iai_callgrind/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//! Iai-Callgrind is a benchmarking framework/harness which primarily uses [Valgrind's
//! Callgrind](https://valgrind.org/docs/manual/cl-manual.html) and the other Valgrind tools to
//! provide extremely accurate and consistent measurements of Rust code, making it perfectly suited
//! to run in environments like a CI.
//!
//! # Table of contents
//! - [Characteristics](#characteristics)
//! - [Benchmarking](#benchmarking)
//!   - [Library Benchmarks](#library-benchmarks)
//!     - [Important Default Behavior](#important-default-behavior)
//!     - [Quickstart](#quickstart-library-benchmarks)
//!     - [Configuration](#configuration-library-benchmarks)
//!   - [Binary Benchmarks](#binary-benchmarks)
//!     - [Important default behavior](#important-default-behavior)
//!     - [Quickstart](#quickstart-binary-benchmarks)
//!     - [Configuration](#configuration-binary-benchmarks)
//! - [Valgrind Tools](#valgrind-tools)
//! - [Client Requests](#client-requests)
//! - [Flamegraphs](#flamegraphs)
//!
//! ## Characteristics
//! - __Precision__: High-precision measurements allow you to reliably detect very small
//!   optimizations of your code
//! - __Consistency__: Iai-Callgrind can take accurate measurements even in virtualized CI
//!   environments
//! - __Performance__: Since Iai-Callgrind only executes a benchmark once, it is typically a lot
//!   faster to run than benchmarks measuring the execution and wall-clock time
//! - __Regression__: Iai-Callgrind reports the difference between benchmark runs to make it easy to
//!   spot detailed performance regressions and improvements.
//! - __CPU and Cache Profiling__: Iai-Callgrind generates a Callgrind profile of your code while
//!   benchmarking, so you can use Callgrind-compatible tools like
//!   [callgrind_annotate](https://valgrind.org/docs/manual/cl-manual.html#cl-manual.callgrind_annotate-options)
//!   or the visualizer [kcachegrind](https://kcachegrind.github.io/html/Home.html) to analyze the
//!   results in detail.
//! - __Memory Profiling__: You can run other Valgrind tools like [DHAT: a dynamic heap analysis tool](https://valgrind.org/docs/manual/dh-manual.html)
//!   and [Massif: a heap profiler](https://valgrind.org/docs/manual/ms-manual.html) with the
//!   Iai-Callgrind benchmarking framework. Their profiles are stored next to the callgrind profiles
//!   and are ready to be examined with analyzing tools like `dh_view.html`, `ms_print` and others.
//! - __Visualization__: Iai-Callgrind is capable of creating regular and differential flamegraphs
//!   from the Callgrind output format.
//! - __Valgrind Client Requests__: Support of zero overhead [Valgrind Client Requests](https://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.clientreq)
//!   (compared to native valgrind client requests overhead) on many targets
//! - __Stable-compatible__: Benchmark your code without installing nightly Rust
//!
//! ## Benchmarking
//!
//! `iai-callgrind` can be divided into two sections: Benchmarking the library and
//! its public functions and benchmarking of the binaries of a crate.
//!
//! ### Library Benchmarks
//!
//! Use this scheme of the [`main`] macro if you want to benchmark functions of your
//! crate's library.
//!
//! #### Important default behavior
//!
//! The environment variables are cleared before running a library benchmark. See also the
//! Configuration section below if you need to change that behavior.
//!
//! #### Quickstart (#library-benchmarks)
//!
//! ```rust
//! use iai_callgrind::{
//!     library_benchmark, library_benchmark_group, main, LibraryBenchmarkConfig
//! };
//! use std::hint::black_box;
//!
//! // Our function we want to test. Just assume this is a public function in your
//! // library.
//! fn bubble_sort(mut array: Vec<i32>) -> Vec<i32> {
//!     for i in 0..array.len() {
//!         for j in 0..array.len() - i - 1 {
//!             if array[j + 1] < array[j] {
//!                 array.swap(j, j + 1);
//!             }
//!         }
//!     }
//!     array
//! }
//!
