image_webp/
encoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
//! Encoding of WebP images.
use std::collections::BinaryHeap;
use std::io::{self, Write};
use std::slice::ChunksExact;

use quick_error::quick_error;

/// Color type of the image.
///
/// Note that the WebP format doesn't have a concept of color type. All images are encoded as RGBA
/// and some decoders may treat them as such. This enum is used to indicate the color type of the
/// input data provided to the encoder, which can help improve compression ratio.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ColorType {
    /// Opaque image with a single luminance byte per pixel.
    L8,
    /// Image with a luminance and alpha byte per pixel.
    La8,
    /// Opaque image with a red, green, and blue byte per pixel.
    Rgb8,
    /// Image with a red, green, blue, and alpha byte per pixel.
    Rgba8,
}

quick_error! {
    /// Error that can occur during encoding.
    #[derive(Debug)]
    #[non_exhaustive]
    pub enum EncodingError {
        /// An IO error occurred.
        IoError(err: io::Error) {
            from()
            display("IO error: {}", err)
            source(err)
        }

        /// The image dimensions are not allowed by the WebP format.
        InvalidDimensions {
            display("Invalid dimensions")
        }
    }
}

struct BitWriter<W> {
    writer: W,
    buffer: u64,
    nbits: u8,
}

impl<W: Write> BitWriter<W> {
    fn write_bits(&mut self, bits: u64, nbits: u8) -> io::Result<()> {
        debug_assert!(nbits <= 64);

        self.buffer |= bits << self.nbits;
        self.nbits += nbits;

        if self.nbits >= 64 {
            self.writer.write_all(&self.buffer.to_le_bytes())?;
            self.nbits -= 64;
            self.buffer = bits.checked_shr((nbits - self.nbits) as u32).unwrap_or(0);
        }
        debug_assert!(self.nbits < 64);
        Ok(())
    }

    fn flush(&mut self) -> io::Result<()> {
        if self.nbits % 8 != 0 {
            self.write_bits(0, 8 - self.nbits % 8)?;
        }
        if self.nbits > 0 {
            self.writer
                .write_all(&self.buffer.to_le_bytes()[..self.nbits as usize / 8])
                .unwrap();
            self.buffer = 0;
            self.nbits = 0;
        }
        Ok(())
    }
}

fn write_single_entry_huffman_tree<W: Write>(w: &mut BitWriter<W>, symbol: u8) -> io::Result<()> {
    w.write_bits(1, 2)?;
    if symbol <= 1 {
        w.write_bits(0, 1)?;
        w.write_bits(symbol as u64, 1)?;
    } else {
        w.write_bits(1, 1)?;
        w.write_bits(symbol as u64, 8)?;
    }
    Ok(())
}

fn build_huffman_tree(
    frequencies: &[u32],
    lengths: &mut [u8],
    codes: &mut [u16],
    length_limit: u8,
) -> bool {
    assert_eq!(frequencies.len(), lengths.len());
    assert_eq!(frequencies.len(), codes.len());

    if frequencies.iter().filter(|&&f| f > 0).count() <= 1 {
        lengths.fill(0);
        codes.fill(0);
        return false;
    }

    #[derive(Eq, PartialEq, Copy, Clone, Debug)]
    struct Item(u32, u16);
    impl Ord for Item {
        fn cmp(&self, other: &Self) -> std::cmp::Ordering {
            other.0.cmp(&self.0)
        }
    }
    impl PartialOrd for Item {
        fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
            Some(self.cmp(other))
        }
    }

    // Build a huffman tree
    let mut internal_nodes = Vec::new();
    let mut nodes = BinaryHeap::from_iter(
        frequencies
            .iter()
            .enumerate()
            .filter(|(_, &frequency)| frequency > 0)
            .map(|(i, &frequency)| Item(frequency, i as u16)),
    );
    while nodes.len() > 1 {
        let Item(frequency1, index1) = nodes.pop().unwrap();
        let mut root = nodes.peek_mut().unwrap();
        internal_nodes.push((index1, root.1));
        *root = Item(
            frequency1 + root.0,
            internal_nodes.len() as u16 + frequencies.len() as u16 - 1,
        );
    }

