer(None).map(|image| match image {
SharedImageBuffer::RGB8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
width: buffer.width,
height: buffer.height,
data: buffer.data.into_iter().map(Into::into).collect(),
},
SharedImageBuffer::RGBA8(buffer) => SharedPixelBuffer::<Rgba8Pixel> {
width: buffer.width,
height: buffer.height,
data: buffer
.data
.into_iter()
.map(|rgba| {
if rgba.a == 255 {
rgba
} else {
let af = rgba.a as f32 / 255.0;
Rgba8Pixel {
r: (rgba.r as f32 * af / 255.) as u8,
g: (rgba.g as f32 * af / 255.) as u8,
b: (rgba.b as f32 * af / 255.) as u8,
a: rgba.a,
}
}
})
.collect(),
},
SharedImageBuffer::RGBA8Premultiplied(buffer) => buffer,
})
}
/// Creates a new Image from an existing OpenGL texture. The texture remains borrowed by Slint
/// for the duration of being used for rendering, such as when assigned as source property to
/// an `Image` element. It's the application's responsibility to delete the texture when it is
/// not used anymore.
///
/// The texture must be bindable against the `GL_TEXTURE_2D` target, have `GL_RGBA` as format
/// for the pixel data.
///
/// When Slint renders the texture, it assumes that the origin of the texture is at the top-left.
/// This is different from the default OpenGL coordinate system.
///
/// # Safety
///
/// This function is unsafe because invalid texture ids may lead to undefined behavior in OpenGL
/// drivers. A valid texture id is one that was created by the same OpenGL context that is
/// current during any of the invocations of the callback set on [`Window::set_rendering_notifier()`](crate::api::Window::set_rendering_notifier).
/// OpenGL contexts between instances of [`slint::Window`](crate::api::Window) are not sharing resources. Consequently
/// [`slint::Image`](Self) objects created from borrowed OpenGL textures cannot be shared between
/// different windows.
#[allow(unsafe_code)]
#[cfg(not(target_arch = "wasm32"))]
#[deprecated(since = "1.2.0", note = "Use BorrowedOpenGLTextureBuilder")]
pub unsafe fn from_borrowed_gl_2d_rgba_texture(
texture_id: core::num::NonZeroU32,
size: IntSize,
) -> Self {
BorrowedOpenGLTextureBuilder::new_gl_2d_rgba_texture(texture_id, size).build()
}
/// Creates a new Image from the specified buffer, which contains SVG raw data.
#[cfg(feature = "svg")]
pub fn load_from_svg_data(buffer: &[u8]) -> Result<Self, LoadImageError> {
let cache_key = ImageCacheKey::Invalid;
Ok(Image(ImageInner::Svg(vtable::VRc::new(
svg::load_from_data(buffer, cache_key).map_err(|_| LoadImageError(()))?,
))))
}
/// Sets the nine-slice edges of the image.
///
/// [Nine-slice scaling](https://en.wikipedia.org/wiki/9-slice_scaling) is a method for scaling
/// images in such a way that the corners are not distorted.
/// The arguments define the pixel sizes of the edges that cut the image into 9 slices.
pub fn set_nine_slice_edges(&mut self, top: u16, right: u16, bottom: u16, left: u16) {
if top == 0 && left == 0 && right == 0 && bottom == 0 {
if let ImageInner::NineSlice(n) = &self.0 {
self.0 = n.0.clone();
}
} else {
let array = [top, right, bottom, left];
let inner = if let ImageInner::NineSlice(n) = &mut self.0 {
n.0.clone()
} else {
self.0.clone()
};
self.0 = ImageInner::NineSlice(vtable::VRc::new(NineSliceImage(inner, array)));
}
}
/// Returns the size of the Image in pixels.
pub fn size(&self) -> IntSize {
self.0.size()
}
#[cfg(feature = "std")]
/// Returns the path of the image on disk, if it was constructed via [`Self::load_from_path`].
///
/// For example:
/// ```
/// # use std::path::Path;
/// # use i_slint_core::graphics::*;
/// let path_buf = Path::new(env!("CARGO_MANIFEST_DIR"))
/// .join("../../demos/printerdemo/ui/images/cat.jpg");
/// let image = Image::load_from_path(&path_buf).unwrap();
/// assert_eq!(image.path(), Some(path_buf.as_path()));
/// ```
pub fn path(&self) -> Option<&std::path::Path> {
match &self.0 {
ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Path(CachedPath { path, .. }),
..
} => Some(std::path::Path::new(path.as_str())),
ImageInner::NineSlice(nine) => match &nine.0 {
ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Path(CachedPath { path, .. }),
..