//! // This function is used to create a worst case array we want to sort with our
//! // implementation of bubble sort
//! fn setup_worst_case_array(start: i32) -> Vec<i32> {
//!     if start.is_negative() {
//!         (start..0).rev().collect()
//!     } else {
//!         (0..start).rev().collect()
//!     }
//! }
//!
//! // The #[library_benchmark] attribute let's you define a benchmark function which you
//! // can later use in the `library_benchmark_groups!` macro.
//! #[library_benchmark]
//! fn bench_bubble_sort_empty() -> Vec<i32> {
//!     // The `black_box` is needed to tell the compiler to not optimize what's inside
//!     // black_box or else the benchmarks might return inaccurate results.
//!     black_box(bubble_sort(black_box(vec![])))
//! }
//!
//! // This benchmark uses the `bench` attribute to setup benchmarks with different
//! // setups. The big advantage is, that the setup costs and event counts aren't
//! // attributed to the benchmark (and opposed to the old api we don't have to deal with
//! // callgrind arguments, toggles, ...)
//! #[library_benchmark]
//! #[bench::empty(vec![])]
//! #[bench::worst_case_6(vec![6, 5, 4, 3, 2, 1])]
//! // Function calls are fine too
//! #[bench::worst_case_4000(setup_worst_case_array(4000))]
//! // The argument of the benchmark function defines the type of the argument from the
//! // `bench` cases.
//! fn bench_bubble_sort(array: Vec<i32>) -> Vec<i32> {
//!     // Note `array` is not put in a `black_box` because that's already done for you.
//!     black_box(bubble_sort(array))
//! }
//!
//! // You can use the `benches` attribute to specify multiple benchmark runs in one go. You can
//! // specify multiple `benches` attributes or mix the `benches` attribute with `bench`
//! // attributes.
//! #[library_benchmark]
//! // This is the simple form. Each `,`-separated element is another benchmark run and is
//! // passed to the benchmarking function as parameter. So, this is the same as specifying
//! // two `#[bench]` attributes #[bench::multiple_0(vec![1])] and #[bench::multiple_1(vec![5])].
//! #[benches::multiple(vec![1], vec![5])]
//! // You can also use the `args` argument to achieve the same. Using `args` is necessary if you
//! // also want to specify a `config` or `setup` function.
//! #[benches::with_args(args = [vec![1], vec![5]], config = LibraryBenchmarkConfig::default())]
//! // Usually, each element in `args` is passed directly to the benchmarking function. You can
//! // instead reroute them to a `setup` function. In that case the (black boxed) return value of
//! // the setup function is passed as parameter to the benchmarking function.
//! #[benches::with_setup(args = [1, 5], setup = setup_worst_case_array)]
//! fn bench_bubble_sort_with_benches_attribute(input: Vec<i32>) -> Vec<i32> {
//!     black_box(bubble_sort(input))
//! }
//!
//! // A benchmarking function with multiple parameters requires the elements to be specified as
//! // tuples.
//! #[library_benchmark]
//! #[benches::multiple((1, 2), (3, 4))]
//! fn bench_bubble_sort_with_multiple_parameters(a: i32, b: i32) -> Vec<i32> {
//!     black_box(bubble_sort(black_box(vec![a, b])))
//! }
//!
//! // A group in which we can put all our benchmark functions
//! library_benchmark_group!(
//!     name = bubble_sort_group;
//!     benchmarks =
//!         bench_bubble_sort_empty,
//!         bench_bubble_sort,
//!         bench_bubble_sort_with_benches_attribute,
//!         bench_bubble_sort_with_multiple_parameters
//! );
//!
//! # fn main() {
//! // Finally, the mandatory main! macro which collects all `library_benchmark_groups`.
//! // The main! macro creates a benchmarking harness and runs all the benchmarks defined
//! // in the groups and benches.
//! main!(library_benchmark_groups = bubble_sort_group);
//! # }
//! ```
//!
//! Note that it is important to annotate the benchmark functions with
//! [`#[library_benchmark]`](crate::library_benchmark).
//!
//! ### Configuration (#library-benchmarks)
//!
