1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
// See the COPYRIGHT file at the top-level directory of this distribution.
// Licensed under MIT license <LICENSE-MIT or http://opensource.org/licenses/MIT>

//! This library provides a `Vec`-like, no reallocation collection named `indexed::Pool`.
//! The pool's reference can be obtained from one of its elements.
//! It can be used as a memory pool, and library users do not need to store/pass the pool's reference everywhere.
//! The elements can be linked to each other using indexes rather than pointers.
//!
//! # Examples
//!
//! ```
//! use indexed::{Indexed,Pool};
//! use std::fmt::{self,Display,Formatter};
//!
//! // A singly linked list of string.
//! struct List( Box<Pool<Node>> );
//!
//! struct Node {
//!     next  : u32,
//!     index : u32,
//!     text  : &'static str,
//! }
//!
//! unsafe impl Indexed for Node {
//!     fn null() -> usize { !0_u32 as usize }
//!     unsafe fn get_index( &self ) -> usize { self.index as usize }
//!     unsafe fn set_index( &mut self, index: usize ) { self.index = index as u32; }
//! }
//!
//! impl List {
//!     fn new() -> Self { List( Pool::<Node>::new() )}
//!
//!     fn head<'a>( &'a mut self, text: &'static str ) -> &'a mut Node {
//!         assert_eq!( self.0.new_index(), 0 );
//!         self.0.push( Node{
//!             next  : Node::null() as u32,
//!             index : 0, // the pool will set the actual index inside its `push()` method.
//!             text  ,
//!         });
//!         &mut self.0[0]
//!     }
//! }
//!
//! impl Node {
//!     // The method does not need a parameter of `Pool`.
//!     fn add<'a>( &'a mut self, sib: &'static str ) -> &'a mut Self {
//!         let pool = unsafe { self.pool_mut() as *mut Pool<Node> };
//!         let index = unsafe{ (*pool).new_index() };
//!         self.next = index as u32;
//!         let pool = unsafe{ &mut *pool };
//!         pool.push( Node{
//!             next  : Node::null() as u32,
//!             index : Node::null() as u32, // the pool will set the actual index inside its `push()` method.
//!             text  : sib,
//!         });
//!         &mut pool[index]
//!     }
//! }
//!
//! impl Display for List {
//!     fn fmt( &self, fmt: &mut Formatter ) -> fmt::Result {
//!         if self.0.new_index() != 0 {
//!             let mut curr = 0_usize;
//!             while curr != Node::null() {
//!                 write!( fmt, "{} ", self.0[curr].text )?;
//!                 curr = self.0[curr].next as usize;
//!             }
//!         }
//!         Ok(())
//!     }
//! }
//!
//! let mut list = List::new();
//! list.head( "no" ).add( "need" ).add( "for" ).add( "pool" ).add( "parameter" );
//! assert_eq!( list.to_string(), "no need for pool parameter " );
//! ```

#![cfg_attr( feature = "no_std", no_std )]
#![cfg_attr( feature = "no_std", feature( alloc ))]

#[cfg(not(feature="no_std"))] pub(crate) use std::boxed::Box;
#[cfg(not(feature="no_std"))] pub(crate) use std::fmt::{self,Debug};
#[cfg(not(feature="no_std"))] pub(crate) use std::marker::PhantomData;
#[cfg(not(feature="no_std"))] pub(crate) use std::mem::{self,transmute};
#[cfg(not(feature="no_std"))] pub(crate) use std::ops;
#[cfg(not(feature="no_std"))] pub(crate) use std::ptr::{self,NonNull,drop_in_place};

#[cfg(feature="no_std")] extern crate alloc;
#[cfg(feature="no_std")] pub(crate) use self::alloc::boxed::Box;
#[cfg(feature="no_std")] pub(crate) use self::alloc::vec::Vec;
#[cfg(feature="no_std")] pub(crate) use core::fmt::{self,Debug};
#[cfg(feature="no_std")] pub(crate) use core::marker::PhantomData;
#[cfg(feature="no_std")] pub(crate) use core::mem::{self,transmute};
#[cfg(feature="no_std")] pub(crate) use core::ops;
#[cfg(feature="no_std")] pub(crate) use core::ptr::{self,NonNull,drop_in_place};