} => Some(std::path::Path::new(path.as_str())),
_ => None,
},
_ => None,
}
}
}
/// This enum describes the origin to use when rendering a borrowed OpenGL texture.
/// Use this with [`BorrowedOpenGLTextureBuilder::origin`].
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[repr(u8)]
#[non_exhaustive]
pub enum BorrowedOpenGLTextureOrigin {
/// The top-left of the texture is the top-left of the texture drawn on the screen.
#[default]
TopLeft,
/// The bottom-left of the texture is the top-left of the texture draw on the screen,
/// flipping it vertically.
BottomLeft,
}
/// Factory to create [`slint::Image`](crate::graphics::Image) from an existing OpenGL texture.
///
/// Methods can be chained on it in order to configure it.
///
/// * `origin`: Change the texture's origin when rendering (default: TopLeft).
///
/// Complete the builder by calling [`Self::build()`] to create a [`slint::Image`](crate::graphics::Image):
///
/// ```
/// # use i_slint_core::graphics::{BorrowedOpenGLTextureBuilder, Image, IntSize, BorrowedOpenGLTextureOrigin};
/// # let texture_id = core::num::NonZeroU32::new(1).unwrap();
/// # let size = IntSize::new(100, 100);
/// let builder = unsafe { BorrowedOpenGLTextureBuilder::new_gl_2d_rgba_texture(texture_id, size) }
/// .origin(BorrowedOpenGLTextureOrigin::TopLeft);
///
/// let image: slint::Image = builder.build();
/// ```
#[cfg(not(target_arch = "wasm32"))]
pub struct BorrowedOpenGLTextureBuilder(BorrowedOpenGLTexture);
#[cfg(not(target_arch = "wasm32"))]
impl BorrowedOpenGLTextureBuilder {
/// Generates the base configuration for a borrowed OpenGL texture.
///
/// The texture must be bindable against the `GL_TEXTURE_2D` target, have `GL_RGBA` as format
/// for the pixel data.
///
/// By default, when Slint renders the texture, it assumes that the origin of the texture is at the top-left.
/// This is different from the default OpenGL coordinate system. Use the `mirror_vertically` function
/// to reconfigure this.
///
/// # Safety
///
/// This function is unsafe because invalid texture ids may lead to undefined behavior in OpenGL
/// drivers. A valid texture id is one that was created by the same OpenGL context that is
/// current during any of the invocations of the callback set on [`Window::set_rendering_notifier()`](crate::api::Window::set_rendering_notifier).
/// OpenGL contexts between instances of [`slint::Window`](crate::api::Window) are not sharing resources. Consequently
/// [`slint::Image`](Self) objects created from borrowed OpenGL textures cannot be shared between
/// different windows.
#[allow(unsafe_code)]
pub unsafe fn new_gl_2d_rgba_texture(texture_id: core::num::NonZeroU32, size: IntSize) -> Self {
Self(BorrowedOpenGLTexture { texture_id, size, origin: Default::default() })
}
/// Configures the texture to be rendered vertically mirrored.
pub fn origin(mut self, origin: BorrowedOpenGLTextureOrigin) -> Self {
self.0.origin = origin;
self
}
/// Completes the process of building a slint::Image that holds a borrowed OpenGL texture.
pub fn build(self) -> Image {
Image(ImageInner::BorrowedOpenGLTexture(self.0))
}
}
/// Load an image from an image embedded in the binary.
/// This is called by the generated code.
