immutable_chunkmap/
map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
use crate::avl::{Iter, IterMut, Tree, WeakTree};
pub use crate::chunk::DEFAULT_SIZE;
use core::{
    borrow::Borrow,
    cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd},
    default::Default,
    fmt::{self, Debug, Formatter},
    hash::{Hash, Hasher},
    iter::FromIterator,
    ops::{Index, IndexMut, RangeBounds, RangeFull},
};

#[cfg(feature = "serde")]
use serde::{
    de::{MapAccess, Visitor},
    ser::SerializeMap,
    Deserialize, Deserializer, Serialize, Serializer,
};

#[cfg(feature = "serde")]
use core::marker::PhantomData;

#[cfg(feature = "rayon")]
use rayon::{
    iter::{FromParallelIterator, IntoParallelIterator},
    prelude::*,
};

/// This Map uses a similar strategy to BTreeMap to ensure cache
/// efficient performance on modern hardware while still providing
/// log(N) get, insert, and remove operations.
///
/// For good performance, it is very important to understand
/// that clone is a fundamental operation, it needs to be fast
/// for your key and data types, because it's going to be
/// called a lot whenever you change the map.
///
/// # Why
///
/// 1. Multiple threads can read this structure even while one thread
/// is updating it. Using a library like arc_swap you can avoid ever
/// blocking readers.
///
/// 2. Snapshotting this structure is free.
///
/// # Examples
/// ```
/// # extern crate alloc;
/// use alloc::string::String;
/// use self::immutable_chunkmap::map::MapM;
///
/// let m =
///    MapM::new()
///    .insert(String::from("1"), 1).0
///    .insert(String::from("2"), 2).0
///    .insert(String::from("3"), 3).0;
///
/// assert_eq!(m.get("1"), Option::Some(&1));
/// assert_eq!(m.get("2"), Option::Some(&2));
/// assert_eq!(m.get("3"), Option::Some(&3));
/// assert_eq!(m.get("4"), Option::None);
///
/// for (k, v) in &m {
///   println!("key {}, val: {}", k, v)
/// }
/// ```
#[derive(Clone)]
pub struct Map<K: Ord + Clone, V: Clone, const SIZE: usize>(Tree<K, V, SIZE>);

/// Map using a smaller chunk size, faster to update, slower to search
pub type MapS<K, V> = Map<K, V, { DEFAULT_SIZE / 2 }>;

/// Map using the default chunk size, a good balance of update and search
pub type MapM<K, V> = Map<K, V, DEFAULT_SIZE>;

/// Map using a larger chunk size, faster to search, slower to update
pub type MapL<K, V> = Map<K, V, { DEFAULT_SIZE * 2 }>;

/// A weak reference to a map.
#[derive(Clone)]
pub struct WeakMapRef<K: Ord + Clone, V: Clone, const SIZE: usize>(WeakTree<K, V, SIZE>);

pub type WeakMapRefS<K, V> = WeakMapRef<K, V, { DEFAULT_SIZE / 2 }>;
pub type WeakMapRefM<K, V> = WeakMapRef<K, V, DEFAULT_SIZE>;
pub type WeakMapRefL<K, V> = WeakMapRef<K, V, { DEFAULT_SIZE * 2 }>;

impl<K, V, const SIZE: usize> WeakMapRef<K, V, SIZE>
where
    K: Ord + Clone,
    V: Clone,
{
    pub fn upgrade(&self) -> Option<Map<K, V, SIZE>> {
        self.0.upgrade().map(Map)
    }
}

impl<K, V, const SIZE: usize> Hash for Map<K, V, SIZE>
where
    K: Hash + Ord + Clone,
    V: Hash + Clone,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state)
    }
}

impl<K, V, const SIZE: usize> Default for Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: Clone,
{
    fn default() -> Map<K, V, SIZE> {
        Map::new()
    }
}

impl<K, V, const SIZE: usize> PartialEq for Map<K, V, SIZE>
where
    K: PartialEq + Ord + Clone,
    V: PartialEq + Clone,
{
    fn eq(&self, other: &Map<K, V, SIZE>) -> bool {
        self.0 == other.0
    }
}

impl<K, V, const SIZE: usize> Eq for Map<K, V, SIZE>
where
    K: Eq + Ord + Clone,
    V: Eq + Clone,
{
}

impl<K, V, const SIZE: usize> PartialOrd for Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: PartialOrd + Clone,
{
    fn partial_cmp(&self, other: &Map<K, V, SIZE>) -> Option<Ordering> {
        self.0.partial_cmp(&other.0)
    }
}

