ic_cdk/api/call.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
//! APIs to make and manage calls in the canister.
use crate::api::trap;
use candid::utils::{decode_args_with_config_debug, ArgumentDecoder, ArgumentEncoder};
use candid::{
decode_args, encode_args, write_args, CandidType, DecoderConfig, Deserialize, Principal,
};
use serde::ser::Error;
use std::future::Future;
use std::marker::PhantomData;
use std::pin::Pin;
use std::sync::atomic::Ordering;
use std::sync::{Arc, RwLock, Weak};
use std::task::{Context, Poll, Waker};
/// Rejection code from calling another canister.
///
/// These can be obtained either using `reject_code()` or `reject_result()`.
#[allow(missing_docs)]
#[repr(i32)]
#[derive(CandidType, Deserialize, Clone, Copy, Hash, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum RejectionCode {
NoError = 0,
SysFatal = 1,
SysTransient = 2,
DestinationInvalid = 3,
CanisterReject = 4,
CanisterError = 5,
Unknown,
}
impl From<i32> for RejectionCode {
fn from(code: i32) -> Self {
match code {
0 => RejectionCode::NoError,
1 => RejectionCode::SysFatal,
2 => RejectionCode::SysTransient,
3 => RejectionCode::DestinationInvalid,
4 => RejectionCode::CanisterReject,
5 => RejectionCode::CanisterError,
_ => RejectionCode::Unknown,
}
}
}
impl From<u32> for RejectionCode {
fn from(code: u32) -> Self {
RejectionCode::from(code as i32)
}
}
/// The result of a Call.
///
/// Errors on the IC have two components; a Code and a message associated with it.
pub type CallResult<R> = Result<R, (RejectionCode, String)>;
// Internal state for the Future when sending a call.
struct CallFutureState<T: AsRef<[u8]>> {
result: Option<CallResult<Vec<u8>>>,
waker: Option<Waker>,
id: Principal,
method: String,
arg: T,
payment: u128,
}
struct CallFuture<T: AsRef<[u8]>> {
state: Arc<RwLock<CallFutureState<T>>>,
}
impl<T: AsRef<[u8]>> Future for CallFuture<T> {
type Output = CallResult<Vec<u8>>;
fn poll(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output> {
let self_ref = Pin::into_inner(self);
let mut state = self_ref.state.write().unwrap();
if let Some(result) = state.result.take() {
Poll::Ready(result)
} else {
if state.waker.is_none() {
let callee = state.id.as_slice();
let method = &state.method;
let args = state.arg.as_ref();
let payment = state.payment;
let state_ptr = Weak::into_raw(Arc::downgrade(&self_ref.state));
// SAFETY:
// `callee`, being &[u8], is a readable sequence of bytes and therefore can be passed to ic0.call_new.
// `method`, being &str, is a readable sequence of bytes and therefore can be passed to ic0.call_new.
// `callback` is a function with signature (env : i32) -> () and therefore can be called as both reply and reject fn for ic0.call_new.
// `state_ptr` is a pointer created via Weak::into_raw, and can therefore be passed as the userdata for `callback`.
// `args`, being a &[u8], is a readable sequence of bytes and therefore can be passed to ic0.call_data_append.
// `cleanup` is a function with signature (env : i32) -> () and therefore can be called as a cleanup fn for ic0.call_on_cleanup.
// `state_ptr` is a pointer created via Weak::into_raw, and can therefore be passed as the userdata for `cleanup`.
// ic0.call_perform is always safe to call.
