1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
// See the COPYRIGHT file at the top-level directory of this distribution.
// Licensed under MIT license <LICENSE-MIT or http://opensource.org/licenses/MIT>
//! This library provides a `Vec`-like, no reallocation collection named `indexed::Pool`.
//! The pool's reference can be obtained from one of its elements.
//! It can be used as a memory pool, and library users do not need to store/pass the pool's reference everywhere.
//! The elements can be linked to each other using indexes rather than pointers.
//!
//! # Examples
//!
//! ```
//! use indexed::{Indexed,Pool};
//! use std::fmt::{self,Display,Formatter};
//!
//! // A singly linked list of string.
//! struct List( Box<Pool<Node>> );
//!
//! struct Node {
//! next : u32,
//! index : u32,
//! text : &'static str,
//! }
//!
//! unsafe impl Indexed for Node {
//! fn null() -> usize { !0_u32 as usize }
//! unsafe fn get_index( &self ) -> usize { self.index as usize }
//! unsafe fn set_index( &mut self, index: usize ) { self.index = index as u32; }
//! }
//!
//! impl List {
//! fn new() -> Self { List( Pool::<Node>::new() )}
//!
//! fn head<'a>( &'a mut self, text: &'static str ) -> &'a mut Node {
//! assert_eq!( self.0.new_index(), 0 );
//! self.0.push( Node{
//! next : Node::null() as u32,
//! index : 0, // the pool will set the actual index inside its `push()` method.
//! text ,
//! });
//! &mut self.0[0]
//! }
//! }
//!
//! impl Node {
//! // The method does not need a parameter of `Pool`.
//! fn add<'a>( &'a mut self, sib: &'static str ) -> &'a mut Self {
//! let pool = unsafe { self.pool_mut() as *mut Pool<Node> };
//! let index = unsafe{ (*pool).new_index() };
//! self.next = index as u32;
//! let pool = unsafe{ &mut *pool };
//! pool.push( Node{
//! next : Node::null() as u32,
//! index : Node::null() as u32, // the pool will set the actual index inside its `push()` method.
//! text : sib,
//! });
//! &mut pool[index]
//! }
//! }
//!
//! impl Display for List {
//! fn fmt( &self, fmt: &mut Formatter ) -> fmt::Result {
//! if self.0.new_index() != 0 {
//! let mut curr = 0_usize;
//! while curr != Node::null() {
//! write!( fmt, "{} ", self.0[curr].text )?;
//! curr = self.0[curr].next as usize;
//! }
//! }
//! Ok(())
//! }
//! }
//!
//! let mut list = List::new();
//! list.head( "no" ).add( "need" ).add( "for" ).add( "pool" ).add( "parameter" );
//! assert_eq!( list.to_string(), "no need for pool parameter " );
//! ```
#![cfg_attr( feature = "no_std", no_std )]
#![cfg_attr( feature = "no_std", feature( alloc ))]
#[cfg(not(feature="no_std"))] pub(crate) use std::boxed::Box;
#[cfg(not(feature="no_std"))] pub(crate) use std::fmt::{self,Debug};
#[cfg(not(feature="no_std"))] pub(crate) use std::marker::PhantomData;
#[cfg(not(feature="no_std"))] pub(crate) use std::mem::{self,transmute};
#[cfg(not(feature="no_std"))] pub(crate) use std::ops;
#[cfg(not(feature="no_std"))] pub(crate) use std::ptr::{self,NonNull,drop_in_place};
#[cfg(feature="no_std")] extern crate alloc;
#[cfg(feature="no_std")] pub(crate) use self::alloc::boxed::Box;
#[cfg(feature="no_std")] pub(crate) use self::alloc::vec::Vec;
#[cfg(feature="no_std")] pub(crate) use core::fmt::{self,Debug};
#[cfg(feature="no_std")] pub(crate) use core::marker::PhantomData;
#[cfg(feature="no_std")] pub(crate) use core::mem::{self,transmute};
#[cfg(feature="no_std")] pub(crate) use core::ops;
#[cfg(feature="no_std")] pub(crate) use core::ptr::{self,NonNull,drop_in_place};
/// Possible chunk sizes.
pub enum ChunkLen {
B5 = 32, B6 = 64, B7 = 128, B8 = 256, B9 = 512, B10 = 1024, B11 = 2048, B12 = 4096, B13 = 8192, B14 = 16384, B15 = 32768, B16 = 65536,
}
/// Reflects the count of elements a chunk can hold.
pub fn chunk_len<T:Indexed>() -> usize { <T as Indexed>::chunk_len() as isize as usize }
/// Type of elements in the `Pool` must implement this trait.