//! It's possible to configure some of the behavior of `iai-callgrind`. See the docs of
//! [`crate::LibraryBenchmarkConfig`] for more details. Configure library benchmarks at
//! top-level with the [`crate::main`] macro, at group level within the
//! [`crate::library_benchmark_group`], at [`crate::library_benchmark`] level
//!
//! and at `bench` level:
//!
//! ```rust
//! # use iai_callgrind::{LibraryBenchmarkConfig, library_benchmark};
//! #[library_benchmark]
//! #[bench::some_id(args = (1, 2), config = LibraryBenchmarkConfig::default())]
//! // ...
//! # fn some_func(first: u8, second: u8) -> u8 {
//! #    first + second
//! # }
//! # fn main() {}
//! ```
//!
//! The config at `bench` level overwrites the config at `library_benchmark` level. The config at
//! `library_benchmark` level overwrites the config at group level and so on. Note that
//! configuration values like `envs` are additive and don't overwrite configuration values of higher
//! levels.
//!
//! See also the docs of [`crate::library_benchmark_group`]. The
//! [README](https://github.com/iai-callgrind/iai-callgrind) of this crate includes more explanations,
//! common recipes and some examples.
//!
//! ### Binary Benchmarks
//!
//! Use this scheme of the [`main`] macro to benchmark one or more binaries of your crate (or any
//! other executable). The documentation for setting up binary benchmarks with the
//! `binary_benchmark_group` macro can be found in the docs of [`crate::binary_benchmark_group`].
//!
//! #### Important default behavior
//!
//! Per default, all binary benchmarks run with the environment variables cleared. See also
//! [`crate::BinaryBenchmarkConfig::env_clear`] for how to change this behavior.
//!
//! #### Quickstart (#binary-benchmarks)
//!
//! There are two apis to set up binary benchmarks, but we only describe the high-level api using
//! the [`#[binary_benchmark]`](`crate::binary_benchmark`) attribute here. See the docs of
//! [`binary_benchmark_group`] for more details about the low level api. The `#[binary_benchmark]`
//! attribute works almost the same as the `#[library_benchmark]` attribute. You will find the same
//! parameters `setup`, `teardown`, `config`, etc. in `#[binary_benchmark]` as in
//! `#[library_benchmark]` and the inner attributes `#[bench]`, `#[benches]`. But, there are also
//! substantial (differences)[#differences-to-library-benchmarks].
//!
//! Suppose your crate's binaries are named `my-foo` and `my-bar`
//!
//! ```rust
//! # macro_rules! env { ($m:tt) => {{ "/some/path" }} }
//! use iai_callgrind::{
//!     main, binary_benchmark, binary_benchmark_group,
//! };
//! use std::path::PathBuf;
//! use std::ffi::OsString;
//!
//! // In binary benchmarks there's no need to return a value from the setup function
//! fn my_setup() {
//!     println!("Put code in here which will be run before the actual command");
//! }
//!
//! #[binary_benchmark]
//! #[bench::just_a_fixture("benches/fixture.json")]
//! // First big difference to library benchmarks! `my_setup` is not evaluated right away and the
//! // return value of `my_setup` is not used as input for the `bench_foo` function. Instead,
//! // `my_setup()` is executed before the execution of the `Command`.
//! #[bench::with_other_fixture_and_setup(args = ("benches/other_fixture.txt"), setup = my_setup())]
//! #[benches::multiple("benches/fix_1.txt", "benches/fix_2.txt")]
//! // All functions annotated with `#[binary_benchmark]` need to return a `iai_callgrind::Command`
//! fn bench_foo(path: &str) -> iai_callgrind::Command {
//!     let path: PathBuf = path.into();
//!     // We can put any code in here which is needed to configure the `Command`.
//!     let stdout = if path.extension().unwrap() == "txt" {
//!         iai_callgrind::Stdio::Inherit
//!     } else {
//!         iai_callgrind::Stdio::File(path.with_extension("out"))
//!     };
//!     // Configure the command depending on the arguments passed to this function and the code
//!     // above
//!     iai_callgrind::Command::new(env!("CARGO_BIN_EXE_my-foo"))
//!         .stdout(stdout)
//!         .arg(path)
//!         .build()
//! }
//!