    // Walk the tree to assign code lengths
    lengths.fill(0);
    let mut stack = Vec::new();
    stack.push((nodes.pop().unwrap().1, 0));
    while let Some((node, depth)) = stack.pop() {
        let node = node as usize;
        if node < frequencies.len() {
            lengths[node] = depth as u8;
        } else {
            let (left, right) = internal_nodes[node - frequencies.len()];
            stack.push((left, depth + 1));
            stack.push((right, depth + 1));
        }
    }

    // Limit the codes to length length_limit
    let mut max_length = 0;
    for &length in lengths.iter() {
        max_length = max_length.max(length);
    }
    if max_length > length_limit {
        let mut counts = [0u32; 16];
        for &length in lengths.iter() {
            counts[length.min(length_limit) as usize] += 1;
        }

        let mut total = 0;
        for (i, count) in counts
            .iter()
            .enumerate()
            .skip(1)
            .take(length_limit as usize)
        {
            total += count << (length_limit as usize - i);
        }

        while total > 1u32 << length_limit {
            let mut i = length_limit as usize - 1;
            while counts[i] == 0 {
                i -= 1;
            }
            counts[i] -= 1;
            counts[length_limit as usize] -= 1;
            counts[i + 1] += 2;
            total -= 1;
        }

        // assign new lengths
        let mut len = length_limit;
        let mut indexes = frequencies.iter().copied().enumerate().collect::<Vec<_>>();
        indexes.sort_unstable_by_key(|&(_, frequency)| frequency);
        for &(i, frequency) in indexes.iter() {
            if frequency > 0 {
                while counts[len as usize] == 0 {
                    len -= 1;
                }
                lengths[i] = len;
                counts[len as usize] -= 1;
            }
        }
    }

    // Assign codes
    codes.fill(0);
    let mut code = 0u32;
    for len in 1..=length_limit {
        for (i, &length) in lengths.iter().enumerate() {
            if length == len {
                codes[i] = (code as u16).reverse_bits() >> (16 - len);
                code += 1;
            }
        }
        code <<= 1;
    }
    assert_eq!(code, 2 << length_limit);

    true
}

fn write_huffman_tree<W: Write>(
    w: &mut BitWriter<W>,
    frequencies: &[u32],
    lengths: &mut [u8],
    codes: &mut [u16],
) -> io::Result<()> {
    if !build_huffman_tree(frequencies, lengths, codes, 15) {
        let symbol = frequencies
            .iter()
            .position(|&frequency| frequency > 0)
            .unwrap_or(0);
        return write_single_entry_huffman_tree(w, symbol as u8);
    }

    let mut code_length_lengths = [0u8; 16];
    let mut code_length_codes = [0u16; 16];
    let mut code_length_frequencies = [0u32; 16];
    for &length in lengths.iter() {
        code_length_frequencies[length as usize] += 1;
    }
    let single_code_length_length = !build_huffman_tree(
        &code_length_frequencies,
        &mut code_length_lengths,
        &mut code_length_codes,
        7,
    );

    const CODE_LENGTH_ORDER: [usize; 19] = [
        17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
    ];

    // Write the huffman tree
    w.write_bits(0, 1)?; // normal huffman tree
    w.write_bits(19 - 4, 4)?; // num_code_lengths - 4

    for &i in CODE_LENGTH_ORDER.iter() {
        if i > 15 || code_length_frequencies[i] == 0 {
            w.write_bits(0, 3)?;
        } else if single_code_length_length {
            w.write_bits(1, 3)?;
        } else {
            w.write_bits(code_length_lengths[i] as u64, 3)?;
        }
    }

    match lengths.len() {
        256 => {
            w.write_bits(1, 1)?; // max_symbol is stored
            w.write_bits(3, 3)?; // max_symbol_nbits / 2 - 2
            w.write_bits(254, 8)?; // max_symbol - 2
        }
        280 => w.write_bits(0, 1)?,
        _ => unreachable!(),
    }