impl<K, V, const SIZE: usize> Ord for Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: Ord + Clone,
{
    fn cmp(&self, other: &Map<K, V, SIZE>) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl<K, V, const SIZE: usize> Debug for Map<K, V, SIZE>
where
    K: Debug + Ord + Clone,
    V: Debug + Clone,
{
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<'a, Q, K, V, const SIZE: usize> Index<&'a Q> for Map<K, V, SIZE>
where
    Q: Ord,
    K: Ord + Clone + Borrow<Q>,
    V: Clone,
{
    type Output = V;
    fn index(&self, k: &Q) -> &V {
        self.get(k).expect("element not found for key")
    }
}

impl<'a, Q, K, V, const SIZE: usize> IndexMut<&'a Q> for Map<K, V, SIZE>
where
    Q: Ord,
    K: Ord + Clone + Borrow<Q>,
    V: Clone,
{
    fn index_mut(&mut self, k: &'a Q) -> &mut Self::Output {
        self.get_mut_cow(k).expect("element not found for key")
    }
}

impl<K, V, const SIZE: usize> FromIterator<(K, V)> for Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: Clone,
{
    fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
        Map::new().insert_many(iter)
    }
}

impl<'a, K, V, const SIZE: usize> IntoIterator for &'a Map<K, V, SIZE>
where
    K: 'a + Ord + Clone,
    V: 'a + Clone,
{
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, RangeFull, K, K, V, SIZE>;
    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

#[cfg(feature = "serde")]
impl<K, V, const SIZE: usize> Serialize for Map<K, V, SIZE>
where
    K: Serialize + Clone + Ord,
    V: Serialize + Clone,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut map = serializer.serialize_map(Some(self.len()))?;
        for (k, v) in self {
            map.serialize_entry(k, v)?
        }
        map.end()
    }
}

#[cfg(feature = "serde")]
struct MapVisitor<K: Clone + Ord, V: Clone, const SIZE: usize> {
    marker: PhantomData<fn() -> Map<K, V, SIZE>>,
}

#[cfg(feature = "serde")]
impl<'a, K, V, const SIZE: usize> Visitor<'a> for MapVisitor<K, V, SIZE>
where
    K: Deserialize<'a> + Clone + Ord,
    V: Deserialize<'a> + Clone,
{
    type Value = Map<K, V, SIZE>;

    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str("expected an immutable_chunkmap::Map")
    }

    fn visit_map<A>(self, mut map: A) -> Result<Self::Value, A::Error>
    where
        A: MapAccess<'a>,
    {
        let mut t = Map::<K, V, SIZE>::new();
        while let Some((k, v)) = map.next_entry()? {
            t.insert_cow(k, v);
        }
        Ok(t)
    }
}

#[cfg(feature = "serde")]
impl<'a, K, V, const SIZE: usize> Deserialize<'a> for Map<K, V, SIZE>
where
    K: Deserialize<'a> + Clone + Ord,
    V: Deserialize<'a> + Clone,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'a>,
    {
        deserializer.deserialize_map(MapVisitor {
            marker: PhantomData,
        })
    }
}

#[cfg(feature = "rayon")]
impl<'a, K, V, const SIZE: usize> IntoParallelIterator for &'a Map<K, V, SIZE>
where
    K: 'a + Ord + Clone + Send + Sync,
    V: Clone + Send + Sync,
{
    type Item = (&'a K, &'a V);
    type Iter = rayon::vec::IntoIter<(&'a K, &'a V)>;

    fn into_par_iter(self) -> Self::Iter {
        self.into_iter().collect::<Vec<_>>().into_par_iter()
    }
}

#[cfg(feature = "rayon")]
impl<K, V, const SIZE: usize> FromParallelIterator<(K, V)> for Map<K, V, SIZE>
where
    K: Ord + Clone + Send + Sync,
    V: Clone + Send + Sync,
{
    fn from_par_iter<I>(i: I) -> Self
    where
        I: IntoParallelIterator<Item = (K, V)>,
    {
        i.into_par_iter()
            .fold_with(Map::new(), |mut m, (k, v)| {
                m.insert_cow(k, v);
                m
            })
            .reduce_with(|m0, m1| m0.union(&m1, |_k, _v0, v1| Some(v1.clone())))
            .unwrap_or_else(Map::new)
    }
}

impl<K, V, const SIZE: usize> Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: Clone,
{
    /// Create a new empty map
    pub fn new() -> Self {
        Map(Tree::new())
    }