/// Possible chunk sizes.
pub enum ChunkLen {
    B5 = 32, B6 = 64, B7 = 128, B8 = 256, B9 = 512, B10 = 1024, B11 = 2048, B12 = 4096, B13 = 8192, B14 = 16384, B15 = 32768, B16 = 65536,
}

/// Reflects the count of elements a chunk can hold.
pub fn chunk_len<T:Indexed>() -> usize { <T as Indexed>::chunk_len() as isize as usize }

/// Type of elements in the `Pool` must implement this trait.
/// Typically some integer field in the type must devote to storing the index in the pool, and it is not necessarily usize.
/// For example, an index can be stored in u32 if 4194304K is enough for anybody.
pub unsafe trait Indexed: Sized {
    /// Sets the underlying chunk size. The default is 256, and can be overrided by those values defined in `ChunkLen`.
    fn chunk_len() -> ChunkLen { ChunkLen::B8 }

    /// Defines which index value is for null. If the underlying storage for index is smaller than `usize`'s size, the library user should override this method and pick a smaller value, e.g `!0_u32` for index stored in `u32`.
    /// Note that it is for convenience only, and the library will not do any index check against `null()`.
    fn null() -> usize { !0_usize }

    /// Gets the element's index in the pool.
    unsafe fn get_index( &self ) -> usize;

    /// Sets the element's index in the pool. The library user is not expected to call it directly.
    unsafe fn set_index( &mut self, index: usize );

    /// Obtains reference of its pool.
    fn pool( &self ) -> &Pool<Self> { Pool::pool( self )}

    /// Obtains mutable reference of its pool.
    unsafe fn pool_mut( &self ) -> &mut Pool<Self> { Pool::pool_mut( self )}

    /// Obtains non null pointer of its pool.
    fn pool_non_null( &self ) -> NonNull<Pool<Self>> { unsafe{ NonNull::new_unchecked( Pool::pool_mut( self ))}}

    /// Appends an element to the back of its pool.
    fn pool_push( &self, value: Self ) { unsafe{ self.pool_mut().push( value )}}

    /// Overwrites a new value into its pool at given index without reading or dropping the old value.
    unsafe fn pool_write( &self, index: usize, value: Self ) { self.pool_mut().write( index, value ); }

    /// Reserves capacity for at least additional more elements to be inserted in the given Pool<T>.
    /// The collection may reserve more space because the increasing size must be multiple of underlying `chunk_len()`.
    /// After calling reserve, capacity will be greater than or equal to self.pool().new_index() + additional.
    /// Does nothing if capacity is already sufficient.
    fn pool_reserve( &self, additional: usize ) { unsafe{ self.pool_mut().reserve( additional ); }}
}

#[derive(PartialEq,Eq)]
struct Chunk<T>( Vec<u8>, PhantomData<T> );

type PPool<T> = NonNull<Pool<T>>;

impl<T:Indexed> Chunk<T> {
    #[inline] fn data_size() -> usize { mem::size_of::<[T;1]>() * chunk_len::<T>() }

    #[inline] fn buffer_size() -> usize { Self::data_size() + mem::size_of::<PPool<T>>() }

    #[inline] fn as_ptr( &self ) -> *const T { self.0.as_ptr() as *const T }
    #[inline] fn as_mut_ptr( &mut self ) -> *mut T { self.0.as_mut_ptr() as *mut T }

    #[inline] fn data_ptr( &self, index: usize ) -> *const T { unsafe{( self.as_ptr() ).add( index )}}
    #[inline] fn data_mut_ptr( &mut self, index: usize ) -> *mut T { unsafe{( self.as_mut_ptr() ).add( index )}}