/// Typically some integer field in the type must devote to storing the index in the pool, and it is not necessarily usize.
/// For example, an index can be stored in u32 if 4194304K is enough for anybody.
pub unsafe trait Indexed: Sized {
/// Sets the underlying chunk size. The default is 256, and can be overrided by those values defined in `ChunkLen`.
fn chunk_len() -> ChunkLen { ChunkLen::B8 }
/// Defines which index value is for null. If the underlying storage for index is smaller than `usize`'s size, the library user should override this method and pick a smaller value, e.g `!0_u32` for index stored in `u32`.
/// Note that it is for convenience only, and the library will not do any index check against `null()`.
fn null() -> usize { !0_usize }
/// Gets the element's index in the pool.
unsafe fn get_index( &self ) -> usize;
/// Sets the element's index in the pool. The library user is not expected to call it directly.
unsafe fn set_index( &mut self, index: usize );
/// Obtains reference of its pool.
fn pool( &self ) -> &Pool<Self> { Pool::pool( self )}
/// Obtains mutable reference of its pool.
unsafe fn pool_mut( &self ) -> &mut Pool<Self> { Pool::pool_mut( self )}
/// Obtains non null pointer of its pool.
fn pool_non_null( &self ) -> NonNull<Pool<Self>> { unsafe{ NonNull::new_unchecked( Pool::pool_mut( self ))}}
/// Appends an element to the back of its pool.
fn pool_push( &self, value: Self ) { unsafe{ self.pool_mut().push( value )}}
/// Overwrites a new value into its pool at given index without reading or dropping the old value.
unsafe fn pool_write( &self, index: usize, value: Self ) { self.pool_mut().write( index, value ); }
/// Reserves capacity for at least additional more elements to be inserted in the given Pool<T>.
/// The collection may reserve more space because the increasing size must be multiple of underlying `chunk_len()`.
/// After calling reserve, capacity will be greater than or equal to self.pool().new_index() + additional.
/// Does nothing if capacity is already sufficient.
fn pool_reserve( &self, additional: usize ) { unsafe{ self.pool_mut().reserve( additional ); }}
}
#[derive(PartialEq,Eq)]
struct Chunk<T>( Vec<u8>, PhantomData<T> );
type PPool<T> = NonNull<Pool<T>>;
impl<T:Indexed> Chunk<T> {
#[inline] fn data_size() -> usize { mem::size_of::<[T;1]>() * chunk_len::<T>() }
#[inline] fn buffer_size() -> usize { Self::data_size() + mem::size_of::<PPool<T>>() }
#[inline] fn as_ptr( &self ) -> *const T { self.0.as_ptr() as *const T }
#[inline] fn as_mut_ptr( &mut self ) -> *mut T { self.0.as_mut_ptr() as *mut T }
#[inline] fn data_ptr( &self, index: usize ) -> *const T { unsafe{( self.as_ptr() ).add( index )}}
#[inline] fn data_mut_ptr( &mut self, index: usize ) -> *mut T { unsafe{( self.as_mut_ptr() ).add( index )}}
#[inline] fn ppool( &self ) -> *const PPool<T> { self.data_ptr( chunk_len::<T>() ) as *const PPool<T> }
#[inline] fn new( ppool: PPool<T> ) -> Self {
let mut buffer = Vec::<u8>::with_capacity( Self::buffer_size() );
unsafe {
ptr::write( buffer.as_mut_ptr().add( Self::data_size() ) as *mut NonNull<_>, ppool );
}
Chunk( buffer, PhantomData )
}
#[inline] fn write( &mut self, index: usize, value: T ) {
assert!( index <= chunk_len::<T>() );
unsafe{ ptr::write( self.data_mut_ptr( index ), value )};
}
}
impl<T:Indexed+Debug> Debug for Chunk<T> {
fn fmt( &self, fmt: &mut fmt::Formatter ) -> fmt::Result {
let mut p = self.as_ptr();
let mut count = chunk_len::<T>();
let mut buffer = Vec::with_capacity( count );
while count > 0 {
buffer.push( unsafe{ ptr::read( p )});
unsafe{ p = p.offset(1) };
count -= 1;
}
fmt.write_str( "\n" )?;
fmt.debug_struct( "Chunk" )
.field( "ppool", unsafe{ &ptr::read( self.ppool() )})
.field( "buffer", &buffer )
.finish()?;
unsafe{ buffer.set_len(0); }
Ok(())
}
}
impl<T:Indexed> ops::Index<usize> for Chunk<T> {
type Output = T;
fn index( &self, index: usize ) -> &T { unsafe{ &*self.data_ptr( index )}}
}
impl<T:Indexed> ops::IndexMut<usize> for Chunk<T> {
fn index_mut( &mut self, index: usize ) -> &mut T { unsafe{ &mut *self.data_mut_ptr( index )}}
}
/// A `Vec`-like, no reallocation collection.