    /// Create a weak reference to this map
    pub fn downgrade(&self) -> WeakMapRef<K, V, SIZE> {
        WeakMapRef(self.0.downgrade())
    }

    /// Return the number of strong references to this map (see Arc)
    pub fn strong_count(&self) -> usize {
        self.0.strong_count()
    }

    /// Return the number of weak references to this map (see Arc)
    pub fn weak_count(&self) -> usize {
        self.0.weak_count()
    }

    /// This will insert many elements at once, and is
    /// potentially a lot faster than inserting one by one,
    /// especially if the data is sorted. It is just a wrapper
    /// around the more general update_many method.
    ///
    /// #Examples
    ///```
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let mut v = vec![(1, 3), (10, 1), (-12, 2), (44, 0), (50, -1)];
    /// v.sort_unstable_by_key(|&(k, _)| k);
    ///
    /// let m = MapM::new().insert_many(v.iter().map(|(k, v)| (*k, *v)));
    ///
    /// for (k, v) in &v {
    ///   assert_eq!(m.get(k), Option::Some(v))
    /// }
    /// ```
    pub fn insert_many<E: IntoIterator<Item = (K, V)>>(&self, elts: E) -> Self {
        Map(self.0.insert_many(elts))
    }

    /// This will remove many elements at once, and is potentially a
    /// lot faster than removing elements one by one, especially if
    /// the data is sorted. It is just a wrapper around the more
    /// general update_many method.
    pub fn remove_many<Q, E>(&self, elts: E) -> Self
    where
        E: IntoIterator<Item = Q>,
        Q: Ord,
        K: Borrow<Q>,
    {
        self.update_many(elts.into_iter().map(|q| (q, ())), |_, _, _| None)
    }

    /// This method updates multiple bindings in one call. Given an
    /// iterator of an arbitrary type (Q, D), where Q is any borrowed
    /// form of K, an update function taking Q, D, the current binding
    /// in the map, if any, and producing the new binding, if any,
    /// this method will produce a new map with updated bindings of
    /// many elements at once. It will skip intermediate node
    /// allocations where possible. If the data in elts is sorted, it
    /// will be able to skip many more intermediate allocations, and
    /// can produce a speedup of about 10x compared to
    /// inserting/updating one by one. In any case it should always be
    /// faster than inserting elements one by one, even with random
    /// unsorted keys.
    ///
    /// #Examples
    /// ```
    /// use core::iter::FromIterator;
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let m = MapM::from_iter((0..4).map(|k| (k, k)));
    /// let m = m.update_many(
    ///     (0..4).map(|x| (x, ())),
    ///     |k, (), cur| cur.map(|(_, c)| (k, c + 1))
    /// );
    /// assert_eq!(
    ///     m.into_iter().map(|(k, v)| (*k, *v)).collect::<Vec<_>>(),
    ///     vec![(0, 1), (1, 2), (2, 3), (3, 4)]
    /// );
    /// ```
    pub fn update_many<Q, D, E, F>(&self, elts: E, mut f: F) -> Self
    where
        E: IntoIterator<Item = (Q, D)>,
        Q: Ord,
        K: Borrow<Q>,
        F: FnMut(Q, D, Option<(&K, &V)>) -> Option<(K, V)>,
    {
        Map(self.0.update_many(elts, &mut f))
    }

    /// return a new map with (k, v) inserted into it. If k
    /// already exists in the old map, the old binding will be
    /// returned, and the new map will contain the new
    /// binding. In fact this method is just a wrapper around
    /// update.
    pub fn insert(&self, k: K, v: V) -> (Self, Option<V>) {
        let (root, prev) = self.0.insert(k, v);
        (Map(root), prev)
    }

    /// insert in place using copy on write semantics if self is not a
    /// unique reference to the map. see `update_cow`.
    pub fn insert_cow(&mut self, k: K, v: V) -> Option<V> {
        self.0.insert_cow(k, v)
    }