    #[inline] fn ppool( &self ) -> *const PPool<T> { self.data_ptr( chunk_len::<T>() ) as *const PPool<T> }

    #[inline] fn new( ppool: PPool<T> ) -> Self {
        let mut buffer = Vec::<u8>::with_capacity( Self::buffer_size() );
        unsafe {
            ptr::write( buffer.as_mut_ptr().add( Self::data_size() ) as *mut NonNull<_>, ppool );
        }
        Chunk( buffer, PhantomData )
    }

    #[inline] fn write( &mut self, index: usize, value: T ) {
        assert!( index <= chunk_len::<T>() );
        unsafe{ ptr::write( self.data_mut_ptr( index ), value )};
    }
}

impl<T:Indexed+Debug> Debug for Chunk<T> {
    fn fmt( &self, fmt: &mut fmt::Formatter ) -> fmt::Result {
        let mut p = self.as_ptr();
        let mut count = chunk_len::<T>();
        let mut buffer = Vec::with_capacity( count );
        while count > 0 {
            buffer.push( unsafe{ ptr::read( p )});
            unsafe{ p = p.offset(1) };
            count -= 1;
        }
        fmt.write_str( "\n" )?;
        fmt.debug_struct( "Chunk" )
            .field( "ppool", unsafe{ &ptr::read( self.ppool() )})
            .field( "buffer", &buffer )
            .finish()?; 
        unsafe{ buffer.set_len(0); }
        Ok(())
    }
}

impl<T:Indexed> ops::Index<usize> for Chunk<T> {
    type Output = T;
    fn index( &self, index: usize ) -> &T { unsafe{ &*self.data_ptr( index )}}
}

impl<T:Indexed> ops::IndexMut<usize> for Chunk<T> {
    fn index_mut( &mut self, index: usize ) -> &mut T { unsafe{ &mut *self.data_mut_ptr( index )}}
}

/// A `Vec`-like, no reallocation collection.
/// Elements in a `Pool` should not be zero sized type, or the construction will panic.
#[derive(Debug,PartialEq,Eq)]
pub struct Pool<T:Indexed> {
    chunks  : Vec<Chunk<T>>, // underlying storage.
    managed : bool,          // whether drops elements on destruction or not.
    ppool   : PPool<T>,      // NonNull pointer to self.
    subidx  : usize,         // index of last element in its chunk, or `chunk_len::<T>()-1` if no element in the pool at all.
    len     : usize,         // element count of the pool.
    cap     : usize,         // capacity of the pool, always multiple of `chunk_len::<T>()`.
}

impl<T:Indexed> Pool<T> {
    /// Creates a new pool that drops its elements on destruction.
    ///
    /// # Panics
    ///
    /// Panics if the type of element is ZST.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// static mut COUNT: usize = 0;
    ///
    /// struct Name { index: usize, text: String }
    ///
    /// impl_indexed!{ Name{ index: usize }}
    ///
    /// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
    ///
    /// impl From<&'static str> for Name {
    ///     fn from( s: &'static str ) -> Self {
    ///         Name{ index: <Self as Indexed>::null(), text: s.to_string() }
    ///     }
    /// }
    ///
    /// { let pool = pool!( Name[ "foo", "bar", "baz" ]); }
    ///
    /// assert_eq!( unsafe{ COUNT }, 3 );
    /// ```
    pub fn new() -> Box<Self> { Self::new_pool( true )}