/// Elements in a `Pool` should not be zero sized type, or the construction will panic.
#[derive(Debug,PartialEq,Eq)]
pub struct Pool<T:Indexed> {
chunks : Vec<Chunk<T>>, // underlying storage.
managed : bool, // whether drops elements on destruction or not.
ppool : PPool<T>, // NonNull pointer to self.
subidx : usize, // index of last element in its chunk, or `chunk_len::<T>()-1` if no element in the pool at all.
len : usize, // element count of the pool.
cap : usize, // capacity of the pool, always multiple of `chunk_len::<T>()`.
}
impl<T:Indexed> Pool<T> {
/// Creates a new pool that drops its elements on destruction.
///
/// # Panics
///
/// Panics if the type of element is ZST.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// static mut COUNT: usize = 0;
///
/// struct Name { index: usize, text: String }
///
/// impl_indexed!{ Name{ index: usize }}
///
/// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
///
/// impl From<&'static str> for Name {
/// fn from( s: &'static str ) -> Self {
/// Name{ index: <Self as Indexed>::null(), text: s.to_string() }
/// }
/// }
///
/// { let pool = pool!( Name[ "foo", "bar", "baz" ]); }
///
/// assert_eq!( unsafe{ COUNT }, 3 );
/// ```
pub fn new() -> Box<Self> { Self::new_pool( true )}
/// Creates a new pool that does not drop its elements on destruction.
/// It is up to the user to drop the elements manually to avoid memory leaks.
///
/// # Panics
///
/// Panics if the type of element is ZST.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// static mut COUNT: usize = 0;
///
/// struct Name { index: usize, text: String }
///
/// impl_indexed!{ Name{ index: usize }}
///
/// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
///
/// impl From<&'static str> for Name {
/// fn from( s: &'static str ) -> Self {
/// Name{ index: <Self as Indexed>::null(), text: s.to_string() }
/// }
/// }
///
/// {
/// let mut pool = Pool::<Name>::new_unmanaged();
/// pool.push( "foo".into() );
/// pool.push( "bar".into() );
/// pool.push( "baz".into() );
/// }
/// assert_eq!( unsafe{ COUNT }, 0 );
/// ```
pub fn new_unmanaged() -> Box<Self> { Self::new_pool( false )}
fn new_pool( managed: bool ) -> Box<Self> {
if mem::size_of::<T>() == 0 {
panic!( "ZSTs are not allowed to be the `Pool`'s element type." );
} else {
let pool = Box::new( Self {
chunks : Vec::new(),
managed ,
ppool : NonNull::dangling(),
subidx : chunk_len::<T>()-1,
len : 0,
cap : 0,
});
unsafe {
let pool = Box::into_raw( pool );
let ppool = NonNull::new_unchecked( pool );
let mut pool = Box::from_raw( pool );
pool.ppool = ppool;
pool
}
}
}
/// Appends an element to the back of a pool.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: i32 }}
///
/// let mut pool = Pool::new();
///
/// pool.push( Foo::from( 0 ));
/// pool.push( Foo::from( 1 ));
/// pool.push( Foo::from( 2 ));
///
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 0, 1, 2 ]);
/// ```
pub fn push( &mut self, mut value: T ) {
self.subidx += 1;
let chunk_len = chunk_len::<T>();
if self.subidx == chunk_len {
if self.len == Self::check( self.chunks.len(), usize::checked_mul, chunk_len ) {
self.chunks.push( Chunk::new( self.ppool ));
self.cap += chunk_len;
}
self.subidx = 0;
}
let len = self.len;
unsafe{ value.set_index( len )};
self.chunks.last_mut().unwrap().write( self.subidx, value );
self.len += 1;
}
/// Overwrites a new value into a pool at given index without reading or dropping the old value.