// callback and cleanup are safe to parameterize with T because:
// - if the future is dropped before the callback is called, there will be no more strong references and the weak reference will fail to upgrade
// - if the future is *not* dropped before the callback is called, the compiler will mandate that any data borrowed by T is still alive
let err_code = unsafe {
ic0::call_new(
callee.as_ptr() as i32,
callee.len() as i32,
method.as_ptr() as i32,
method.len() as i32,
callback::<T> as usize as i32,
state_ptr as i32,
callback::<T> as usize as i32,
state_ptr as i32,
);
ic0::call_data_append(args.as_ptr() as i32, args.len() as i32);
add_payment(payment);
ic0::call_on_cleanup(cleanup::<T> as usize as i32, state_ptr as i32);
ic0::call_perform()
};
// 0 is a special error code meaning call succeeded.
if err_code != 0 {
let result = Err((
RejectionCode::from(err_code),
"Couldn't send message".to_string(),
));
state.result = Some(result.clone());
return Poll::Ready(result);
}
}
state.waker = Some(context.waker().clone());
Poll::Pending
}
}
}
/// The callback from IC dereferences the future from a raw pointer, assigns the
/// result and calls the waker. We cannot use a closure here because we pass raw
/// pointers to the System and back.
///
/// # Safety
///
/// This function must only be passed to the IC with a pointer from Weak::into_raw as userdata.
unsafe extern "C" fn callback<T: AsRef<[u8]>>(state_ptr: *const RwLock<CallFutureState<T>>) {
// SAFETY: This function is only ever called by the IC, and we only ever pass a Weak as userdata.
let state = unsafe { Weak::from_raw(state_ptr) };
if let Some(state) = state.upgrade() {
// Make sure to un-borrow_mut the state.
{
state.write().unwrap().result = Some(match reject_code() {
RejectionCode::NoError => Ok(arg_data_raw()),
n => Err((n, reject_message())),
});
}
let w = state.write().unwrap().waker.take();
if let Some(waker) = w {
// This is all to protect this little guy here which will call the poll() which
// borrow_mut() the state as well. So we need to be careful to not double-borrow_mut.
waker.wake()
}
}
}
/// This function is called when [callback] was just called with the same parameter, and trapped.
/// We can't guarantee internal consistency at this point, but we can at least e.g. drop mutex guards.
/// Waker is a very opaque API, so the best we can do is set a global flag and proceed normally.
///
/// # Safety
///
/// This function must only be passed to the IC with a pointer from Weak::into_raw as userdata.
unsafe extern "C" fn cleanup<T: AsRef<[u8]>>(state_ptr: *const RwLock<CallFutureState<T>>) {
// SAFETY: This function is only ever called by the IC, and we only ever pass a Weak as userdata.
let state = unsafe { Weak::from_raw(state_ptr) };
if let Some(state) = state.upgrade() {
// We set the call result, even though it won't be read on the
// default executor, because we can't guarantee it was called on
// our executor. However, we are not allowed to inspect
// reject_code() inside of a cleanup callback, so always set the
// result to a reject.
//
// Borrowing does not trap - the rollback from the
// previous trap ensures that the RwLock can be borrowed again.
state.write().unwrap().result = Some(Err((RejectionCode::NoError, "cleanup".to_string())));
let w = state.write().unwrap().waker.take();
if let Some(waker) = w {
// Flag that we do not want to actually wake the task - we
// want to drop it *without* executing it.
crate::futures::CLEANUP.store(true, Ordering::Relaxed);
waker.wake();
crate::futures::CLEANUP.store(false, Ordering::Relaxed);
}
}
}
fn add_payment(payment: u128) {
if payment == 0 {
return;
}
let high = (payment >> 64) as u64;
let low = (payment & u64::MAX as u128) as u64;
// SAFETY: ic0.call_cycles_add128 is always safe to call.
unsafe {
ic0::call_cycles_add128(high as i64, low as i64);
}
}
/// Sends a one-way message with `payment` cycles attached to it that invokes `method` with
/// arguments `args` on the principal identified by `id`, ignoring the reply.
///
/// Returns `Ok(())` if the message was successfully enqueued, otherwise returns a reject code.
///
/// # Notes
///
/// * The caller has no way of checking whether the destination processed the notification.
/// The system can drop the notification if the destination does not have resources to
/// process the message (for example, if it's out of cycles or queue slots).