    /// Creates a new pool that does not drop its elements on destruction.
    /// It is up to the user to drop the elements manually to avoid memory leaks.
    ///
    /// # Panics
    ///
    /// Panics if the type of element is ZST.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// static mut COUNT: usize = 0;
    ///
    /// struct Name { index: usize, text: String }
    ///
    /// impl_indexed!{ Name{ index: usize }}
    ///
    /// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
    ///
    /// impl From<&'static str> for Name {
    ///     fn from( s: &'static str ) -> Self {
    ///         Name{ index: <Self as Indexed>::null(), text: s.to_string() }
    ///     }
    /// }
    ///
    /// {
    ///     let mut pool = Pool::<Name>::new_unmanaged();
    ///     pool.push( "foo".into() );
    ///     pool.push( "bar".into() );
    ///     pool.push( "baz".into() );
    /// }
    /// assert_eq!( unsafe{ COUNT }, 0 );
    /// ```
    pub fn new_unmanaged() -> Box<Self> { Self::new_pool( false )}

    fn new_pool( managed: bool ) -> Box<Self> {
        if mem::size_of::<T>() == 0 {
            panic!( "ZSTs are not allowed to be the `Pool`'s element type." );
        } else {
            let pool = Box::new( Self {
                chunks  : Vec::new(),
                managed , 
                ppool   : NonNull::dangling(),
                subidx  : chunk_len::<T>()-1,
                len     : 0,
                cap     : 0,
            });
            unsafe {
                let pool = Box::into_raw( pool );
                let ppool = NonNull::new_unchecked( pool );
                let mut pool = Box::from_raw( pool );
                pool.ppool = ppool;
                pool
            }
        }
    }

    /// Appends an element to the back of a pool.
    ///
    /// # Panics
    ///
    /// Panics if the number of elements in the vector overflows a `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: i32 }}
    ///
    /// let mut pool = Pool::new();
    ///
    /// pool.push( Foo::from( 0 ));
    /// pool.push( Foo::from( 1 ));
    /// pool.push( Foo::from( 2 ));
    ///
    /// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 0, 1, 2 ]);
    /// ```
    pub fn push( &mut self, mut value: T ) {
        self.subidx += 1;
        let chunk_len = chunk_len::<T>();
        if self.subidx == chunk_len {
            if self.len == Self::check( self.chunks.len(), usize::checked_mul, chunk_len ) {
                self.chunks.push( Chunk::new( self.ppool ));
                self.cap += chunk_len;
            }
            self.subidx = 0;
        }
        let len = self.len;
        unsafe{ value.set_index( len )};
        self.chunks.last_mut().unwrap().write( self.subidx, value );
        self.len += 1;
    }

    /// Overwrites a new value into a pool at given index without reading or dropping the old value.
    ///
    /// # Safety
    ///
    /// This operation is marked unsafe because it accepts an index as an offset which acts like a raw pointer.
    ///
    /// It does not drop the contents of the existing `self[index]` element. This is safe, but it could leak allocations or resources,
    /// so care must be taken not to overwrite an object that should be dropped.
    ///
    /// Additionally, it does not drop `value`. Semantically, `value` is moved into `self[index]`.
    ///
    /// This is appropriate for initializing uninitialized memory.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    ///
    /// pool.reserve( 3 );
    ///
    /// unsafe {
    ///     pool.write( 0, "a".into() );
    ///     pool.write( 2, "c".into() );
    ///     pool.write( 1, "b".into() );
    ///     pool.set_len( 3 );
    /// }
    ///
    /// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ "a", "b", "c" ]);
    /// ```
    #[inline]
    pub unsafe fn write( &mut self, index: usize, mut value: T ) {
        value.set_index( index );
        self.chunks[ index / chunk_len::<T>() ].write( index % chunk_len::<T>(), value );
    }