///
/// # Safety
///
/// This operation is marked unsafe because it accepts an index as an offset which acts like a raw pointer.
///
/// It does not drop the contents of the existing `self[index]` element. This is safe, but it could leak allocations or resources,
/// so care must be taken not to overwrite an object that should be dropped.
///
/// Additionally, it does not drop `value`. Semantically, `value` is moved into `self[index]`.
///
/// This is appropriate for initializing uninitialized memory.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = Pool::<Foo>::new();
///
/// pool.reserve( 3 );
///
/// unsafe {
/// pool.write( 0, "a".into() );
/// pool.write( 2, "c".into() );
/// pool.write( 1, "b".into() );
/// pool.set_len( 3 );
/// }
///
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ "a", "b", "c" ]);
/// ```
#[inline]
pub unsafe fn write( &mut self, index: usize, mut value: T ) {
value.set_index( index );
self.chunks[ index / chunk_len::<T>() ].write( index % chunk_len::<T>(), value );
}
/// Reserves capacity for at least additional more elements to be inserted in the given Pool<T>.
/// The collection may reserve more space because the increasing size must be multiple of underlying `chunk_len()`.
/// After calling reserve, capacity will be greater than or equal to self.new_index() + additional.
/// Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = Pool::<Foo>::new();
///
/// pool.reserve( 0 );
/// assert_eq!( pool.capacity(), 0 );
///
/// pool.reserve( 1 );
/// let cap = pool.capacity();
/// assert!( cap >= 1 );
///
/// pool.reserve( 1 );
/// assert_eq!( pool.capacity(), cap );
///
/// pool.reserve( 1024 );
/// assert!( pool.capacity() >= 1024 );
/// ```
pub fn reserve( &mut self, additional: usize ) {
if let Some( inc_cap ) = self.check_len( usize::checked_add, additional ) // self.len + additional
.checked_sub( self.cap ) // - self.cap
{
let mut chunk_count = inc_cap / chunk_len::<T>();
if inc_cap > 0 && chunk_count == 0 {
chunk_count = 1;
}
for _ in 0..chunk_count {
self.chunks.push( Chunk::new( self.ppool ));
}
self.cap += inc_cap;
}
}
/// Returns the number of elements in the pool, also referred to as its 'length'.
#[inline]
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = pool!( Foo[ "a", "b", "c" ]);
/// assert_eq!( pool.len(), 3 );
/// ```
#[inline]
pub fn len( &self ) -> usize { self.len }
/// Sets the length of a pool.
///
/// This will explicitly set the size of the pool, without actually modifying its buffers,
/// so it is up to the caller to ensure that the pool is actually the specified size.
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: char }}
///
/// let mut pool = pool!( Foo[ 'r', 'u', 's', 't' ]);
///
/// unsafe {
/// std::ptr::drop_in_place( &mut pool[3] );
/// pool.set_len( 3 );
/// }
///
/// assert_eq!( pool.len(), 3 );
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec!['r', 'u', 's'] );
/// ```
///
/// In this example, there is a memory leak since the memory locations
/// owned by the first `Name` were not freed prior to the `set_len` call:
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// static mut COUNT: usize = 0;
///
/// struct Name { index: usize, text: String }
///
/// impl_indexed!{ Name{ index: usize }}
///
/// impl Drop for Name { fn drop( &mut self ) { unsafe{ COUNT += 1; }}}
///
/// impl From<&'static str> for Name {
/// fn from( s: &'static str ) -> Self {
/// Name{ index: <Self as Indexed>::null(), text: s.to_string() }
/// }
/// }
///
/// let mut pool = pool!( Name[ "abc", "def", "g" ]);
///
/// unsafe {
/// std::ptr::drop_in_place( &mut pool[2] );
/// std::ptr::drop_in_place( &mut pool[1] );
/// pool.set_len( 0 );
/// }
///
/// assert_eq!( unsafe{ COUNT }, 2 );
/// ```
/// In this example, the pool gets expanded from zero to four items without any memory allocations occurring,
/// resulting in pool values of unallocated memory:
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = Pool::<Foo>::new();
/// unsafe { pool.set_len( 3 ); }
/// ```
#[inline]
pub unsafe fn set_len( &mut self, len: usize ) {
self.len = len;
let sublen = len % chunk_len::<T>();
self.subidx = if sublen == 0 { chunk_len::<T>()-1 } else { sublen-1 };
}
/// Returns the number of elements the vector can hold without more allocating.