//! #[binary_benchmark]
//! // The id just needs to be unique within the same `#[binary_benchmark]`, so we can reuse
//! // `just_a_fixture` if we want to
//! #[bench::just_a_fixture("benches/fixture.json")]
//! // The function can be generic, too.
//! fn bench_bar<P>(path: P) -> iai_callgrind::Command
//! where
//!    P: Into<OsString>
//! {
//!     iai_callgrind::Command::new(env!("CARGO_BIN_EXE_my-bar"))
//!         .arg(path)
//!         .build()
//! }
//!
//! // Put all `#[binary_benchmark]` annotated functions you want to benchmark into the `benchmarks`
//! // section of this macro
//! binary_benchmark_group!(
//!     name = my_group;
//!     benchmarks = bench_foo, bench_bar
//! );
//!
//! # fn main() {
//! // As last step specify all groups you want to benchmark in the macro argument
//! // `binary_benchmark_groups`. As the binary_benchmark_group macro, the main macro is
//! // always needed and finally expands to a benchmarking harness
//! main!(binary_benchmark_groups = my_group);
//! # }
//! ```
//!
//! #### Differences to library benchmarks
//!
//! As opposed to library benchmarks the function annotated with the `binary_benchmark` attribute
//! always returns a `iai_callgrind::Command`. More specifically, this function is not a benchmark
//! function, since we don't benchmark functions anymore but [`Command`]s instead which are the
//! return value of the [`#[binary_benchmark]`](crate::binary_benchmark) function.
//!
//! This change has far-reaching consequences but also simplifies things. Since the function itself
//! is not benchmarked you can put any code into this function, and it does not influence the
//! benchmark of the [`Command`] itself. However, this function is run only once to __build__ the
//! [`Command`] and when we collect all commands and its configuration to be able to actually
//! __execute__ the [`Command`]s later in the benchmark runner. Whichever code you want to run
//! before the [`Command`] is executed has to go into the `setup`. And, into `teardown` for code you
//! want to run after the execution of the [`Command`].
//!
//! In library benchmarks the `setup` argument only takes a path to a function, more specifically
//! the function pointer. In binary benchmarks however, the `setup` (and `teardown`) parameters of
//! the [`#[binary_benchmark]`](crate::binary_benchmark), `#[bench]` and `#[benches]` attribute
//! take expressions which includes function calls for example `setup = my_setup()`. Only in the
//! special case that the expression is a function pointer, we pass the `args` of the `#[bench]` and
//! `#[benches]` attributes into the `setup`, `teardown` __and__ the function itself. Also, these
//! expressions are not executed right away but in a separate process before the [`Command`] is
//! executed. This is the main reason why the return value of the setup function is simply ignored
//! and not routed back into the benchmark function as it would be the case in library benchmarks.
//! We simply don't need to. To sum it up, put code you need to configure the [`Command`] into the
//! annotated function and code you need to execute before (after) the execution of the [`Command`]
//! into the `setup` (`teardown`).
//!
//! #### Configuration (#binary-benchmarks)
//!
//! Much like the configuration of library benchmarks (See above) it's possible to configure binary
//! benchmarks at top-level in the `main!` macro and at group-level in the
//! `binary_benchmark_groups!` with the `config = ...;` argument. In contrast to library benchmarks,
//! binary benchmarks can be also configured at a lower and last level in [`Command`] directly.
//!
//! For further details see the section about binary benchmarks of the [`crate::main`] docs the docs
//! of [`crate::binary_benchmark_group`] and [`Command`]. Also, the
//! [README](https://github.com/iai-callgrind/iai-callgrind) of this crate includes some
//! introductory documentation with additional examples.
//!
//! ## Valgrind Tools
//!