    /// Reserves capacity for at least additional more elements to be inserted in the given Pool<T>.
    /// The collection may reserve more space because the increasing size must be multiple of underlying `chunk_len()`.
    /// After calling reserve, capacity will be greater than or equal to self.new_index() + additional.
    /// Does nothing if capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    ///
    /// pool.reserve( 0 );
    /// assert_eq!( pool.capacity(), 0 );
    ///
    /// pool.reserve( 1 );
    /// let cap = pool.capacity();
    /// assert!( cap >= 1 );
    ///
    /// pool.reserve( 1 );
    /// assert_eq!( pool.capacity(), cap );
    ///
    /// pool.reserve( 1024 );
    /// assert!( pool.capacity() >= 1024 );
    /// ```
    pub fn reserve( &mut self, additional: usize ) {
        if let Some( inc_cap ) = self.check_len( usize::checked_add, additional ) // self.len + additional
                                     .checked_sub( self.cap )                     // - self.cap
        {
            let mut chunk_count = inc_cap / chunk_len::<T>();
            if inc_cap > 0 && chunk_count == 0 {
                chunk_count = 1;
            }
            for _ in 0..chunk_count {
                self.chunks.push( Chunk::new( self.ppool ));
            }
            self.cap += inc_cap;
        }
    }

    /// Returns the number of elements in the pool, also referred to as its 'length'.
    #[inline]
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = pool!( Foo[ "a", "b", "c" ]);
    /// assert_eq!( pool.len(), 3 );
    /// ```
    #[inline]
    pub fn len( &self ) -> usize { self.len }
 
    /// Sets the length of a pool.
    ///
    /// This will explicitly set the size of the pool, without actually modifying its buffers,
    /// so it is up to the caller to ensure that the pool is actually the specified size.
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: char }}
    ///
    /// let mut pool = pool!( Foo[ 'r', 'u', 's', 't' ]);
    ///
    /// unsafe {
    ///     std::ptr::drop_in_place( &mut pool[3] );
    ///     pool.set_len( 3 );
    /// }
    ///
    /// assert_eq!( pool.len(), 3 );
    /// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec!['r', 'u', 's'] );
    /// ```
    ///
    /// In this example, there is a memory leak since the memory locations
    /// owned by the first `Name` were not freed prior to the `set_len` call:
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// static mut COUNT: usize = 0;
    ///
    /// struct Name { index: usize, text: String }
    ///
    /// impl_indexed!{ Name{ index: usize }}
    ///
    /// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
    ///
    /// impl From<&'static str> for Name {
    ///     fn from( s: &'static str ) -> Self {
    ///         Name{ index: <Self as Indexed>::null(), text: s.to_string() }
    ///     }
    /// }
    ///
    /// let mut pool = pool!( Name[ "abc", "def", "g" ]);
    ///
    /// unsafe {
    ///     std::ptr::drop_in_place( &mut pool[2] );
    ///     std::ptr::drop_in_place( &mut pool[1] );
    ///     pool.set_len( 0 );
    /// }
    ///
    /// assert_eq!( unsafe{ COUNT }, 2 );
    /// ```
    /// In this example, the pool gets expanded from zero to four items without any memory allocations occurring,
    /// resulting in pool values of unallocated memory:
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    /// unsafe { pool.set_len( 3 ); }
    /// ```
    #[inline]
    pub unsafe fn set_len( &mut self, len: usize ) {
        self.len = len;
        let sublen = len % chunk_len::<T>();
        self.subidx = if sublen == 0 { chunk_len::<T>()-1 } else { sublen-1 };
    }

    /// Returns the number of elements the vector can hold without more allocating.
    ///
    /// Note: **the purpose of this method is not to avoid reallocation**, which could not happen at all, but to grow the buffer for next incomming `write()`s.
    #[inline]
    pub fn capacity( &self ) -> usize { self.cap }

    /// Returns the pool's `NonNull` pointer.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: i32 }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    /// let p = pool.non_null();
    ///
    /// assert_eq!( p, std::ptr::NonNull::new( Box::into_raw( pool )).unwrap() );
    /// ```
    pub fn non_null( &self ) -> NonNull<Self> { self.ppool }