    // Write the huffman codes
    if !single_code_length_length {
        for &len in lengths.iter() {
            w.write_bits(
                code_length_codes[len as usize] as u64,
                code_length_lengths[len as usize],
            )?;
        }
    }

    Ok(())
}

fn length_to_symbol(len: u16) -> (u16, u8) {
    let len = len - 1;
    let highest_bit = 15 - len.leading_zeros() as u16; // TODO: use ilog2 once MSRV >= 1.67
    let second_highest_bit = (len >> (highest_bit - 1)) & 1;
    let extra_bits = highest_bit - 1;
    let symbol = 2 * highest_bit + second_highest_bit;
    (symbol, extra_bits as u8)
}

#[inline(always)]
fn count_run(
    pixel: &[u8],
    it: &mut std::iter::Peekable<ChunksExact<u8>>,
    frequencies1: &mut [u32; 280],
) {
    let mut run_length = 0;
    while run_length < 4096 && it.peek() == Some(&pixel) {
        run_length += 1;
        it.next();
    }
    if run_length > 0 {
        if run_length <= 4 {
            let symbol = 256 + run_length - 1;
            frequencies1[symbol] += 1;
        } else {
            let (symbol, _extra_bits) = length_to_symbol(run_length as u16);
            frequencies1[256 + symbol as usize] += 1;
        }
    }
}

#[inline(always)]
fn write_run<W: Write>(
    w: &mut BitWriter<W>,
    pixel: &[u8],
    it: &mut std::iter::Peekable<ChunksExact<u8>>,
    codes1: &[u16; 280],
    lengths1: &[u8; 280],
) -> io::Result<()> {
    let mut run_length = 0;
    while run_length < 4096 && it.peek() == Some(&pixel) {
        run_length += 1;
        it.next();
    }
    if run_length > 0 {
        if run_length <= 4 {
            let symbol = 256 + run_length - 1;
            w.write_bits(codes1[symbol] as u64, lengths1[symbol])?;
        } else {
            let (symbol, extra_bits) = length_to_symbol(run_length as u16);
            w.write_bits(
                codes1[256 + symbol as usize] as u64,
                lengths1[256 + symbol as usize],
            )?;
            w.write_bits(
                (run_length as u64 - 1) & ((1 << extra_bits) - 1),
                extra_bits,
            )?;
        }
    }
    Ok(())
}

/// Allows fine-tuning some encoder parameters.
///
/// Pass to [`WebPEncoder::set_params()`].
#[non_exhaustive]
#[derive(Clone, Debug)]
pub struct EncoderParams {
    /// Use a predictor transform. Enabled by default.
    pub use_predictor_transform: bool,
}

impl Default for EncoderParams {
    fn default() -> Self {
        Self {
            use_predictor_transform: true,
        }
    }
}

/// Encode image data with the indicated color type.
///
/// # Panics
///
/// Panics if the image data is not of the indicated dimensions.
fn encode_frame<W: Write>(
    writer: W,
    data: &[u8],
    width: u32,
    height: u32,
    color: ColorType,
    params: EncoderParams,
) -> Result<(), EncodingError> {
    let w = &mut BitWriter {
        writer,
        buffer: 0,
        nbits: 0,
    };

    let (is_color, is_alpha, bytes_per_pixel) = match color {
        ColorType::L8 => (false, false, 1),
        ColorType::La8 => (false, true, 2),
        ColorType::Rgb8 => (true, false, 3),
        ColorType::Rgba8 => (true, true, 4),
    };

    assert_eq!(
        (width as u64 * height as u64).saturating_mul(bytes_per_pixel),
        data.len() as u64
    );

    if width == 0 || width > 16384 || height == 0 || height > 16384 {
        return Err(EncodingError::InvalidDimensions);
    }

    w.write_bits(0x2f, 8)?; // signature
    w.write_bits(width as u64 - 1, 14)?;
    w.write_bits(height as u64 - 1, 14)?;

    w.write_bits(is_alpha as u64, 1)?; // alpha used
    w.write_bits(0x0, 3)?; // version

