1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
/*! [![](https://docs.rs/impl-trait-for-tuples/badge.svg)](https://docs.rs/impl-trait-for-tuples/) [![](https://img.shields.io/crates/v/impl-trait-for-tuples.svg)](https://crates.io/crates/impl-trait-for-tuples) [![](https://img.shields.io/crates/d/impl-trait-for-tuples.png)](https://crates.io/crates/impl-trait-for-tuples) Attribute macro to implement a trait for tuples * [Introduction](#introduction) * [Syntax](#syntax) * [Limitations](#limitations) * [Example](#example) * [License](#license) ## Introduction When wanting to implement a trait for combinations of tuples, Rust requires the trait to be implemented for each combination manually. With this crate you just need to place `#[impl_for_tuples(5)]` above your trait declaration (in full-automatic mode) to implement the trait for the tuple combinations `(), (T0), (T0, T1), (T0, T1, T2), (T0, T1, T2, T3), (T0, T1, T2, T3, T4, T5)`. The number of tuples is the parameter given to the attribute and can be chosen freely. This crate provides two modes full-automatic and semi-automatic. The full-automatic mode just requires the trait definition to implement the trait for the tuple combinations. While being much easier to use, it also comes with some restrictions like no associated types, no return values or no associated consts. To support these, the semi-automatic mode is provided. This mode requires a dummy implementation block of the trait that is expanded to all the tuple combinations implementations. To express the tuple access in this dummy implementation a special syntax is required `for_tuples!( #( Tuple::function(); )* )`. This would expand to `Tuple::function();` for each tuple while `Tuple` is chosen by the user and will be replaced by the corresponding tuple identifier per iteration. ## Syntax The attribute macro can be called with one `#[impl_for_tuples(5)]` or with two `#[impl_for_tuples(2, 5)]` parameters. The former instructs the macro to generate up to a tuple of five elements and the later instructs it to generate from a tuple with two element up to five elements. ### Semi-automatic syntax ``` # use impl_trait_for_tuples::impl_for_tuples; trait Trait { type Ret; type Arg; type FixedType; fn test(arg: Self::Arg) -> Self::Ret; fn test_with_self(&self) -> Result<(), ()>; } #[impl_for_tuples(5)] impl Trait for Tuple { // Here we expand the `Ret` and `Arg` associated types. for_tuples!( type Ret = ( #( Tuple::Ret ),* ); ); for_tuples!( type Arg = ( #( Tuple::Arg ),* ); ); // Here we set the `FixedType` to `u32` and add a custom where bound that forces the same // `FixedType` for all tuple types. type FixedType = u32; for_tuples!( where #( Tuple: Trait<FixedType=u32> )* ); fn test(arg: Self::Arg) -> Self::Ret { for_tuples!( ( #( Tuple::test(arg.Tuple) ),* ) ) } fn test_with_self(&self) -> Result<(), ()> { for_tuples!( #( Tuple.test_with_self()?; )* ); Ok(()) } } # fn main() {} ``` The given example shows all supported combinations of `for_tuples!`. When accessing a method from the `self` tuple instance, `self.Tuple` is the required syntax and is replaced by `self.0`, `self.1`, etc. The placeholder tuple identifer is taken from the self type given to the implementation block. So, it is up to the user to chose any valid identifier. The separator given to `#( Tuple::something() )SEPARATOR*` can be chosen from `,`, `+`, `-`, `*`, `/`, `|`, `&` or nothing for no separator. By adding the `#[tuple_types_no_default_trait_bound]` above the impl block, the macro will not add the automatic bound to the implemented trait for each tuple type. ## Limitations The macro does not supports `for_tuples!` calls in a different macro, so stuff like `vec![ for_tuples!( bla ) ]` will generate invalid code. ## Example ### Full-automatic ``` # use impl_trait_for_tuples::impl_for_tuples; #[impl_for_tuples(5)] trait Notify { fn notify(&self); } # fn main() {} ``` ### Semi-automatic ``` # use impl_trait_for_tuples::impl_for_tuples; trait Notify { fn notify(&self) -> Result<(), ()>; } #[impl_for_tuples(5)] impl Notify for TupleIdentifier { fn notify(&self) -> Result<(), ()> { for_tuples!( #( TupleIdentifier.notify()?; )* ); Ok(()) } } # fn main() {} ``` ## License Licensed under either of * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) * [MIT license](http://opensource.org/licenses/MIT) at your option. */ extern crate proc_macro; use proc_macro2::{Span, TokenStream}; use syn::{ parse::{Parse, ParseStream}, parse_macro_input, punctuated::Punctuated, token, Attribute, Error, Ident, ItemImpl, ItemTrait, LitInt, Result, }; mod full_automatic; mod semi_automatic; mod utils; /// Enum to parse the input and to distinguish between full/semi-automatic mode. enum FullOrSemiAutomatic { /// Full-automatic trait implementation for tuples uses the trait definition. Full(ItemTrait), /// Sem-automatic trait implementation for tuples uses a trait implementation. Semi(ItemImpl), } impl Parse for FullOrSemiAutomatic { fn parse(input: ParseStream) -> Result<Self> { // We need to parse any attributes first, before we know what we actually can parse. let fork = input.fork(); fork.call(Attribute::parse_outer)?; let lookahead1 = fork.lookahead1(); if lookahead1.peek(token::Impl) { Ok(Self::Semi(input.parse()?)) } else if lookahead1.peek(token::Trait) || lookahead1.peek(token::Pub) { Ok(Self::Full(input.parse()?)) } else { Err(lookahead1.error()) } } } /// The minimum and maximum given as two `LitInt`'s to the macro as arguments. struct MinMax { min: Option<usize>, max: usize, } impl Parse for MinMax { fn parse(input: ParseStream) -> Result<Self> { let args = Punctuated::<LitInt, token::Comma>::parse_terminated(input)?; if args.is_empty() { Err(Error::new( Span::call_site(), "Expected at least one argument to the macro!", )) } else if args.len() == 1 { Ok(Self { max: args[0].base10_parse()?, min: None, }) } else if args.len() == 2 { let min = args[0].base10_parse()?; let max = args[1].base10_parse()?; if min >= max { Err(Error::new( Span::call_site(), "It is expected that `min` comes before `max` and that `max > min` is true!", )) } else { Ok(Self { min: Some(min), max, }) } } else { Err(Error::new( Span::call_site(), "Too many arguments given to the macro!", )) } } } /// See [crate](index.html) documentation. #[proc_macro_attribute] pub fn impl_for_tuples( args: proc_macro::TokenStream, input: proc_macro::TokenStream, ) -> proc_macro::TokenStream { let input = parse_macro_input!(input as FullOrSemiAutomatic); let min_max = parse_macro_input!(args as MinMax); impl_for_tuples_impl(input, min_max) .unwrap_or_else(|e| e.to_compile_error()) .into() } fn impl_for_tuples_impl(input: FullOrSemiAutomatic, min_max: MinMax) -> Result<TokenStream> { let tuple_elements = (0usize..min_max.max) .map(|i| generate_tuple_element_ident(i)) .collect::<Vec<_>>(); match input { FullOrSemiAutomatic::Full(definition) => { full_automatic::full_automatic_impl(definition, tuple_elements, min_max.min) } FullOrSemiAutomatic::Semi(trait_impl) => { semi_automatic::semi_automatic_impl(trait_impl, tuple_elements, min_max.min) } } } fn generate_tuple_element_ident(num: usize) -> Ident { Ident::new(&format!("TupleElement{}", num), Span::call_site()) }