    /// Obtains reference of the pool of an element.
    /// 
    /// # Examples
    /// 
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: usize }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    ///
    /// for i in 0..1024 {
    ///     pool.push( i.into() );
    /// }
    ///
    /// for i in 0..1024 {
    ///     assert!( pool.non_null().as_ptr() as *const Pool<Foo> == pool[i].pool() );
    /// }
    /// ```
    pub fn pool( value: &T ) -> &Self {
        unsafe {
            let remainder = value.get_index() % chunk_len::<T>();
            let value = value as *const T;
            let off = ( chunk_len::<T>() - remainder ) as isize;
            let ppool = ptr::read( value.offset( off ) as *const PPool<T> );
            &*ppool.as_ptr()
        }
    }

    /// Obtains mutable reference of the pool from an element.
    /// 
    /// # Safety
    /// 
    /// This operation is marked unsafe because it obtains a mutable reference of the `Pool` from one of its immutable element,
    /// which may violate the memory safety rule "only one mutable reference, or none but multiple immutable references".
    /// 
    /// # Examples
    /// 
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: usize }}
    ///
    /// let mut pool = Pool::<Foo>::new();
    ///
    /// for i in 0..1024 {
    ///     pool.push( i.into() );
    /// }
    ///
    /// for i in 0..1024 {
    ///     assert_eq!( pool.non_null().as_ptr(),
    ///                 unsafe{ pool[i].pool_mut() as *mut Pool<Foo>});
    /// }
    /// ```
    pub unsafe fn pool_mut( value: &T ) -> &mut Self {
        let remainder = value.get_index() % chunk_len::<T>();
        let value = value as *const T;
        let off = ( chunk_len::<T>() - remainder ) as isize;
        let ppool = ptr::read( value.offset( off ) as *const PPool<T> );
        &mut *ppool.as_ptr()
    }

    /// Obtains `NonNull` pointer of the pool from an element.
    pub fn pool_non_null( value: &T ) -> NonNull<Self> { unsafe{ NonNull::new_unchecked( Self::pool_mut( value ))}}

    /// Returns the expected index for the next new element to be `push()`ed in.
    pub fn new_index( &self ) -> usize { self.len }

    /// Returns `true` if the pool contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = Pool::new();
    /// assert!( pool.is_empty() );
    ///
    /// pool.push( Foo::from( "foo" ));
    /// assert!( !pool.is_empty() );
    /// ```
    pub fn is_empty( &self ) -> bool { self.len == 0 }

    /// Returns an iterator over the pool.
    ///
    /// # Examples
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: &'static str }}
    ///
    /// let mut pool = pool!( Foo[ "abc", "def", "g" ]);
    /// let mut iter = pool.iter();
    ///
    /// assert_eq!( iter.next().unwrap().inner, "abc" );
    /// assert_eq!( iter.next().unwrap().inner, "def" );
    /// assert_eq!( iter.next().unwrap().inner, "g"   );
    /// assert!( iter.next().is_none() );
    /// ```
    #[inline]
    pub fn iter( &self ) -> Iter<T> {
        let last = if self.chunks.is_empty() {(0,0)} else {( self.chunks.len()-1, self.subidx )};
        Iter{ pool: self, chunk_idx: 0, elem_idx: 0, last }
    }

    /// Returns an iterator that allows modifying each value.
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate indexed;
    /// use indexed::{Indexed,Pool};
    ///
    /// extrusive_indexed!{ Foo{ inner: i32 }}
    ///
    /// let mut pool = pool!( Foo[ 0, 1, 2 ]);
    ///
    /// pool.iter_mut().for_each( |elem| { elem.inner += 10; });
    ///
    /// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 10, 11, 12 ]);
    /// ```
    pub fn iter_mut( &mut self ) -> IterMut<T> {
        let last = if self.chunks.is_empty() {(0,0)} else {( self.chunks.len()-1, self.subidx )};
        IterMut{ pool: self, chunk_idx: 0, elem_idx: 0, last }
    }

    /// Returns a shared reference to the output at indexed location, without performing any bounds checking.
    pub unsafe fn get_unchecked( &self, index: usize ) -> &T {
        &self.chunks.get_unchecked( index / chunk_len::<T>() )[ index % chunk_len::<T>() ]
    }