    // subtract green transform
    w.write_bits(0b101, 3)?;

    // predictor transform
    if params.use_predictor_transform {
        w.write_bits(0b111001, 6)?;
        w.write_bits(0x0, 1)?; // no color cache
        write_single_entry_huffman_tree(w, 2)?;
        for _ in 0..4 {
            write_single_entry_huffman_tree(w, 0)?;
        }
    }

    // transforms done
    w.write_bits(0x0, 1)?;

    // color cache
    w.write_bits(0x0, 1)?;

    // meta-huffman codes
    w.write_bits(0x0, 1)?;

    // expand to RGBA
    let mut pixels = match color {
        ColorType::L8 => data.iter().flat_map(|&p| [p, p, p, 255]).collect(),
        ColorType::La8 => data
            .chunks_exact(2)
            .flat_map(|p| [p[0], p[0], p[0], p[1]])
            .collect(),
        ColorType::Rgb8 => data
            .chunks_exact(3)
            .flat_map(|p| [p[0], p[1], p[2], 255])
            .collect(),
        ColorType::Rgba8 => data.to_vec(),
    };

    // compute subtract green transform
    for pixel in pixels.chunks_exact_mut(4) {
        pixel[0] = pixel[0].wrapping_sub(pixel[1]);
        pixel[2] = pixel[2].wrapping_sub(pixel[1]);
    }

    // compute predictor transform
    if params.use_predictor_transform {
        let row_bytes = width as usize * 4;
        for y in (1..height as usize).rev() {
            let (prev, current) =
                pixels[(y - 1) * row_bytes..][..row_bytes * 2].split_at_mut(row_bytes);
            for (c, p) in current.iter_mut().zip(prev) {
                *c = c.wrapping_sub(*p);
            }
        }
        for i in (4..row_bytes).rev() {
            pixels[i] = pixels[i].wrapping_sub(pixels[i - 4]);
        }
        pixels[3] = pixels[3].wrapping_sub(255);
    }

    // compute frequencies
    let mut frequencies0 = [0u32; 256];
    let mut frequencies1 = [0u32; 280];
    let mut frequencies2 = [0u32; 256];
    let mut frequencies3 = [0u32; 256];
    let mut it = pixels.chunks_exact(4).peekable();
    match color {
        ColorType::L8 => {
            frequencies0[0] = 1;
            frequencies2[0] = 1;
            frequencies3[0] = 1;
            while let Some(pixel) = it.next() {
                frequencies1[pixel[1] as usize] += 1;
                count_run(pixel, &mut it, &mut frequencies1);
            }
        }
        ColorType::La8 => {
            frequencies0[0] = 1;
            frequencies2[0] = 1;
            while let Some(pixel) = it.next() {
                frequencies1[pixel[1] as usize] += 1;
                frequencies3[pixel[3] as usize] += 1;
                count_run(pixel, &mut it, &mut frequencies1);
            }
        }
        ColorType::Rgb8 => {
            frequencies3[0] = 1;
            while let Some(pixel) = it.next() {
                frequencies0[pixel[0] as usize] += 1;
                frequencies1[pixel[1] as usize] += 1;
                frequencies2[pixel[2] as usize] += 1;
                count_run(pixel, &mut it, &mut frequencies1);
            }
        }
        ColorType::Rgba8 => {
            while let Some(pixel) = it.next() {
                frequencies0[pixel[0] as usize] += 1;
                frequencies1[pixel[1] as usize] += 1;
                frequencies2[pixel[2] as usize] += 1;
                frequencies3[pixel[3] as usize] += 1;
                count_run(pixel, &mut it, &mut frequencies1);
            }
        }
    }