///
/// Note: **the purpose of this method is not to avoid reallocation**, which could not happen at all, but to grow the buffer for next incomming `write()`s.
#[inline]
pub fn capacity( &self ) -> usize { self.cap }
/// Returns the pool's `NonNull` pointer.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: i32 }}
///
/// let mut pool = Pool::<Foo>::new();
/// let p = pool.non_null();
///
/// assert_eq!( p, std::ptr::NonNull::new( Box::into_raw( pool )).unwrap() );
/// ```
pub fn non_null( &self ) -> NonNull<Self> { self.ppool }
/// Obtains reference of the pool of an element.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: usize }}
///
/// let mut pool = Pool::<Foo>::new();
///
/// for i in 0..1024 {
/// pool.push( i.into() );
/// }
///
/// for i in 0..1024 {
/// assert!( pool.non_null().as_ptr() as *const Pool<Foo> == pool[i].pool() );
/// }
/// ```
pub fn pool( value: &T ) -> &Self {
unsafe {
let remainder = value.get_index() % chunk_len::<T>();
let value = value as *const T;
let off = ( chunk_len::<T>() - remainder ) as isize;
let ppool = ptr::read( value.offset( off ) as *const PPool<T> );
&*ppool.as_ptr()
}
}
/// Obtains mutable reference of the pool from an element.
///
/// # Safety
///
/// This operation is marked unsafe because it obtains a mutable reference of the `Pool` from one of its immutable element,
/// which may violate the memory safety rule "only one mutable reference, or none but multiple immutable references".
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: usize }}
///
/// let mut pool = Pool::<Foo>::new();
///
/// for i in 0..1024 {
/// pool.push( i.into() );
/// }
///
/// for i in 0..1024 {
/// assert_eq!( pool.non_null().as_ptr(),
/// unsafe{ pool[i].pool_mut() as *mut Pool<Foo>});
/// }
/// ```
pub unsafe fn pool_mut( value: &T ) -> &mut Self {
let remainder = value.get_index() % chunk_len::<T>();
let value = value as *const T;
let off = ( chunk_len::<T>() - remainder ) as isize;
let ppool = ptr::read( value.offset( off ) as *const PPool<T> );
&mut *ppool.as_ptr()
}
/// Obtains `NonNull` pointer of the pool from an element.
pub fn pool_non_null( value: &T ) -> NonNull<Self> { unsafe{ NonNull::new_unchecked( Self::pool_mut( value ))}}
/// Returns the expected index for the next new element to be `push()`ed in.
pub fn new_index( &self ) -> usize { self.len }
/// Returns `true` if the pool contains no elements.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = Pool::new();
/// assert!( pool.is_empty() );
///
/// pool.push( Foo::from( "foo" ));
/// assert!( !pool.is_empty() );
/// ```
pub fn is_empty( &self ) -> bool { self.len == 0 }
/// Returns an iterator over the pool.
///
/// # Examples
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = pool!( Foo[ "abc", "def", "g" ]);
/// let mut iter = pool.iter();
///
/// assert_eq!( iter.next().unwrap().inner, "abc" );
/// assert_eq!( iter.next().unwrap().inner, "def" );
/// assert_eq!( iter.next().unwrap().inner, "g" );
/// assert!( iter.next().is_none() );
/// ```
#[inline]
pub fn iter( &self ) -> Iter<T> {
let last = if self.chunks.is_empty() {(0,0)} else {( self.chunks.len()-1, self.subidx )};
Iter{ pool: self, chunk_idx: 0, elem_idx: 0, last }
}
/// Returns an iterator that allows modifying each value.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: i32 }}
///
/// let mut pool = pool!( Foo[ 0, 1, 2 ]);
///
/// pool.iter_mut().for_each( |elem| { elem.inner += 10; });
///
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 10, 11, 12 ]);
/// ```
pub fn iter_mut( &mut self ) -> IterMut<T> {
let last = if self.chunks.is_empty() {(0,0)} else {( self.chunks.len()-1, self.subidx )};
IterMut{ pool: self, chunk_idx: 0, elem_idx: 0, last }
}
/// Returns a shared reference to the output at indexed location, without performing any bounds checking.