    /// Returns a mutable reference to the output at indexed location, without performing any bounds checking.
    pub unsafe fn get_unchecked_mut( &mut self, index: usize ) -> &mut T {
        &mut self.chunks.get_unchecked_mut( index / chunk_len::<T>() )[ index % chunk_len::<T>() ]
    }

    fn check( len: usize, grow: fn(usize,usize) -> Option<usize>, additional: usize ) -> usize {
        let len = grow( len, additional ).expect( "the requested capacity should be less or equal to `usize::MAX`" );
        if mem::size_of::<usize>() < 8 && len > !0_isize as usize {
            panic!( "the requested capacity on 32/16 bit platform should be less or equal to `isize::MAX`" );
        }
        len
    }

    fn check_len( &self, grow: fn(usize,usize) -> Option<usize>, additional: usize ) -> usize { Self::check( self.len, grow, additional )}
}

impl<T:Indexed> Drop for Pool<T> {
    fn drop( &mut self ) {
        let len = self.chunks.len();
        if self.managed && len > 0 {
            unsafe{ self.chunks.set_len( 0 ); }
            for i in 0..len-1 {
                for j in 0..chunk_len::<T>() {
                    unsafe{ drop_in_place( &mut self.chunks.get_unchecked_mut(i)[j] ); }
                }
            }
            unsafe {
                let last = self.chunks.get_unchecked_mut( len-1 );
                for j in 0..=self.subidx {
                    drop_in_place( &mut last[ j ]);
                }
            }
        }
    }
}

impl<T:Indexed> ops::Index<usize> for Pool<T> {
    type Output = T;
    fn index( &self, index: usize ) -> &T {
        &self.chunks[ index / chunk_len::<T>() ][ index % chunk_len::<T>() ]
    }
}

impl<T:Indexed> ops::IndexMut<usize> for Pool<T> {
    fn index_mut( &mut self, index: usize ) -> &mut T {
        &mut self.chunks[ index / chunk_len::<T>() ][ index % chunk_len::<T>() ]
    }
}

/// Immutable pool iterator
///
/// This struct is created by the `iter` method.
pub struct Iter<'a, T:'a+Indexed> {
    pool      : &'a Pool<T>,
    chunk_idx : usize,
    elem_idx  : usize,
    last      : ( usize, usize ),
}

impl<'a, T:'a+Indexed> Iterator for Iter<'a,T> {
    type Item = &'a T;

    fn next( &mut self ) -> Option<&'a T> {
        if ( self.chunk_idx, self.elem_idx ) <= self.last {
            let chunk = unsafe{ self.pool.chunks.get_unchecked( self.chunk_idx )};
            let elem = &chunk[ self.elem_idx ];
            if self.elem_idx == chunk_len::<T>() {
                self.elem_idx = 0;
                self.chunk_idx += 1;
            } else {
                self.elem_idx += 1;
            }
            Some( elem )
        } else {
            None
        }
    }
}

/// Mutable pool iterator
///
/// This struct is created by the `iter_mut` method.
pub struct IterMut<'a, T:'a+Indexed> {
    pool      : &'a mut Pool<T>,
    chunk_idx : usize,
    elem_idx  : usize,
    last      : ( usize, usize ),
}

impl<'a, T:'a+Indexed> Iterator for IterMut<'a,T> {
    type Item = &'a mut T;

    fn next( &mut self ) -> Option<&'a mut T> {
        if ( self.chunk_idx, self.elem_idx ) <= self.last {
            let chunk = unsafe{ self.pool.chunks.get_unchecked_mut( self.chunk_idx )};
            let elem = &mut chunk[ self.elem_idx ];
            if self.elem_idx == chunk_len::<T>() {
                self.elem_idx = 0;
                self.chunk_idx += 1;
            } else {
                self.elem_idx += 1;
            }
            Some( unsafe{ transmute( elem )})
        } else {
            None
        }
    }
}