    // compute and write huffman codes
    let mut lengths0 = [0u8; 256];
    let mut lengths1 = [0u8; 280];
    let mut lengths2 = [0u8; 256];
    let mut lengths3 = [0u8; 256];
    let mut codes0 = [0u16; 256];
    let mut codes1 = [0u16; 280];
    let mut codes2 = [0u16; 256];
    let mut codes3 = [0u16; 256];
    write_huffman_tree(w, &frequencies1, &mut lengths1, &mut codes1)?;
    if is_color {
        write_huffman_tree(w, &frequencies0, &mut lengths0, &mut codes0)?;
        write_huffman_tree(w, &frequencies2, &mut lengths2, &mut codes2)?;
    } else {
        write_single_entry_huffman_tree(w, 0)?;
        write_single_entry_huffman_tree(w, 0)?;
    }
    if is_alpha {
        write_huffman_tree(w, &frequencies3, &mut lengths3, &mut codes3)?;
    } else if params.use_predictor_transform {
        write_single_entry_huffman_tree(w, 0)?;
    } else {
        write_single_entry_huffman_tree(w, 255)?;
    }
    write_single_entry_huffman_tree(w, 1)?;

    // Write image data
    let mut it = pixels.chunks_exact(4).peekable();
    match color {
        ColorType::L8 => {
            while let Some(pixel) = it.next() {
                w.write_bits(
                    codes1[pixel[1] as usize] as u64,
                    lengths1[pixel[1] as usize],
                )?;
                write_run(w, pixel, &mut it, &codes1, &lengths1)?;
            }
        }
        ColorType::La8 => {
            while let Some(pixel) = it.next() {
                let len1 = lengths1[pixel[1] as usize];
                let len3 = lengths3[pixel[3] as usize];

                let code =
                    codes1[pixel[1] as usize] as u64 | (codes3[pixel[3] as usize] as u64) << len1;

                w.write_bits(code, len1 + len3)?;
                write_run(w, pixel, &mut it, &codes1, &lengths1)?;
            }
        }
        ColorType::Rgb8 => {
            while let Some(pixel) = it.next() {
                let len1 = lengths1[pixel[1] as usize];
                let len0 = lengths0[pixel[0] as usize];
                let len2 = lengths2[pixel[2] as usize];

                let code = codes1[pixel[1] as usize] as u64
                    | (codes0[pixel[0] as usize] as u64) << len1
                    | (codes2[pixel[2] as usize] as u64) << (len1 + len0);

                w.write_bits(code, len1 + len0 + len2)?;
                write_run(w, pixel, &mut it, &codes1, &lengths1)?;
            }
        }
        ColorType::Rgba8 => {
            while let Some(pixel) = it.next() {
                let len1 = lengths1[pixel[1] as usize];
                let len0 = lengths0[pixel[0] as usize];
                let len2 = lengths2[pixel[2] as usize];
                let len3 = lengths3[pixel[3] as usize];

                let code = codes1[pixel[1] as usize] as u64
                    | (codes0[pixel[0] as usize] as u64) << len1
                    | (codes2[pixel[2] as usize] as u64) << (len1 + len0)
                    | (codes3[pixel[3] as usize] as u64) << (len1 + len0 + len2);

                w.write_bits(code, len1 + len0 + len2 + len3)?;
                write_run(w, pixel, &mut it, &codes1, &lengths1)?;
            }
        }
    }

    w.flush()?;
    Ok(())
}

fn chunk_size(inner_bytes: usize) -> u32 {
    if inner_bytes % 2 == 1 {
        (inner_bytes + 1) as u32 + 8
    } else {
        inner_bytes as u32 + 8
    }
}

fn write_chunk<W: Write>(mut w: W, name: &[u8], data: &[u8]) -> io::Result<()> {
    debug_assert!(name.len() == 4);

    w.write_all(name)?;
    w.write_all(&(data.len() as u32).to_le_bytes())?;
    w.write_all(data)?;
    if data.len() % 2 == 1 {
        w.write_all(&[0])?;
    }
    Ok(())
}