pub unsafe fn get_unchecked( &self, index: usize ) -> &T {
&self.chunks.get_unchecked( index / chunk_len::<T>() )[ index % chunk_len::<T>() ]
}
/// Returns a mutable reference to the output at indexed location, without performing any bounds checking.
pub unsafe fn get_unchecked_mut( &mut self, index: usize ) -> &mut T {
&mut self.chunks.get_unchecked_mut( index / chunk_len::<T>() )[ index % chunk_len::<T>() ]
}
fn check( len: usize, grow: fn(usize,usize) -> Option<usize>, additional: usize ) -> usize {
let len = grow( len, additional ).expect( "the requested capacity should be less or equal to `usize::MAX`" );
if mem::size_of::<usize>() < 8 && len > !0_isize as usize {
panic!( "the requested capacity on 32/16 bit platform should be less or equal to `isize::MAX`" );
}
len
}
fn check_len( &self, grow: fn(usize,usize) -> Option<usize>, additional: usize ) -> usize { Self::check( self.len, grow, additional )}
}
impl<T:Indexed> Drop for Pool<T> {
fn drop( &mut self ) {
let len = self.chunks.len();
if self.managed && len > 0 {
unsafe{ self.chunks.set_len( 0 ); }
for i in 0..len-1 {
for j in 0..chunk_len::<T>() {
unsafe{ drop_in_place( &mut self.chunks.get_unchecked_mut(i)[j] ); }
}
}
unsafe {
let last = self.chunks.get_unchecked_mut( len-1 );
for j in 0..=self.subidx {
drop_in_place( &mut last[ j ]);
}
}
}
}
}
impl<T:Indexed> ops::Index<usize> for Pool<T> {
type Output = T;
fn index( &self, index: usize ) -> &T {
&self.chunks[ index / chunk_len::<T>() ][ index % chunk_len::<T>() ]
}
}
impl<T:Indexed> ops::IndexMut<usize> for Pool<T> {
fn index_mut( &mut self, index: usize ) -> &mut T {
&mut self.chunks[ index / chunk_len::<T>() ][ index % chunk_len::<T>() ]
}
}
/// Immutable pool iterator
///
/// This struct is created by the `iter` method.
pub struct Iter<'a, T:'a+Indexed> {
pool : &'a Pool<T>,
chunk_idx : usize,
elem_idx : usize,
last : ( usize, usize ),
}
impl<'a, T:'a+Indexed> Iterator for Iter<'a,T> {
type Item = &'a T;
fn next( &mut self ) -> Option<&'a T> {
if ( self.chunk_idx, self.elem_idx ) <= self.last {
let chunk = unsafe{ self.pool.chunks.get_unchecked( self.chunk_idx )};
let elem = &chunk[ self.elem_idx ];
if self.elem_idx == chunk_len::<T>() {
self.elem_idx = 0;
self.chunk_idx += 1;
} else {
self.elem_idx += 1;
}
Some( elem )
} else {
None
}
}
}
/// Mutable pool iterator
///
/// This struct is created by the `iter_mut` method.
pub struct IterMut<'a, T:'a+Indexed> {
pool : &'a mut Pool<T>,
chunk_idx : usize,
elem_idx : usize,
last : ( usize, usize ),
}
impl<'a, T:'a+Indexed> Iterator for IterMut<'a,T> {
type Item = &'a mut T;
fn next( &mut self ) -> Option<&'a mut T> {
if ( self.chunk_idx, self.elem_idx ) <= self.last {
let chunk = unsafe{ self.pool.chunks.get_unchecked_mut( self.chunk_idx )};
let elem = &mut chunk[ self.elem_idx ];
if self.elem_idx == chunk_len::<T>() {
self.elem_idx = 0;
self.chunk_idx += 1;
} else {
self.elem_idx += 1;
}
Some( unsafe{ transmute( elem )})
} else {
None
}
}
}
/// Creates a `Pool` containing the arguments. The element type of the pool must be given explicitly inside the macro, of which the arguments is able to be converted `into`.