    /// return a new map with the binding for q, which can be any
    /// borrowed form of k, updated to the result of f. If f returns
    /// None, the binding will be removed from the new map, otherwise
    /// it will be inserted. This function is more efficient than
    /// calling `get` and then `insert`, since it makes only one tree
    /// traversal instead of two. This method runs in log(N) time and
    /// space where N is the size of the map.
    ///
    /// # Examples
    /// ```
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let (m, _) = MapM::new().update(0, 0, |k, d, _| Some((k, d)));
    /// let (m, _) = m.update(1, 1, |k, d, _| Some((k, d)));
    /// let (m, _) = m.update(2, 2, |k, d, _| Some((k, d)));
    /// assert_eq!(m.get(&0), Some(&0));
    /// assert_eq!(m.get(&1), Some(&1));
    /// assert_eq!(m.get(&2), Some(&2));
    ///
    /// let (m, _) = m.update(0, (), |k, (), v| v.map(move |(_, v)| (k, v + 1)));
    /// assert_eq!(m.get(&0), Some(&1));
    /// assert_eq!(m.get(&1), Some(&1));
    /// assert_eq!(m.get(&2), Some(&2));
    ///
    /// let (m, _) = m.update(1, (), |_, (), _| None);
    /// assert_eq!(m.get(&0), Some(&1));
    /// assert_eq!(m.get(&1), None);
    /// assert_eq!(m.get(&2), Some(&2));
    /// ```
    pub fn update<Q, D, F>(&self, q: Q, d: D, mut f: F) -> (Self, Option<V>)
    where
        Q: Ord,
        K: Borrow<Q>,
        F: FnMut(Q, D, Option<(&K, &V)>) -> Option<(K, V)>,
    {
        let (root, prev) = self.0.update(q, d, &mut f);
        (Map(root), prev)
    }

    /// Perform a copy on write update to the map. In the case that
    /// self is a unique reference to the map, then the update will be
    /// performed completly in place. self will be mutated, and no
    /// previous version will be available. In the case that self has
    /// a clone, or clones, then only the parts of the map that need
    /// to be mutated will be copied before the update is
    /// performed. self will reference the mutated copy, and previous
    /// versions of the map will not be modified. self will still
    /// share all the parts of the map that did not need to be mutated
    /// with any pre existing clones.
    ///
    /// COW semantics are a flexible middle way between full
    /// peristance and full mutability. Needless to say in the case
    /// where you have a unique reference to the map, using update_cow
    /// is a lot faster than using update, and a lot more flexible
    /// than update_many.
    ///
    /// Other than copy on write the semanics of this method are
    /// identical to those of update.
    ///
    /// #Examples
    ///```
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let mut m = MapM::new().update(0, 0, |k, d, _| Some((k, d))).0;
    /// let orig = m.clone();
    /// m.update_cow(1, 1, |k, d, _| Some((k, d))); // copies the original chunk
    /// m.update_cow(2, 2, |k, d, _| Some((k, d))); // doesn't copy anything
    /// assert_eq!(m.len(), 3);
    /// assert_eq!(orig.len(), 1);
    /// assert_eq!(m.get(&0), Some(&0));
    /// assert_eq!(m.get(&1), Some(&1));
    /// assert_eq!(m.get(&2), Some(&2));
    /// assert_eq!(orig.get(&0), Some(&0));
    /// assert_eq!(orig.get(&1), None);
    /// assert_eq!(orig.get(&2), None);
    ///```
    pub fn update_cow<Q, D, F>(&mut self, q: Q, d: D, mut f: F) -> Option<V>
    where
        Q: Ord,
        K: Borrow<Q>,
        F: FnMut(Q, D, Option<(&K, &V)>) -> Option<(K, V)>,
    {
        self.0.update_cow(q, d, &mut f)
    }

    /// Merge two maps together. Bindings that exist in both maps will
    /// be passed to f, which may elect to remove the binding by
    /// returning None. This function runs in O(log(n) + m) time and
    /// space, where n is the size of the largest map, and m is the
    /// number of intersecting chunks. It will never be slower than
    /// calling update_many on the first map with an iterator over the
    /// second, and will be significantly faster if the intersection
    /// is minimal or empty.
    ///
    /// # Examples
    /// ```
    /// use core::iter::FromIterator;
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let m0 = MapM::from_iter((0..10).map(|k| (k, 1)));
    /// let m1 = MapM::from_iter((10..20).map(|k| (k, 1)));
    /// let m2 = m0.union(&m1, |_k, _v0, _v1| panic!("no intersection expected"));
    ///
    /// for i in 0..20 {
    ///     assert!(m2.get(&i).is_some())
    /// }
    ///
    /// let m3 = MapM::from_iter((5..9).map(|k| (k, 1)));
    /// let m4 = m3.union(&m2, |_k, v0, v1| Some(v0 + v1));
    ///
    /// for i in 0..20 {
    ///    assert!(
    ///        *m4.get(&i).unwrap() ==
    ///        *m3.get(&i).unwrap_or(&0) + *m2.get(&i).unwrap_or(&0)
    ///    )
    /// }
    /// ```
    pub fn union<F>(&self, other: &Map<K, V, SIZE>, mut f: F) -> Self
    where
        F: FnMut(&K, &V, &V) -> Option<V>,
    {
        Map(Tree::union(&self.0, &other.0, &mut f))
    }