///
/// * The callee cannot tell whether the call is one-way or not.
/// The callee must produce replies for all incoming messages.
///
/// * It is safe to upgrade a canister without stopping it first if it sends out *only*
/// one-way messages.
///
/// * If the payment is non-zero and the system fails to deliver the notification, the behaviour
/// is unspecified: the funds can be either reimbursed or consumed irrevocably by the IC depending
/// on the underlying implementation of one-way calls.
pub fn notify_with_payment128<T: ArgumentEncoder>(
id: Principal,
method: &str,
args: T,
payment: u128,
) -> Result<(), RejectionCode> {
let args_raw = encode_args(args).expect("failed to encode arguments");
notify_raw(id, method, &args_raw, payment)
}
/// Like [notify_with_payment128], but sets the payment to zero.
pub fn notify<T: ArgumentEncoder>(
id: Principal,
method: &str,
args: T,
) -> Result<(), RejectionCode> {
notify_with_payment128(id, method, args, 0)
}
/// Like [notify], but sends the argument as raw bytes, skipping Candid serialization.
pub fn notify_raw(
id: Principal,
method: &str,
args_raw: &[u8],
payment: u128,
) -> Result<(), RejectionCode> {
let callee = id.as_slice();
// We set all callbacks to -1, which is guaranteed to be invalid callback index.
// The system will still deliver the reply, but it will trap immediately because the callback
// is not a valid function. See
// https://www.joachim-breitner.de/blog/789-Zero-downtime_upgrades_of_Internet_Computer_canisters#one-way-calls
// for more context.
// SAFETY:
// `callee`, being &[u8], is a readable sequence of bytes and therefore can be passed to ic0.call_new.
// `method`, being &str, is a readable sequence of bytes and therefore can be passed to ic0.call_new.
// -1, i.e. usize::MAX, is a function pointer the wasm module cannot possibly contain, and therefore can be passed as both reply and reject fn for ic0.call_new.
// Since the callback function will never be called, any value can be passed as its context parameter, and therefore -1 can be passed for those values.
// `args`, being a &[u8], is a readable sequence of bytes and therefore can be passed to ic0.call_data_append.
// ic0.call_perform is always safe to call.
let err_code = unsafe {
ic0::call_new(
callee.as_ptr() as i32,
callee.len() as i32,
method.as_ptr() as i32,
method.len() as i32,
/* reply_fun = */ -1,
/* reply_env = */ -1,
/* reject_fun = */ -1,
/* reject_env = */ -1,
);
add_payment(payment);
ic0::call_data_append(args_raw.as_ptr() as i32, args_raw.len() as i32);
ic0::call_perform()
};
match err_code {
0 => Ok(()),
c => Err(RejectionCode::from(c)),
}
}
/// Performs an asynchronous call to another canister and pay cycles at the same time.
///
/// Treats arguments and returns as raw bytes. No data serialization and deserialization is performed.
///
/// # Example
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::call_raw;
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> Vec<u8>{
/// call_raw(callee_canister(), "add_user", b"abcd", 1_000_000u64).await.unwrap()
/// }
/// ```
pub fn call_raw<'a, T: AsRef<[u8]> + Send + Sync + 'a>(
id: Principal,
method: &str,
args_raw: T,
payment: u64,
) -> impl Future<Output = CallResult<Vec<u8>>> + Send + Sync + 'a {
call_raw_internal(id, method, args_raw, payment.into())
}
/// Performs an asynchronous call to another canister and pay cycles (in `u128`) at the same time.
///
/// Treats arguments and returns as raw bytes. No data serialization and deserialization is performed.