/// WebP Encoder.
pub struct WebPEncoder<W> {
    writer: W,
    icc_profile: Vec<u8>,
    exif_metadata: Vec<u8>,
    xmp_metadata: Vec<u8>,
    params: EncoderParams,
}

impl<W: Write> WebPEncoder<W> {
    /// Create a new encoder that writes its output to `w`.
    ///
    /// Only supports "VP8L" lossless encoding.
    pub fn new(w: W) -> Self {
        Self {
            writer: w,
            icc_profile: Vec::new(),
            exif_metadata: Vec::new(),
            xmp_metadata: Vec::new(),
            params: EncoderParams::default(),
        }
    }

    /// Set the ICC profile to use for the image.
    pub fn set_icc_profile(&mut self, icc_profile: Vec<u8>) {
        self.icc_profile = icc_profile;
    }

    /// Set the EXIF metadata to use for the image.
    pub fn set_exif_metadata(&mut self, exif_metadata: Vec<u8>) {
        self.exif_metadata = exif_metadata;
    }

    /// Set the XMP metadata to use for the image.
    pub fn set_xmp_metadata(&mut self, xmp_metadata: Vec<u8>) {
        self.xmp_metadata = xmp_metadata;
    }

    /// Set the `EncoderParams` to use.
    pub fn set_params(&mut self, params: EncoderParams) {
        self.params = params;
    }

    /// Encode image data with the indicated color type.
    ///
    /// # Panics
    ///
    /// Panics if the image data is not of the indicated dimensions.
    pub fn encode(
        mut self,
        data: &[u8],
        width: u32,
        height: u32,
        color: ColorType,
    ) -> Result<(), EncodingError> {
        let mut frame = Vec::new();
        encode_frame(&mut frame, data, width, height, color, self.params)?;

        // If the image has no metadata, it can be encoded with the "simple" WebP container format.
        if self.icc_profile.is_empty()
            && self.exif_metadata.is_empty()
            && self.xmp_metadata.is_empty()
        {
            self.writer.write_all(b"RIFF")?;
            self.writer
                .write_all(&(chunk_size(frame.len()) + 4).to_le_bytes())?;
            self.writer.write_all(b"WEBP")?;
            write_chunk(&mut self.writer, b"VP8L", &frame)?;
        } else {
            let mut total_bytes = 22 + chunk_size(frame.len());
            if !self.icc_profile.is_empty() {
                total_bytes += chunk_size(self.icc_profile.len());
            }
            if !self.exif_metadata.is_empty() {
                total_bytes += chunk_size(self.exif_metadata.len());
            }
            if !self.xmp_metadata.is_empty() {
                total_bytes += chunk_size(self.xmp_metadata.len());
            }

            let mut flags = 0;
            if !self.xmp_metadata.is_empty() {
                flags |= 1 << 2;
            }
            if !self.exif_metadata.is_empty() {
                flags |= 1 << 3;
            }
            if let ColorType::La8 | ColorType::Rgba8 = color {
                flags |= 1 << 4;
            }
            if !self.icc_profile.is_empty() {
                flags |= 1 << 5;
            }

            self.writer.write_all(b"RIFF")?;
            self.writer.write_all(&total_bytes.to_le_bytes())?;
            self.writer.write_all(b"WEBP")?;

            let mut vp8x = Vec::new();
            vp8x.write_all(&[flags])?; // flags
            vp8x.write_all(&[0; 3])?; // reserved
            vp8x.write_all(&(width - 1).to_le_bytes()[..3])?; // canvas width
            vp8x.write_all(&(height - 1).to_le_bytes()[..3])?; // canvas height
            write_chunk(&mut self.writer, b"VP8X", &vp8x)?;

            if !self.icc_profile.is_empty() {
                write_chunk(&mut self.writer, b"ICCP", &self.icc_profile)?;
            }

            write_chunk(&mut self.writer, b"VP8L", &frame)?;

            if !self.exif_metadata.is_empty() {
                write_chunk(&mut self.writer, b"EXIF", &self.exif_metadata)?;
            }

            if !self.xmp_metadata.is_empty() {
                write_chunk(&mut self.writer, b"XMP ", &self.xmp_metadata)?;
            }
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use rand::RngCore;

    use super::*;