/// Creates a `Pool` containing the arguments. The element type of the pool must be given explicitly inside the macro, of which the arguments is able to be converted `into`.
///
/// The wrapped data can be accessed via `inner` field.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = pool!( Foo[ "a", "b", "c" ]);
///
/// assert_eq!( pool[0].inner, "a" );
/// assert_eq!( pool[1].inner, "b" );
/// assert_eq!( pool[2].inner, "c" );
/// ```
#[macro_export]
macro_rules! pool {
    ( $ty:ty[ $($x:expr),* ] ) => {{
        let mut pool = $crate::Pool::<$ty>::new();
        $( pool.push( $x.into() ); )*
        pool
    }};
    ( $ty:ty[ $($x:expr,)* ] ) => { pool!( $ty[ $($x),* ])};
}

/// Implements `Indexed` for a given type, using a given field as index storage of a given type which can be converted from/to `usize` using `as`.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// struct Name { id: u32, text: String };
///
/// impl_indexed!{ Name{ id: u32 }}
///
/// let mut _pool = Pool::<Name>::new();
/// ```
#[macro_export]
macro_rules! impl_indexed {
    ( $name:ident { $field:ident:$field_ty:ty } ) => {
        unsafe impl Indexed for $name {
            unsafe fn get_index( &self ) -> usize { self.$field as usize }
            unsafe fn set_index( &mut self, index: usize ) { self.$field = index as $field_ty; }
        }
    };
}

/// Defines a wrapper type of a given type and implements `Indexed` for the wrapper.
///
/// The wrapped data can be accessed via `inner` field.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: i32 }}
///
/// let mut pool = pool!( Foo[
///     Foo::from( 0 ),
///     Foo::from( 1 ),
///     Foo::from( 2 ),
/// ]);
///
/// pool.iter_mut().for_each( |foo| foo.inner += 10 );
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 10, 11, 12 ]);
/// ```
#[macro_export]
macro_rules! extrusive_indexed {
    ($vis:vis $outer:ident { inner: $inner:ty }) => {
        $vis struct $outer { index: usize, pub inner: $inner }
        unsafe impl Indexed for $outer {
            unsafe fn get_index( &self ) -> usize { self.index }
            unsafe fn set_index( &mut self, index: usize ) { self.index = index; }
        }
        impl From<$inner> for $outer {
            fn from( inner: $inner ) -> Self { $outer{ index: <Self as Indexed>::null(), inner }}
        }
    };
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_works() {
        unsafe impl Indexed for (usize,usize) {
            unsafe fn get_index( &self ) -> usize { self.0 }
            unsafe fn set_index( &mut self, index: usize )  { self.0 = index; }
        }

        let pool: Box<Pool<(usize,usize)>> = Pool::new();
        let addr: *mut Pool<_> = Box::into_raw( pool );
        let mut pool: Box<Pool<(usize,usize)>> = unsafe{ Box::from_raw( addr )};
        let mut ptrs = Vec::new();
        let ( a, b ) = ( 256_usize, 1024 );
        for i in 0..a {
            pool.push( (0,i) );
            ptrs.push( &pool[i] as *const _ );
        }
        for i in a..b {
            pool.push( (0,i) );
        }
        for i in 0..a {
            assert_eq!( ptrs[i], &pool[i] as *const _ );
            assert_eq!( pool[i].pool() as *const _, addr );
        }
        for i in a..b {
            assert_eq!( pool[i].pool() as *const _, addr );
        }
    }

    #[test]
    #[should_panic( expected = "ZSTs are not allowed to be the `Pool`'s element type." )]
    fn test_zst() {
        struct S;
        unsafe impl Indexed for S {
            unsafe fn get_index( &self ) -> usize { !0 }
            unsafe fn set_index( &mut self, _index: usize ) {}
        }
        let _pool = Pool::<S>::new();
    }
}