#[cfg(feature = "image-decoders")]
pub fn load_image_from_embedded_data(data: Slice<'static, u8>, format: Slice<'_, u8>) -> Image {
self::cache::IMAGE_CACHE.with(|global_cache| {
global_cache.borrow_mut().load_image_from_embedded_data(data, format).unwrap_or_default()
})
}
#[test]
fn test_image_size_from_buffer_without_backend() {
{
assert_eq!(Image::default().size(), Default::default());
assert!(Image::default().to_rgb8().is_none());
assert!(Image::default().to_rgba8().is_none());
assert!(Image::default().to_rgba8_premultiplied().is_none());
}
{
let buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
let image = Image::from_rgb8(buffer.clone());
assert_eq!(image.size(), [320, 200].into());
assert_eq!(image.to_rgb8().as_ref().map(|b| b.as_slice()), Some(buffer.as_slice()));
}
}
#[cfg(feature = "svg")]
#[test]
fn test_image_size_from_svg() {
let simple_svg = r#"<svg width="320" height="200" xmlns="http://www.w3.org/2000/svg"></svg>"#;
let image = Image::load_from_svg_data(simple_svg.as_bytes()).unwrap();
assert_eq!(image.size(), [320, 200].into());
assert_eq!(image.to_rgba8().unwrap().size(), image.size());
}
#[cfg(feature = "svg")]
#[test]
fn test_image_invalid_svg() {
let invalid_svg = r#"AaBbCcDd"#;
let result = Image::load_from_svg_data(invalid_svg.as_bytes());
assert!(result.is_err());
}
/// The result of the fit function
#[derive(Debug)]
pub struct FitResult {
/// The clip rect in the source image (in source image coordinate)
pub clip_rect: IntRect,
/// The scale to apply to go from the source to the target horizontally
pub source_to_target_x: f32,
/// The scale to apply to go from the source to the target vertically
pub source_to_target_y: f32,
/// The size of the target
pub size: euclid::Size2D<f32, PhysicalPx>,
/// The offset in the target in which we draw the image
pub offset: euclid::Point2D<f32, PhysicalPx>,
/// When Some, it means the image should be tiled instead of stretched to the target
/// but still scaled with the source_to_target_x and source_to_target_y factor
/// The point is the coordinate within the image's clip_rect of the pixel at the offset
pub tiled: Option<euclid::default::Point2D<u32>>,
}
impl FitResult {
fn adjust_for_tiling(
self,
ratio: f32,
alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
tiling: (ImageTiling, ImageTiling),
) -> Self {
let mut r = self;
let mut tiled = euclid::Point2D::default();
let target = r.size;
let o = r.clip_rect.size.cast::<f32>();
match tiling.0 {
ImageTiling::None => {
r.size.width = o.width * r.source_to_target_x;
if (o.width as f32) > target.width / r.source_to_target_x {
let diff = (o.width as f32 - target.width / r.source_to_target_x) as i32;
r.clip_rect.size.width -= diff;
r.clip_rect.origin.x += match alignment.0 {
ImageHorizontalAlignment::Center => diff / 2,
ImageHorizontalAlignment::Left => 0,
ImageHorizontalAlignment::Right => diff,
};
r.size.width = target.width;
} else if (o.width as f32) < target.width / r.source_to_target_x {
r.offset.x += match alignment.0 {
ImageHorizontalAlignment::Center => {
(target.width - o.width as f32 * r.source_to_target_x) / 2.
}
ImageHorizontalAlignment::Left => 0.,
ImageHorizontalAlignment::Right => {
target.width - o.width as f32 * r.source_to_target_x
}
};
}
}
ImageTiling::Repeat => {
tiled.x = match alignment.0 {
ImageHorizontalAlignment::Left => 0,
ImageHorizontalAlignment::Center => {
((o.width - target.width / ratio) / 2.).rem_euclid(o.width) as u32
}
ImageHorizontalAlignment::Right => {
(-target.width / ratio).rem_euclid(o.width) as u32
}
};
r.source_to_target_x = ratio;
}
ImageTiling::Round => {
if target.width / ratio <= o.width * 1.5 {
r.source_to_target_x = target.width / o.width;
} else {
let mut rem = (target.width / ratio).rem_euclid(o.width);
if rem > o.width / 2. {
rem -= o.width;
}
r.source_to_target_x = ratio * target.width / (target.width - rem * ratio);
}
}
}
match tiling.1 {
ImageTiling::None => {
r.size.height = o.height * r.source_to_target_y;
if (o.height as f32) > target.height / r.source_to_target_y {
let diff = (o.height as f32 - target.height / r.source_to_target_y) as i32;
r.clip_rect.size.height -= diff;
r.clip_rect.origin.y += match alignment.1 {
ImageVerticalAlignment::Center => diff / 2,
ImageVerticalAlignment::Top => 0,
ImageVerticalAlignment::Bottom => diff,
};
r.size.height = target.height;
} else if (o.height as f32) < target.height / r.source_to_target_y {
r.offset.y += match alignment.1 {
ImageVerticalAlignment::Center => {
(target.height - o.height as f32 * r.source_to_target_y) / 2.
