ic_web3_rs/signing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! Signing capabilities and utilities.
use crate::types::H256;
/// Error during signing.
#[derive(Debug, derive_more::Display, PartialEq, Clone)]
pub enum SigningError {
/// A message to sign is invalid. Has to be a non-zero 32-bytes slice.
#[display(fmt = "Message has to be a non-zero 32-bytes slice.")]
InvalidMessage,
}
impl std::error::Error for SigningError {}
/// Error during sender recovery.
#[derive(Debug, derive_more::Display, PartialEq, Clone)]
pub enum RecoveryError {
/// A message to recover is invalid. Has to be a non-zero 32-bytes slice.
#[display(fmt = "Message has to be a non-zero 32-bytes slice.")]
InvalidMessage,
/// A signature is invalid and the sender could not be recovered.
#[display(fmt = "Signature is invalid (check recovery id).")]
InvalidSignature,
}
impl std::error::Error for RecoveryError {}
// #[cfg(feature = "signing")]
// pub use feature_gated::*;
// #[cfg(feature = "signing")]
// mod feature_gated {
// use super::*;
// use crate::types::Address;
// use once_cell::sync::Lazy;
// pub(crate) use secp256k1::SecretKey;
// use secp256k1::{
// ecdsa::{RecoverableSignature, RecoveryId},
// All, Message, PublicKey, Secp256k1,
// };
// use std::ops::Deref;
// static CONTEXT: Lazy<Secp256k1<All>> = Lazy::new(Secp256k1::new);
// /// A trait representing ethereum-compatible key with signing capabilities.
// ///
// /// The purpose of this trait is to prevent leaking `secp256k1::SecretKey` struct
// /// in stack or memory.
// /// To use secret keys securely, they should be wrapped in a struct that prevents
// /// leaving copies in memory (both when it's moved or dropped). Please take a look
// /// at:
// /// - https://github.com/graphprotocol/solidity-bindgen/blob/master/solidity-bindgen/src/secrets.rs
// /// - or https://crates.io/crates/zeroize
// /// if you care enough about your secrets to be used securely.
// ///
// /// If it's enough to pass a reference to `SecretKey` (lifetimes) than you can use `SecretKeyRef`
// /// wrapper.
// pub trait Key {
// /// Sign given message and include chain-id replay protection.
// ///
// /// When a chain ID is provided, the `Signature`'s V-value will have chain replay
// /// protection added (as per EIP-155). Otherwise, the V-value will be in
// /// 'Electrum' notation.
// fn sign(&self, message: &[u8], chain_id: Option<u64>) -> Result<Signature, SigningError>;
// /// Sign given message without manipulating V-value; used for typed transactions
// /// (AccessList and EIP-1559)
// fn sign_message(&self, message: &[u8]) -> Result<Signature, SigningError>;
// /// Get public address that this key represents.
// fn address(&self) -> Address;
// }
// /// A `SecretKey` reference wrapper.
// ///
// /// A wrapper around `secp256k1::SecretKey` reference, which enables it to be used in methods expecting
// /// `Key` capabilities.
// pub struct SecretKeyRef<'a> {
// pub(super) key: &'a SecretKey,
// }
// impl<'a> SecretKeyRef<'a> {
// /// A simple wrapper around a reference to `SecretKey` which allows it to be usable for signing.
// pub fn new(key: &'a SecretKey) -> Self {
// Self { key }
// }
// }
// impl<'a> From<&'a SecretKey> for SecretKeyRef<'a> {
// fn from(key: &'a SecretKey) -> Self {
// Self::new(key)
// }
// }
// impl<'a> Deref for SecretKeyRef<'a> {
// type Target = SecretKey;
// fn deref(&self) -> &Self::Target {
// self.key
// }
// }
// impl<T: Deref<Target = SecretKey>> Key for T {
// fn sign(&self, message: &[u8], chain_id: Option<u64>) -> Result<Signature, SigningError> {
// let message = Message::from_slice(message).map_err(|_| SigningError::InvalidMessage)?;
// let (recovery_id, signature) = CONTEXT.sign_ecdsa_recoverable(&message, self).serialize_compact();
// let standard_v = recovery_id.to_i32() as u64;
// let v = if let Some(chain_id) = chain_id {
// // When signing with a chain ID, add chain replay protection.
// standard_v + 35 + chain_id * 2
// } else {
// // Otherwise, convert to 'Electrum' notation.
// standard_v + 27
// };
// let r = H256::from_slice(&signature[..32]);
// let s = H256::from_slice(&signature[32..]);
// Ok(Signature { v, r, s })
// }
// fn sign_message(&self, message: &[u8]) -> Result<Signature, SigningError> {
// let message = Message::from_slice(message).map_err(|_| SigningError::InvalidMessage)?;
// let (recovery_id, signature) = CONTEXT.sign_ecdsa_recoverable(&message, self).serialize_compact();
// let v = recovery_id.to_i32() as u64;
// let r = H256::from_slice(&signature[..32]);
// let s = H256::from_slice(&signature[32..]);
// Ok(Signature { v, r, s })
// }
// fn address(&self) -> Address {
// secret_key_address(self)
// }
// }
// /// Recover a sender, given message and the signature.