//! In addition to the default benchmarks, you can use the Iai-Callgrind framework to run other
//! Valgrind profiling [`Tool`]s like `DHAT`, `Massif` and the experimental `BBV` but also
//! `Memcheck`, `Helgrind` and `DRD` if you need to check memory and thread safety of benchmarked
//! code. See also the [Valgrind User Manual](https://valgrind.org/docs/manual/manual.html) for
//! details and command line arguments. The additional tools can be specified in
//! [`LibraryBenchmarkConfig`], [`BinaryBenchmarkConfig`]. For example to run `DHAT` for
//! all library benchmarks:
//! ```rust
//! # use iai_callgrind::{library_benchmark, library_benchmark_group};
//! use iai_callgrind::{main, LibraryBenchmarkConfig, Tool, ValgrindTool};
//! # #[library_benchmark]
//! # fn some_func() {}
//! # library_benchmark_group!(name = some_group; benchmarks = some_func);
//! # fn main() {
//! main!(
//!     config = LibraryBenchmarkConfig::default()
//!                 .tool(Tool::new(ValgrindTool::DHAT));
//!     library_benchmark_groups = some_group
//! );
//! # }
//! ```
//!
//! ## Client requests
//!
//! `iai-callgrind` supports valgrind client requests. See the documentation of the
//! [`client_requests`] module.
//!
//! ## Flamegraphs
//!
//! Flamegraphs are opt-in and can be created if you pass a [`FlamegraphConfig`] to the
//! [`BinaryBenchmarkConfig::flamegraph`] or [`LibraryBenchmarkConfig::flamegraph`]. Callgrind
//! flamegraphs are meant as a complement to valgrind's visualization tools `callgrind_annotate` and
//! `kcachegrind`.
//!
//! Callgrind flamegraphs show the inclusive costs for functions and a specific event type, much
//! like `callgrind_annotate` does but in a nicer (and clickable) way. Especially, differential
//! flamegraphs facilitate a deeper understanding of code sections which cause a bottleneck or a
//! performance regressions etc.
//!
//! The produced flamegraph svg files are located next to the respective callgrind output file in
//! the `target/iai` directory.

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc(test(attr(warn(unused))))]
#![doc(test(attr(allow(unused_extern_crates))))]
#![warn(missing_docs)]
#![warn(clippy::pedantic)]
#![warn(clippy::default_numeric_fallback)]
#![warn(clippy::else_if_without_else)]
#![warn(clippy::fn_to_numeric_cast_any)]
#![warn(clippy::get_unwrap)]
#![warn(clippy::if_then_some_else_none)]
#![warn(clippy::mixed_read_write_in_expression)]
#![warn(clippy::partial_pub_fields)]
#![warn(clippy::rest_pat_in_fully_bound_structs)]
#![warn(clippy::str_to_string)]
#![warn(clippy::string_to_string)]
#![warn(clippy::todo)]
#![warn(clippy::try_err)]
#![warn(clippy::undocumented_unsafe_blocks)]
#![warn(clippy::unneeded_field_pattern)]
#![allow(clippy::must_use_candidate)]
#![allow(clippy::return_self_not_must_use)]
#![allow(clippy::enum_glob_use)]
#![allow(clippy::module_name_repetitions)]

#[cfg(feature = "default")]
mod bin_bench;
#[cfg(feature = "client_requests_defs")]
pub mod client_requests;
#[cfg(feature = "default")]
mod common;
#[cfg(feature = "default")]
#[doc(hidden)]
pub mod error;
#[cfg(feature = "default")]
#[doc(hidden)]
pub mod internal;
#[cfg(feature = "default")]
mod lib_bench;
#[cfg(feature = "default")]
mod macros;
#[cfg(feature = "default")]
pub use bin_bench::{
    Bench, BenchmarkId, BinaryBenchmark, BinaryBenchmarkConfig, BinaryBenchmarkGroup, Command,
    Delay, ExitWith, Sandbox,
};
#[cfg(feature = "default")]
pub use bincode;
#[cfg(feature = "default")]
pub use common::{black_box, FlamegraphConfig, OutputFormat, RegressionConfig, Tool};
#[cfg(feature = "client_requests_defs")]
pub use cty;
#[cfg(feature = "default")]
pub use iai_callgrind_macros::{binary_benchmark, library_benchmark};
#[cfg(feature = "default")]
pub use iai_callgrind_runner::api::{
    DelayKind, Direction, EntryPoint, EventKind, FlamegraphKind, Pipe, Stdin, Stdio, ValgrindTool,
};
#[cfg(feature = "default")]
pub use lib_bench::LibraryBenchmarkConfig;