}
ImageVerticalAlignment::Top => 0.,
ImageVerticalAlignment::Bottom => {
target.height - o.height as f32 * r.source_to_target_y
}
};
}
}
ImageTiling::Repeat => {
tiled.y = match alignment.1 {
ImageVerticalAlignment::Top => 0,
ImageVerticalAlignment::Center => {
((o.height - target.height / ratio) / 2.).rem_euclid(o.height) as u32
}
ImageVerticalAlignment::Bottom => {
(-target.height / ratio).rem_euclid(o.height) as u32
}
};
r.source_to_target_y = ratio;
}
ImageTiling::Round => {
if target.height / ratio <= o.height * 1.5 {
r.source_to_target_y = target.height / o.height;
} else {
let mut rem = (target.height / ratio).rem_euclid(o.height);
if rem > o.height / 2. {
rem -= o.height;
}
r.source_to_target_y = ratio * target.height / (target.height - rem * ratio);
}
}
}
let has_tiling = tiling != (ImageTiling::None, ImageTiling::None);
r.tiled = has_tiling.then_some(tiled);
r
}
}
#[cfg(not(feature = "std"))]
trait RemEuclid {
fn rem_euclid(self, b: f32) -> f32;
}
#[cfg(not(feature = "std"))]
impl RemEuclid for f32 {
fn rem_euclid(self, b: f32) -> f32 {
return num_traits::Euclid::rem_euclid(&self, &b);
}
}
/// Return an FitResult that can be used to render an image in a buffer that matches a given ImageFit
pub fn fit(
image_fit: ImageFit,
target: euclid::Size2D<f32, PhysicalPx>,
source_rect: IntRect,
scale_factor: ScaleFactor,
alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
tiling: (ImageTiling, ImageTiling),
) -> FitResult {
let has_tiling = tiling != (ImageTiling::None, ImageTiling::None);
let o = source_rect.size.cast::<f32>();
let ratio = match image_fit {
// If there is any tiling, we ignore image_fit
_ if has_tiling => scale_factor.get(),
ImageFit::Fill => {
return FitResult {
clip_rect: source_rect,
source_to_target_x: target.width / o.width,
source_to_target_y: target.height / o.height,
size: target,
offset: Default::default(),
tiled: None,
}
}
ImageFit::Preserve => scale_factor.get(),
ImageFit::Contain => f32::min(target.width / o.width, target.height / o.height),
ImageFit::Cover => f32::max(target.width / o.width, target.height / o.height),
};
FitResult {
clip_rect: source_rect,
source_to_target_x: ratio,
source_to_target_y: ratio,
size: target,
offset: euclid::Point2D::default(),
tiled: None,
}
.adjust_for_tiling(ratio, alignment, tiling)
}
/// Generate an iterator of [`FitResult`] for each slice of a nine-slice border image
pub fn fit9slice(
source_rect: IntSize,
[t, r, b, l]: [u16; 4],
target: euclid::Size2D<f32, PhysicalPx>,
scale_factor: ScaleFactor,
alignment: (ImageHorizontalAlignment, ImageVerticalAlignment),
tiling: (ImageTiling, ImageTiling),
) -> impl Iterator<Item = FitResult> {
let fit_to = |clip_rect: euclid::default::Rect<u16>, target: euclid::Rect<f32, PhysicalPx>| {
(!clip_rect.is_empty() && !target.is_empty()).then(|| {
FitResult {
clip_rect: clip_rect.cast(),
source_to_target_x: target.width() / clip_rect.width() as f32,
source_to_target_y: target.height() / clip_rect.height() as f32,
size: target.size,
offset: target.origin,
tiled: None,
}
.adjust_for_tiling(scale_factor.get(), alignment, tiling)
})
};
use euclid::rect;
let sf = |x| scale_factor.get() * x as f32;
let source = source_rect.cast::<u16>();
if t + b > source.height || l + r > source.width {
[None, None, None, None, None, None, None, None, None]
} else {
[
fit_to(rect(0, 0, l, t), rect(0., 0., sf(l), sf(t))),
fit_to(
rect(l, 0, source.width - l - r, t),
rect(sf(l), 0., target.width - sf(l) - sf(r), sf(t)),
),
fit_to(rect(source.width - r, 0, r, t), rect(target.width - sf(r), 0., sf(r), sf(t))),
fit_to(
rect(0, t, l, source.height - t - b),
rect(0., sf(t), sf(l), target.height - sf(t) - sf(b)),
),
fit_to(
rect(l, t, source.width - l - r, source.height - t - b),
rect(sf(l), sf(t), target.width - sf(l) - sf(r), target.height - sf(t) - sf(b)),
),
fit_to(
rect(source.width - r, t, r, source.height - t - b),
rect(target.width - sf(r), sf(t), sf(r), target.height - sf(t) - sf(b)),
),
fit_to(rect(0, source.height - b, l, b), rect(0., target.height - sf(b), sf(l), sf(b))),
fit_to(
rect(l, source.height - b, source.width - l - r, b),
rect(sf(l), target.height - sf(b), target.width - sf(l) - sf(r), sf(b)),
),
fit_to(
rect(source.width - r, source.height - b, r, b),
rect(target.width - sf(r), target.height - sf(b), sf(r), sf(b)),
),
]
}
.into_iter()
.flatten()
}
#[cfg(feature = "ffi")]
pub(crate) mod ffi {
#![allow(unsafe_code)]
use super::*;
// Expand Rgb8Pixel so that cbindgen can see it. (is in fact rgb::RGB<u8>)
/// Represents an RGB pixel.