    #[test]
    fn write_webp() {
        let mut img = vec![0; 256 * 256 * 4];
        rand::thread_rng().fill_bytes(&mut img);

        let mut output = Vec::new();
        WebPEncoder::new(&mut output)
            .encode(&img, 256, 256, crate::ColorType::Rgba8)
            .unwrap();

        let mut decoder = crate::WebPDecoder::new(std::io::Cursor::new(output)).unwrap();
        let mut img2 = vec![0; 256 * 256 * 4];
        decoder.read_image(&mut img2).unwrap();
        assert_eq!(img, img2);
    }

    #[test]
    fn write_webp_exif() {
        let mut img = vec![0; 256 * 256 * 3];
        rand::thread_rng().fill_bytes(&mut img);

        let mut exif = vec![0; 10];
        rand::thread_rng().fill_bytes(&mut exif);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_exif_metadata(exif.clone());
        encoder
            .encode(&img, 256, 256, crate::ColorType::Rgb8)
            .unwrap();

        let mut decoder = crate::WebPDecoder::new(std::io::Cursor::new(output)).unwrap();

        let mut img2 = vec![0; 256 * 256 * 3];
        decoder.read_image(&mut img2).unwrap();
        assert_eq!(img, img2);

        let exif2 = decoder.exif_metadata().unwrap();
        assert_eq!(Some(exif), exif2);
    }

    #[test]
    fn roundtrip_libwebp() {
        roundtrip_libwebp_params(EncoderParams::default());
        roundtrip_libwebp_params(EncoderParams {
            use_predictor_transform: false,
            ..Default::default()
        });
    }

    fn roundtrip_libwebp_params(params: EncoderParams) {
        println!("Testing {params:?}");

        let mut img = vec![0; 256 * 256 * 4];
        rand::thread_rng().fill_bytes(&mut img);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_params(params.clone());
        encoder
            .encode(&img[..256 * 256 * 3], 256, 256, crate::ColorType::Rgb8)
            .unwrap();
        let decoded = webp::Decoder::new(&output).decode().unwrap();
        assert!(&img[..256 * 256 * 3] == &*decoded);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_params(params.clone());
        encoder
            .encode(&img, 256, 256, crate::ColorType::Rgba8)
            .unwrap();
        let decoded = webp::Decoder::new(&output).decode().unwrap();
        assert!(&img == &*decoded);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_params(params.clone());
        encoder.set_icc_profile(vec![0; 10]);
        encoder
            .encode(&img, 256, 256, crate::ColorType::Rgba8)
            .unwrap();
        let decoded = webp::Decoder::new(&output).decode().unwrap();
        assert!(&img == &*decoded);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_params(params.clone());
        encoder.set_exif_metadata(vec![0; 10]);
        encoder
            .encode(&img, 256, 256, crate::ColorType::Rgba8)
            .unwrap();
        let decoded = webp::Decoder::new(&output).decode().unwrap();
        assert!(&img == &*decoded);

        let mut output = Vec::new();
        let mut encoder = WebPEncoder::new(&mut output);
        encoder.set_params(params.clone());
        encoder.set_xmp_metadata(vec![0; 7]);
        encoder.set_icc_profile(vec![0; 8]);
        encoder.set_icc_profile(vec![0; 9]);
        encoder
            .encode(&img, 256, 256, crate::ColorType::Rgba8)
            .unwrap();
        let decoded = webp::Decoder::new(&output).decode().unwrap();
        assert!(&img == &*decoded);
    }
}