// ///
// /// Signature and `recovery_id` can be obtained from `types::Recovery` type.
// pub fn recover(message: &[u8], signature: &[u8], recovery_id: i32) -> Result<Address, RecoveryError> {
// let message = Message::from_slice(message).map_err(|_| RecoveryError::InvalidMessage)?;
// let recovery_id = RecoveryId::from_i32(recovery_id).map_err(|_| RecoveryError::InvalidSignature)?;
// let signature =
// RecoverableSignature::from_compact(signature, recovery_id).map_err(|_| RecoveryError::InvalidSignature)?;
// let public_key = CONTEXT
// .recover_ecdsa(&message, &signature)
// .map_err(|_| RecoveryError::InvalidSignature)?;
// Ok(public_key_address(&public_key))
// }
// /// Gets the address of a public key.
// ///
// /// The public address is defined as the low 20 bytes of the keccak hash of
// /// the public key. Note that the public key returned from the `secp256k1`
// /// crate is 65 bytes long, that is because it is prefixed by `0x04` to
// /// indicate an uncompressed public key; this first byte is ignored when
// /// computing the hash.
// pub(crate) fn public_key_address(public_key: &PublicKey) -> Address {
// let public_key = public_key.serialize_uncompressed();
// debug_assert_eq!(public_key[0], 0x04);
// let hash = keccak256(&public_key[1..]);
// Address::from_slice(&hash[12..])
// }
// /// Gets the public address of a private key.
// pub(crate) fn secret_key_address(key: &SecretKey) -> Address {
// let secp = &*CONTEXT;
// let public_key = PublicKey::from_secret_key(secp, key);
// public_key_address(&public_key)
// }
// }
/// A struct that represents the components of a secp256k1 signature.
pub struct Signature {
/// V component in electrum format with chain-id replay protection.
pub v: u64,
/// R component of the signature.
pub r: H256,
/// S component of the signature.
pub s: H256,
}
/// Compute the Keccak-256 hash of input bytes.
pub fn keccak256(bytes: &[u8]) -> [u8; 32] {
use tiny_keccak::{Hasher, Keccak};
let mut output = [0u8; 32];
let mut hasher = Keccak::v256();
hasher.update(bytes);
hasher.finalize(&mut output);
output
}
// /// Result of the name hash algotithm.
// pub type NameHash = [u8; 32];
// /// Compute the hash of a domain name using the namehash algorithm.
// ///
// /// [Specification](https://docs.ens.domains/contract-api-reference/name-processing#hashing-names)
// pub fn namehash(name: &str) -> NameHash {
// let mut node = [0u8; 32];
// if name.is_empty() {
// return node;
// }
// let mut labels: Vec<&str> = name.split('.').collect();
// labels.reverse();
// for label in labels.iter() {
// let label_hash = keccak256(label.as_bytes());
// node = keccak256(&[node, label_hash].concat());
// }
// node
// }
/// Hash a message according to EIP-191.
///
/// The data is a UTF-8 encoded string and will enveloped as follows:
/// `"\x19Ethereum Signed Message:\n" + message.length + message` and hashed
/// using keccak256.
pub fn hash_message<S>(message: S) -> H256
where
S: AsRef<[u8]>,
{
let message = message.as_ref();
let mut eth_message = format!("\x19Ethereum Signed Message:\n{}", message.len()).into_bytes();
eth_message.extend_from_slice(message);
keccak256(ð_message).into()
}
// #[cfg(test)]
// mod tests {
// use super::*;
// //See -> https://eips.ethereum.org/EIPS/eip-137 for test cases
// #[test]
// fn name_hash_empty() {
// let input = "";
// let result = namehash(input);
// let expected = [0u8; 32];
// assert_eq!(expected, result);
// }
// #[test]
// fn name_hash_eth() {
// let input = "eth";
// let result = namehash(input);
// let expected = [
// 0x93, 0xcd, 0xeb, 0x70, 0x8b, 0x75, 0x45, 0xdc, 0x66, 0x8e, 0xb9, 0x28, 0x01, 0x76, 0x16, 0x9d, 0x1c, 0x33,
// 0xcf, 0xd8, 0xed, 0x6f, 0x04, 0x69, 0x0a, 0x0b, 0xcc, 0x88, 0xa9, 0x3f, 0xc4, 0xae,
// ];
// assert_eq!(expected, result);
// }
// #[test]
// fn name_hash_foo_eth() {
// let input = "foo.eth";
// let result = namehash(input);
// let expected = [
// 0xde, 0x9b, 0x09, 0xfd, 0x7c, 0x5f, 0x90, 0x1e, 0x23, 0xa3, 0xf1, 0x9f, 0xec, 0xc5, 0x48, 0x28, 0xe9, 0xc8,
// 0x48, 0x53, 0x98, 0x01, 0xe8, 0x65, 0x91, 0xbd, 0x98, 0x01, 0xb0, 0x19, 0xf8, 0x4f,
// ];
// assert_eq!(expected, result);
// }
// }