#[cfg(cbindgen)]
#[repr(C)]
struct Rgb8Pixel {
/// red value (between 0 and 255)
r: u8,
/// green value (between 0 and 255)
g: u8,
/// blue value (between 0 and 255)
b: u8,
}
// Expand Rgba8Pixel so that cbindgen can see it. (is in fact rgb::RGBA<u8>)
/// Represents an RGBA pixel.
#[cfg(cbindgen)]
#[repr(C)]
struct Rgba8Pixel {
/// red value (between 0 and 255)
r: u8,
/// green value (between 0 and 255)
g: u8,
/// blue value (between 0 and 255)
b: u8,
/// alpha value (between 0 and 255)
a: u8,
}
#[cfg(feature = "image-decoders")]
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_path(path: &SharedString, image: *mut Image) {
core::ptr::write(
image,
Image::load_from_path(std::path::Path::new(path.as_str())).unwrap_or(Image::default()),
)
}
#[cfg(feature = "std")]
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_embedded_data(
data: Slice<'static, u8>,
format: Slice<'static, u8>,
image: *mut Image,
) {
core::ptr::write(image, super::load_image_from_embedded_data(data, format));
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_size(image: &Image) -> IntSize {
image.size()
}
#[no_mangle]
pub extern "C" fn slint_image_path(image: &Image) -> Option<&SharedString> {
match &image.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(CachedPath { path, .. }) => Some(path),
_ => None,
},
ImageInner::NineSlice(nine) => match &nine.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(CachedPath { path, .. }) => Some(path),
_ => None,
},
_ => None,
},
_ => None,
}
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_from_embedded_textures(
textures: &'static StaticTextures,
image: *mut Image,
) {
core::ptr::write(image, Image::from(ImageInner::StaticTextures(textures)));
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_compare_equal(image1: &Image, image2: &Image) -> bool {
return image1.eq(image2);
}
/// Call [`Image::set_nine_slice_edges`]
#[no_mangle]
pub extern "C" fn slint_image_set_nine_slice_edges(
image: &mut Image,
top: u16,
right: u16,
bottom: u16,
left: u16,
) {
image.set_nine_slice_edges(top, right, bottom, left);
}
#[no_mangle]
pub extern "C" fn slint_image_to_rgb8(
image: &Image,
data: &mut SharedVector<Rgb8Pixel>,
width: &mut u32,
height: &mut u32,
) -> bool {
image.to_rgb8().map_or(false, |pixel_buffer| {
*data = pixel_buffer.data.clone();
*width = pixel_buffer.width();
*height = pixel_buffer.height();
true
})
}
#[no_mangle]
pub extern "C" fn slint_image_to_rgba8(
image: &Image,
data: &mut SharedVector<Rgba8Pixel>,
width: &mut u32,
height: &mut u32,
) -> bool {
image.to_rgba8().map_or(false, |pixel_buffer| {
*data = pixel_buffer.data.clone();
*width = pixel_buffer.width();
*height = pixel_buffer.height();
true
})
}
#[no_mangle]
pub extern "C" fn slint_image_to_rgba8_premultiplied(
image: &Image,
data: &mut SharedVector<Rgba8Pixel>,
width: &mut u32,
height: &mut u32,
) -> bool {
image.to_rgba8_premultiplied().map_or(false, |pixel_buffer| {
*data = pixel_buffer.data.clone();
*width = pixel_buffer.width();
*height = pixel_buffer.height();
true
})
}
}
/// This structure contains fields to identify and render an OpenGL texture that Slint borrows from the application code.
/// Use this to embed a native OpenGL texture into a Slint scene.
///
/// The ownership of the texture remains with the application. It is the application's responsibility to delete the texture
/// when it is not used anymore.
///
/// Note that only 2D RGBA textures are supported.
#[derive(Clone, Debug, PartialEq)]
#[non_exhaustive]
#[cfg(not(target_arch = "wasm32"))]
#[repr(C)]
pub struct BorrowedOpenGLTexture {
/// The id or name of the texture, as created by [`glGenTextures`](https://registry.khronos.org/OpenGL-Refpages/gl4/html/glGenTextures.xhtml).
pub texture_id: core::num::NonZeroU32,
/// The size of the texture in pixels.
pub size: IntSize,
/// Origin of the texture when rendering.
pub origin: BorrowedOpenGLTextureOrigin,
}