    /// Produce a map containing the mapping over F of the
    /// intersection (by key) of two maps. The function f runs on each
    /// intersecting element, and has the option to omit elements from
    /// the intersection by returning None, or change the value any
    /// way it likes. Runs in O(log(N) + M) time and space where N is
    /// the size of the smallest map, and M is the number of
    /// intersecting chunks.
    ///
    /// # Examples
    ///```
    /// use core::iter::FromIterator;
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let m0 = MapM::from_iter((0..100000).map(|k| (k, 1)));
    /// let m1 = MapM::from_iter((50..30000).map(|k| (k, 1)));
    /// let m2 = m0.intersect(&m1, |_k, v0, v1| Some(v0 + v1));
    ///
    /// for i in 0..100000 {
    ///     if i >= 30000 || i < 50 {
    ///         assert!(m2.get(&i).is_none());
    ///     } else {
    ///         assert!(*m2.get(&i).unwrap() == 2);
    ///     }
    /// }
    /// ```
    pub fn intersect<F>(&self, other: &Map<K, V, SIZE>, mut f: F) -> Self
    where
        F: FnMut(&K, &V, &V) -> Option<V>,
    {
        Map(Tree::intersect(&self.0, &other.0, &mut f))
    }

    /// Produce a map containing the second map subtracted from the
    /// first. The function F is called for each intersecting element,
    /// and ultimately decides whether it appears in the result, for
    /// example, to compute a classical set diff, the function should
    /// always return None.
    ///
    /// # Examples
    ///```
    /// use core::iter::FromIterator;
    /// use self::immutable_chunkmap::map::MapM;
    ///
    /// let m0 = MapM::from_iter((0..10000).map(|k| (k, 1)));
    /// let m1 = MapM::from_iter((50..3000).map(|k| (k, 1)));
    /// let m2 = m0.diff(&m1, |_k, _v0, _v1| None);
    ///
    /// m2.invariant();
    /// dbg!(m2.len());
    /// assert!(m2.len() == 10000 - 2950);
    /// for i in 0..10000 {
    ///     if i >= 3000 || i < 50 {
    ///         assert!(*m2.get(&i).unwrap() == 1);
    ///     } else {
    ///         assert!(m2.get(&i).is_none());
    ///     }
    /// }
    /// ```
    pub fn diff<F>(&self, other: &Map<K, V, SIZE>, mut f: F) -> Self
    where
        F: FnMut(&K, &V, &V) -> Option<V>,
        K: Debug,
        V: Debug,
    {
        Map(Tree::diff(&self.0, &other.0, &mut f))
    }

    /// lookup the mapping for k. If it doesn't exist return
    /// None. Runs in log(N) time and constant space. where N
    /// is the size of the map.
    pub fn get<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<&'a V>
    where
        K: Borrow<Q>,
    {
        self.0.get(k)
    }

    /// lookup the mapping for k. Return the key. If it doesn't exist
    /// return None. Runs in log(N) time and constant space. where N
    /// is the size of the map.
    pub fn get_key<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<&'a K>
    where
        K: Borrow<Q>,
    {
        self.0.get_key(k)
    }

    /// lookup the mapping for k. Return both the key and the
    /// value. If it doesn't exist return None. Runs in log(N) time
    /// and constant space. where N is the size of the map.
    pub fn get_full<'a, Q: ?Sized + Ord>(&'a self, k: &Q) -> Option<(&'a K, &'a V)>
    where
        K: Borrow<Q>,
    {
        self.0.get_full(k)
    }