/// # Example
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::call_raw128;
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> Vec<u8>{
/// call_raw128(callee_canister(), "add_user", b"abcd", 1_000_000u128).await.unwrap()
/// }
/// ```
pub fn call_raw128<'a, T: AsRef<[u8]> + Send + Sync + 'a>(
id: Principal,
method: &str,
args_raw: T,
payment: u128,
) -> impl Future<Output = CallResult<Vec<u8>>> + Send + Sync + 'a {
call_raw_internal(id, method, args_raw, payment)
}
fn call_raw_internal<'a, T: AsRef<[u8]> + Send + Sync + 'a>(
id: Principal,
method: &str,
args_raw: T,
payment: u128,
) -> impl Future<Output = CallResult<Vec<u8>>> + Send + Sync + 'a {
let state = Arc::new(RwLock::new(CallFutureState {
result: None,
waker: None,
id,
method: method.to_string(),
arg: args_raw,
payment,
}));
CallFuture { state }
}
fn decoder_error_to_reject<T>(err: candid::error::Error) -> (RejectionCode, String) {
(
RejectionCode::CanisterError,
format!(
"failed to decode canister response as {}: {}",
std::any::type_name::<T>(),
err
),
)
}
/// Performs an asynchronous call to another canister.
///
/// # Example
///
/// Assuming that the callee canister has following interface:
///
/// ```text
/// service : {
/// add_user: (name: text) -> (nat64);
/// }
/// ```
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::call;
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> u64 {
/// let (user_id,) = call(callee_canister(), "add_user", ("Alice".to_string(),)).await.unwrap();
/// user_id
/// }
/// ```
///
/// # Note
///
/// * Both argument and return types are tuples even if it has only one value, e.g `(user_id,)`, `("Alice".to_string(),)`.
/// * The type annotation on return type is required. Or the return type can be inferred from the context.
/// * The asynchronous call must be awaited in order for the inter-canister call to be made.
/// * If the reply payload is not a valid encoding of the expected type `T`, the call results in [RejectionCode::CanisterError] error.
pub fn call<T: ArgumentEncoder, R: for<'a> ArgumentDecoder<'a>>(
id: Principal,
method: &str,
args: T,
) -> impl Future<Output = CallResult<R>> + Send + Sync {
let args_raw = encode_args(args).expect("Failed to encode arguments.");
let fut = call_raw(id, method, args_raw, 0);
async {
let bytes = fut.await?;
decode_args(&bytes).map_err(decoder_error_to_reject::<R>)
}
}
/// Performs an asynchronous call to another canister and pay cycles at the same time.
///
/// # Example
///
/// Assuming that the callee canister has following interface:
///
/// ```text
/// service : {
/// add_user: (name: text) -> (nat64);
/// }
/// ```
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::call_with_payment;
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> u64 {
/// let (user_id,) = call_with_payment(callee_canister(), "add_user", ("Alice".to_string(),), 1_000_000u64).await.unwrap();
/// user_id
/// }
/// ```
///
/// # Note
///
/// * Both argument and return types are tuples even if it has only one value, e.g `(user_id,)`, `("Alice".to_string(),)`.
/// * The type annotation on return type is required. Or the return type can be inferred from the context.
/// * The asynchronous call must be awaited in order for the inter-canister call to be made.
/// * If the reply payload is not a valid encoding of the expected type `T`, the call results in [RejectionCode::CanisterError] error.
pub fn call_with_payment<T: ArgumentEncoder, R: for<'a> ArgumentDecoder<'a>>(
id: Principal,
method: &str,
args: T,
cycles: u64,
) -> impl Future<Output = CallResult<R>> + Send + Sync {
let args_raw = encode_args(args).expect("Failed to encode arguments.");
let fut = call_raw(id, method, args_raw, cycles);
async {
let bytes = fut.await?;
decode_args(&bytes).map_err(decoder_error_to_reject::<R>)
}
}
/// Performs an asynchronous call to another canister and pay cycles (in `u128`) at the same time.