///
/// The wrapped data can be accessed via `inner` field.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: &'static str }}
///
/// let mut pool = pool!( Foo[ "a", "b", "c" ]);
///
/// assert_eq!( pool[0].inner, "a" );
/// assert_eq!( pool[1].inner, "b" );
/// assert_eq!( pool[2].inner, "c" );
/// ```
#[macro_export]
macro_rules! pool {
( $ty:ty[ $($x:expr),* ] ) => {{
let mut pool = $crate::Pool::<$ty>::new();
$( pool.push( $x.into() ); )*
pool
}};
( $ty:ty[ $($x:expr,)* ] ) => { pool!( $ty[ $($x),* ])};
}
/// Implements `Indexed` for a given type, using a given field as index storage of a given type which can be converted from/to `usize` using `as`.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// struct Name { id: u32, text: String };
///
/// impl_indexed!{ Name{ id: u32 }}
///
/// let mut _pool = Pool::<Name>::new();
/// ```
#[macro_export]
macro_rules! impl_indexed {
( $name:ident { $field:ident:$field_ty:ty } ) => {
unsafe impl Indexed for $name {
unsafe fn get_index( &self ) -> usize { self.$field as usize }
unsafe fn set_index( &mut self, index: usize ) { self.$field = index as $field_ty; }
}
};
}
/// Defines a wrapper type of a given type and implements `Indexed` for the wrapper.
///
/// The wrapped data can be accessed via `inner` field.
///
/// # Examples
///
/// ```
/// #[macro_use] extern crate indexed;
/// use indexed::{Indexed,Pool};
///
/// extrusive_indexed!{ Foo{ inner: i32 }}
///
/// let mut pool = pool!( Foo[
/// Foo::from( 0 ),
/// Foo::from( 1 ),
/// Foo::from( 2 ),
/// ]);
///
/// pool.iter_mut().for_each( |foo| foo.inner += 10 );
/// assert_eq!( pool.iter().map( |e| e.inner ).collect::<Vec<_>>(), vec![ 10, 11, 12 ]);
/// ```
#[macro_export]
macro_rules! extrusive_indexed {
($vis:vis $outer:ident { inner: $inner:ty }) => {
$vis struct $outer { index: usize, pub inner: $inner }
unsafe impl Indexed for $outer {
unsafe fn get_index( &self ) -> usize { self.index }
unsafe fn set_index( &mut self, index: usize ) { self.index = index; }
}
impl From<$inner> for $outer {
fn from( inner: $inner ) -> Self { $outer{ index: <Self as Indexed>::null(), inner }}
}
};
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
unsafe impl Indexed for (usize,usize) {
unsafe fn get_index( &self ) -> usize { self.0 }
unsafe fn set_index( &mut self, index: usize ) { self.0 = index; }
}
let pool: Box<Pool<(usize,usize)>> = Pool::new();
let addr: *mut Pool<_> = Box::into_raw( pool );
let mut pool: Box<Pool<(usize,usize)>> = unsafe{ Box::from_raw( addr )};
let mut ptrs = Vec::new();
let ( a, b ) = ( 256_usize, 1024 );
for i in 0..a {
pool.push( (0,i) );
ptrs.push( &pool[i] as *const _ );
}
for i in a..b {
pool.push( (0,i) );
}
for i in 0..a {
assert_eq!( ptrs[i], &pool[i] as *const _ );
assert_eq!( pool[i].pool() as *const _, addr );
}
for i in a..b {
assert_eq!( pool[i].pool() as *const _, addr );
}
}
#[test]
#[should_panic( expected = "ZSTs are not allowed to be the `Pool`'s element type." )]
fn test_zst() {
struct S;
unsafe impl Indexed for S {
unsafe fn get_index( &self ) -> usize { !0 }
unsafe fn set_index( &mut self, _index: usize ) {}
}
let _pool = Pool::<S>::new();
}
}