    /// Get a mutable reference to the value mapped to `k` using copy on write semantics.
    /// This works as `Arc::make_mut`, it will only clone the parts of the tree that are,
    /// - required to reach `k`
    /// - have a strong count > 1
    ///
    /// This operation is also triggered by mut indexing on the map, e.g. `&mut m[k]`
    /// calls `get_mut_cow` on `m`
    ///
    /// # Example
    /// ```
    /// use core::iter::FromIterator;
    /// use self::immutable_chunkmap::map::MapM as Map;
    ///  
    /// let mut m = Map::from_iter((0..100).map(|k| (k, Map::from_iter((0..100).map(|k| (k, 1))))));
    /// let orig = m.clone();
    ///
    /// if let Some(inner) = m.get_mut_cow(&0) {
    ///     if let Some(v) = inner.get_mut_cow(&0) {
    ///         *v += 1
    ///     }
    /// }
    ///
    /// assert_eq!(m.get(&0).and_then(|m| m.get(&0)), Some(&2));
    /// assert_eq!(orig.get(&0).and_then(|m| m.get(&0)), Some(&1));
    /// ```
    pub fn get_mut_cow<'a, Q: ?Sized + Ord>(&'a mut self, k: &Q) -> Option<&'a mut V>
    where
        K: Borrow<Q>,
    {
        self.0.get_mut_cow(k)
    }

    /// Same as `get_mut_cow` except if the value is not in the map it will
    /// first be inserted by calling `f`
    pub fn get_or_insert_cow<'a, F>(&'a mut self, k: K, f: F) -> &'a mut V
    where
        F: FnOnce() -> V,
    {
        self.0.get_or_insert_cow(k, f)
    }

    /// return a new map with the mapping under k removed. If
    /// the binding existed in the old map return it. Runs in
    /// log(N) time and log(N) space, where N is the size of
    /// the map.
    pub fn remove<Q: Sized + Ord>(&self, k: &Q) -> (Self, Option<V>)
    where
        K: Borrow<Q>,
    {
        let (t, prev) = self.0.remove(k);
        (Map(t), prev)
    }

    /// remove in place using copy on write semantics if self is not a
    /// unique reference to the map. see `update_cow`.
    pub fn remove_cow<Q: Sized + Ord>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
    {
        self.0.remove_cow(k)
    }

    /// get the number of elements in the map O(1) time and space
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// return an iterator over the subset of elements in the
    /// map that are within the specified range.
    ///
    /// The returned iterator runs in O(log(N) + M) time, and
    /// constant space. N is the number of elements in the
    /// tree, and M is the number of elements you examine.
    ///
    /// if lbound >= ubound the returned iterator will be empty
    pub fn range<'a, Q, R>(&'a self, r: R) -> Iter<'a, R, Q, K, V, SIZE>
    where
        Q: Ord + ?Sized + 'a,
        K: Borrow<Q>,
        R: RangeBounds<Q> + 'a,
    {
        self.0.range(r)
    }

    /// return a mutable iterator over the subset of elements in the
    /// map that are within the specified range. The iterator will
    /// copy on write the part of the tree that it visits,
    /// specifically it will be as if you ran get_mut_cow on every
    /// element you visit.
    ///
    /// The returned iterator runs in O(log(N) + M) time, and
    /// constant space. N is the number of elements in the
    /// tree, and M is the number of elements you examine.
    ///
    /// if lbound >= ubound the returned iterator will be empty
    pub fn range_mut_cow<'a, Q, R>(&'a mut self, r: R) -> IterMut<'a, R, Q, K, V, SIZE>
    where
        Q: Ord + ?Sized + 'a,
        K: Borrow<Q>,
        R: RangeBounds<Q> + 'a,
    {
        self.0.range_mut_cow(r)
    }

    /// return a mutable iterator over the entire map. The iterator
    /// will copy on write every element in the tree, specifically it
    /// will be as if you ran get_mut_cow on every element.
    ///
    /// The returned iterator runs in O(log(N) + M) time, and
    /// constant space. N is the number of elements in the
    /// tree, and M is the number of elements you examine.
    pub fn iter_mut_cow<'a>(&'a mut self) -> IterMut<'a, RangeFull, K, K, V, SIZE> {
        self.0.iter_mut_cow()
    }
}

impl<K, V, const SIZE: usize> Map<K, V, SIZE>
where
    K: Ord + Clone,
    V: Clone + Default,
{
    /// Same as `get_mut_cow` except if the value isn't in the map it will
    /// be added by calling `V::default`
    pub fn get_or_default_cow<'a>(&'a mut self, k: K) -> &'a mut V {
        self.get_or_insert_cow(k, V::default)
    }
}

impl<K, V, const SIZE: usize> Map<K, V, SIZE>
where
    K: Ord + Clone + Debug,
    V: Clone + Debug,
{
    #[allow(dead_code)]
    pub fn invariant(&self) -> () {
        self.0.invariant()
    }
}