///
/// # Example
///
/// Assuming that the callee canister has following interface:
///
/// ```text
/// service : {
/// add_user: (name: text) -> (nat64);
/// }
/// ```
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::call_with_payment128;
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> u64 {
/// let (user_id,) = call_with_payment128(callee_canister(), "add_user", ("Alice".to_string(),), 1_000_000u128).await.unwrap();
/// user_id
/// }
/// ```
///
/// # Note
///
/// * Both argument and return types are tuples even if it has only one value, e.g `(user_id,)`, `("Alice".to_string(),)`.
/// * The type annotation on return type is required. Or the return type can be inferred from the context.
/// * The asynchronous call must be awaited in order for the inter-canister call to be made.
/// * If the reply payload is not a valid encoding of the expected type `T`, the call results in [RejectionCode::CanisterError] error.
pub fn call_with_payment128<T: ArgumentEncoder, R: for<'a> ArgumentDecoder<'a>>(
id: Principal,
method: &str,
args: T,
cycles: u128,
) -> impl Future<Output = CallResult<R>> + Send + Sync {
let args_raw = encode_args(args).expect("Failed to encode arguments.");
let fut = call_raw128(id, method, args_raw, cycles);
async {
let bytes = fut.await?;
decode_args(&bytes).map_err(decoder_error_to_reject::<R>)
}
}
/// Performs an asynchronous call to another canister and pay cycles (in `u128`).
/// It also allows setting a quota for decoding the return values.
/// The decoding quota is strongly recommended when calling third-party or untrusted canisters.
///
/// # Example
///
/// Assuming that the callee canister has following interface:
///
/// ```text
/// service : {
/// add_user: (name: text) -> (nat64);
/// }
/// ```
///
/// It can be called:
///
/// ```rust
/// # use ic_cdk::api::call::{call_with_config, ArgDecoderConfig};
/// # fn callee_canister() -> candid::Principal { unimplemented!() }
/// async fn call_add_user() -> u64 {
/// let config = ArgDecoderConfig {
/// // The function only returns a nat64, to accomodate future upgrades, we set a larger decoding_quota.
/// decoding_quota: Some(10_000),
/// // To accomodate future upgrades, reserve some skipping_quota.
/// skipping_quota: Some(100),
/// // Enable debug mode to print decoding instructions and cost to the replica log.
/// debug: true,
/// };
/// let (user_id,) = call_with_config(callee_canister(), "add_user", ("Alice".to_string(),), 1_000_000u128, &config).await.unwrap();
/// user_id
/// }
/// ```
pub fn call_with_config<'b, T: ArgumentEncoder, R: for<'a> ArgumentDecoder<'a>>(
id: Principal,
method: &'b str,
args: T,
cycles: u128,
arg_config: &'b ArgDecoderConfig,
) -> impl Future<Output = CallResult<R>> + Send + Sync + 'b {
let args_raw = encode_args(args).expect("Failed to encode arguments.");
let fut = call_raw128(id, method, args_raw, cycles);
async move {
let bytes = fut.await?;
let config = arg_config.to_candid_config();
let pre_cycles = if arg_config.debug {
Some(crate::api::performance_counter(0))
} else {
None
};
match decode_args_with_config_debug(&bytes, &config) {
Err(e) => Err(decoder_error_to_reject::<R>(e)),
Ok((r, cost)) => {
if arg_config.debug {
print_decoding_debug_info(&format!("{method} return"), &cost, pre_cycles);
}
Ok(r)
}
}
}
}
fn print_decoding_debug_info(title: &str, cost: &DecoderConfig, pre_cycles: Option<u64>) {
use crate::api::{performance_counter, print};
let pre_cycles = pre_cycles.unwrap_or(0);
let instrs = performance_counter(0) - pre_cycles;
print(format!("[Debug] {title} decoding instructions: {instrs}"));
if let Some(n) = cost.decoding_quota {
print(format!("[Debug] {title} decoding cost: {n}"));
}
if let Some(n) = cost.skipping_quota {
print(format!("[Debug] {title} skipping cost: {n}"));
}
}
/// Returns a result that maps over the call
///
/// It will be Ok(T) if the call succeeded (with T being the arg_data),
/// and [reject_message()] if it failed.
pub fn result<T: for<'a> ArgumentDecoder<'a>>() -> Result<T, String> {
match reject_code() {
RejectionCode::NoError => {
decode_args(&arg_data_raw()).map_err(|e| format!("Failed to decode arguments: {}", e))
}
_ => Err(reject_message()),
}
}
/// Returns the rejection code for the call.
pub fn reject_code() -> RejectionCode {
// SAFETY: ic0.msg_reject_code is always safe to call.
let code = unsafe { ic0::msg_reject_code() };
RejectionCode::from(code)
}
/// Returns the rejection message.
pub fn reject_message() -> String {
// SAFETY: ic0.msg_reject_msg_size is always safe to call.
let len: u32 = unsafe { ic0::msg_reject_msg_size() as u32 };
let mut bytes = vec![0u8; len as usize];
// SAFETY: `bytes`, being mutable and allocated to `len` bytes, is safe to pass to ic0.msg_reject_msg_copy with no offset
unsafe {
ic0::msg_reject_msg_copy(bytes.as_mut_ptr() as i32, 0, len as i32);
}
String::from_utf8_lossy(&bytes).into_owned()
}
/// Rejects the current call with the message.
pub fn reject(message: &str) {
let err_message = message.as_bytes();
// SAFETY: `err_message`, being &[u8], is a readable sequence of bytes, and therefore valid to pass to ic0.msg_reject.
unsafe {
ic0::msg_reject(err_message.as_ptr() as i32, err_message.len() as i32);
}
}
/// An io::Write for message replies.
#[derive(Debug, Copy, Clone)]
pub struct CallReplyWriter;
impl std::io::Write for CallReplyWriter {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
// SAFETY: buf, being &[u8], is a readable sequence of bytes, and therefore valid to pass to ic0.msg_reply_data_append.
unsafe {
ic0::msg_reply_data_append(buf.as_ptr() as i32, buf.len() as i32);
}
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
/// Replies to the current call with a candid argument.
pub fn reply<T: ArgumentEncoder>(reply: T) {
write_args(&mut CallReplyWriter, reply).expect("Could not encode reply.");
// SAFETY: ic0.msg_reply is always safe to call.
unsafe {
ic0::msg_reply();
}
}
/// Returns the amount of cycles that were transferred by the caller
/// of the current call, and is still available in this message.
pub fn msg_cycles_available() -> u64 {
// SAFETY: ic0.msg_cycles_available is always safe to call.
unsafe { ic0::msg_cycles_available() as u64 }
}
/// Returns the amount of cycles that were transferred by the caller
/// of the current call, and is still available in this message.
pub fn msg_cycles_available128() -> u128 {
let mut recv = 0u128;
// SAFETY: recv is writable and sixteen bytes wide, and therefore is safe to pass to ic0.msg_cycles_available128
unsafe {
ic0::msg_cycles_available128(&mut recv as *mut u128 as i32);
}
recv
}
/// Returns the amount of cycles that came back with the response as a refund.
///
/// The refund has already been added to the canister balance automatically.
pub fn msg_cycles_refunded() -> u64 {
// SAFETY: ic0.msg_cycles_refunded is always safe to call
unsafe { ic0::msg_cycles_refunded() as u64 }
}
/// Returns the amount of cycles that came back with the response as a refund.
///
/// The refund has already been added to the canister balance automatically.
pub fn msg_cycles_refunded128() -> u128 {
let mut recv = 0u128;
// SAFETY: recv is writable and sixteen bytes wide, and therefore is safe to pass to ic0.msg_cycles_refunded128
unsafe {
ic0::msg_cycles_refunded128(&mut recv as *mut u128 as i32);
}
recv
}
/// Moves cycles from the call to the canister balance.
///
/// The actual amount moved will be returned.
pub fn msg_cycles_accept(max_amount: u64) -> u64 {
// SAFETY: ic0.msg_cycles_accept is always safe to call.
unsafe { ic0::msg_cycles_accept(max_amount as i64) as u64 }
}
/// Moves cycles from the call to the canister balance.
///
/// The actual amount moved will be returned.
pub fn msg_cycles_accept128(max_amount: u128) -> u128 {
let high = (max_amount >> 64) as u64;
let low = (max_amount & u64::MAX as u128) as u64;
let mut recv = 0u128;
// SAFETY: `recv` is writable and sixteen bytes wide, and therefore safe to pass to ic0.msg_cycles_accept128
unsafe {
ic0::msg_cycles_accept128(high as i64, low as i64, &mut recv as *mut u128 as i32);
}
recv
}
/// Returns the argument data as bytes.
pub fn arg_data_raw() -> Vec<u8> {
// SAFETY: ic0.msg_arg_data_size is always safe to call.
let len: usize = unsafe { ic0::msg_arg_data_size() as usize };
let mut bytes = Vec::with_capacity(len);
// SAFETY:
// `bytes`, being mutable and allocated to `len` bytes, is safe to pass to ic0.msg_arg_data_copy with no offset
// ic0.msg_arg_data_copy writes to all of `bytes[0..len]`, so `set_len` is safe to call with the new len.
unsafe {
ic0::msg_arg_data_copy(bytes.as_mut_ptr() as i32, 0, len as i32);
bytes.set_len(len);
}
bytes
}
/// Gets the len of the raw-argument-data-bytes.
pub fn arg_data_raw_size() -> usize {
// SAFETY: ic0.msg_arg_data_size is always safe to call.
unsafe { ic0::msg_arg_data_size() as usize }
}
/// Replies with the bytes passed
pub fn reply_raw(buf: &[u8]) {
if !buf.is_empty() {
// SAFETY: `buf`, being &[u8], is a readable sequence of bytes, and therefore valid to pass to ic0.msg_reject.
unsafe { ic0::msg_reply_data_append(buf.as_ptr() as i32, buf.len() as i32) }
};
// SAFETY: ic0.msg_reply is always safe to call.
unsafe { ic0::msg_reply() };
}
#[derive(Debug)]
/// Config to control the behavior of decoding canister endpoint arguments.
pub struct ArgDecoderConfig {
/// Limit the total amount of work the deserializer can perform. See [docs on the Candid library](https://docs.rs/candid/latest/candid/de/struct.DecoderConfig.html#method.set_decoding_quota) to understand the cost model.
pub decoding_quota: Option<usize>,
/// Limit the total amount of work for skipping unneeded data on the wire. See [docs on the Candid library](https://docs.rs/candid/latest/candid/de/struct.DecoderConfig.html#method.set_skipping_quota) to understand the skipping cost.
pub skipping_quota: Option<usize>,
/// When set to true, print instruction count and the decoding/skipping cost to the replica log.
pub debug: bool,
}
impl ArgDecoderConfig {
fn to_candid_config(&self) -> DecoderConfig {
let mut config = DecoderConfig::new();
if let Some(n) = self.decoding_quota {
config.set_decoding_quota(n);
}
if let Some(n) = self.skipping_quota {
config.set_skipping_quota(n);
}
if self.debug {
config.set_full_error_message(true);
}
config
}
}
impl Default for ArgDecoderConfig {
fn default() -> Self {
Self {
decoding_quota: None,
skipping_quota: Some(10_000),
debug: false,
}
}
}
/// Returns the argument data in the current call. Traps if the data cannot be
/// decoded.
pub fn arg_data<R: for<'a> ArgumentDecoder<'a>>(arg_config: ArgDecoderConfig) -> R {
let bytes = arg_data_raw();
let config = arg_config.to_candid_config();
let res = decode_args_with_config_debug(&bytes, &config);
match res {
Err(e) => trap(&format!("failed to decode call arguments: {:?}", e)),
Ok((r, cost)) => {
if arg_config.debug {
print_decoding_debug_info("Argument", &cost, None);
}
r
}
}
}
/// Accepts the ingress message.
pub fn accept_message() {
// SAFETY: ic0.accept_message is always safe to call.
unsafe {
ic0::accept_message();
}
}
/// Returns the name of current canister method.
pub fn method_name() -> String {
// SAFETY: ic0.msg_method_name_size is always safe to call.
let len: u32 = unsafe { ic0::msg_method_name_size() as u32 };
let mut bytes = vec![0u8; len as usize];
// SAFETY: `bytes` is writable and allocated to `len` bytes, and therefore can be safely passed to ic0.msg_method_name_copy
unsafe {
ic0::msg_method_name_copy(bytes.as_mut_ptr() as i32, 0, len as i32);
}
String::from_utf8_lossy(&bytes).into_owned()
}
/// Gets the value of specified performance counter
///
/// See [`crate::api::performance_counter`].
#[deprecated(
since = "0.11.3",
note = "This method conceptually doesn't belong to this module. Please use `ic_cdk::api::performance_counter` instead."
)]
pub fn performance_counter(counter_type: u32) -> u64 {
// SAFETY: ic0.performance_counter is always safe to call.
unsafe { ic0::performance_counter(counter_type as i32) as u64 }
}
/// Pretends to have the Candid type `T`, but unconditionally errors
/// when serialized.
///
/// Usable, but not required, as metadata when using `#[query(manual_reply = true)]`,
/// so an accurate Candid file can still be generated.
#[derive(Debug, Copy, Clone, Default)]
pub struct ManualReply<T: ?Sized>(PhantomData<T>);
impl<T: ?Sized> ManualReply<T> {
/// Constructs a new `ManualReply`.
#[allow(clippy::self_named_constructors)]
pub const fn empty() -> Self {
Self(PhantomData)
}
/// Replies with the given value and returns a new `ManualReply`,
/// for a useful reply-then-return shortcut.
pub fn all<U>(value: U) -> Self
where
U: ArgumentEncoder,
{
reply(value);
Self::empty()
}
/// Replies with a one-element tuple around the given value and returns
/// a new `ManualReply`, for a useful reply-then-return shortcut.
pub fn one<U>(value: U) -> Self
where
U: CandidType,
{
reply((value,));
Self::empty()
}
/// Rejects the call with the specified message and returns a new
/// `ManualReply`, for a useful reply-then-return shortcut.
pub fn reject(message: impl AsRef<str>) -> Self {
reject(message.as_ref());
Self::empty()
}
}
impl<T> CandidType for ManualReply<T>
where
T: CandidType + ?Sized,
{
fn _ty() -> candid::types::Type {
T::_ty()
}
/// Unconditionally errors.
fn idl_serialize<S>(&self, _: S) -> Result<(), S::Error>
where
S: candid::types::Serializer,
{
Err(S::Error::custom("`Empty` cannot be serialized"))
}
}
/// Tells you whether the current async fn is being canceled due to a trap/panic.
///
/// If a function traps/panics, then the canister state is rewound to the beginning of the function.
/// However, due to the way async works, the beginning of the function as the IC understands it is actually
/// the most recent `await` from an inter-canister-call. This means that part of the function will have executed,
/// and part of it won't.
///
/// When this happens the CDK will cancel the task, causing destructors to be run. If you need any functions to be run
/// no matter what happens, they should happen in a destructor; the [`scopeguard`](https://docs.rs/scopeguard) crate
/// provides a convenient wrapper for this. In a destructor, `is_recovering_from_trap` serves the same purpose as
/// [std::thread::panicking] - it tells you whether the destructor is executing *because* of a trap,
/// as opposed to just because the scope was exited, so you could e.g. implement mutex poisoning.
pub fn is_recovering_from_trap() -> bool {
crate::futures::CLEANUP.load(Ordering::Relaxed)
}