indexmap_nostd/set.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
//! An ordered set based on a B-Tree that keeps insertion order of elements.
use super::SlotIndex;
use alloc::collections::{btree_map, BTreeMap};
use alloc::vec::IntoIter as VecIntoIter;
use alloc::vec::Vec;
use core::borrow::Borrow;
use core::iter::FusedIterator;
use core::ops::Index;
use core::slice::Iter as SliceIter;
/// A b-tree set where the iteration order of the values
/// is independent of the ordering of the values.
///
/// The interface is closely compatible with the [`indexmap` crate]
/// and a subset of the features that is relevant for the
/// [`wasmparser-nostd` crate].
///
/// # Differences to original `IndexSet`
///
/// Since the goal of this crate was to maintain a simple
/// `no_std` compatible fork of the [`indexmap` crate] there are some
/// downsides and differences.
///
/// - Some operations such as `IndexSet::insert` now require `K: Clone`.
/// - It is to be expected that this fork performs worse than the original
/// [`indexmap` crate] implementation.
/// - The implementation is based on `BTreeMap` internally instead of
/// `HashMap` which has the effect that methods no longer require `K: Hash`
/// but `K: Ord` instead.
///
/// [`indexmap` crate]: https://crates.io/crates/indexmap
/// [`wasmparser-nostd` crate]: https://crates.io/crates/wasmparser-nostd
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct IndexSet<T> {
/// A mapping from keys to slot indices.
key2slot: BTreeMap<T, SlotIndex>,
/// A vector holding all keys.
slots: Vec<T>,
}
impl<T> Default for IndexSet<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> IndexSet<T> {
/// Makes a new, empty `IndexSet`.
///
/// Does not allocate anything on its own.
pub fn new() -> Self {
Self {
key2slot: BTreeMap::new(),
slots: Vec::new(),
}
}
/// Constructs a new, empty [`IndexSet`] with at least the specified capacity.
///
/// Does not allocate if `capacity` is zero.
pub fn with_capacity(capacity: usize) -> Self {
Self {
key2slot: BTreeMap::new(),
slots: Vec::with_capacity(capacity),
}
}
/// Reserve capacity for at least `additional` more values.
pub fn reserve(&mut self, additional: usize) {
self.slots.reserve(additional);
}
/// Returns the number of elements in the set.
pub fn len(&self) -> usize {
self.slots.len()
}
/// Returns `true` if the set contains no elements.
pub fn is_empty(&self) -> bool {
self.len() != 0
}
/// Returns `true` if `self` has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
pub fn is_disjoint(&self, other: &Self) -> bool
where
T: Ord,
{
self.iter().all(|value| !other.contains(value))
&& other.iter().all(|value| !self.contains(value))
}
/// Returns `true` if the set is a subset of another,
/// i.e., `other` contains at least all the elements in `self`.
pub fn is_subset(&self, other: &Self) -> bool
where
T: Ord,
{
self.iter().all(|value| other.contains(value))
}
/// Returns `true` if the set is a superset of another,
/// i.e., `self` contains at least all the elements in `other`.
pub fn is_superset(&self, other: &Self) -> bool
where
T: Ord,
{
other.is_subset(self)
}
/// Returns `true` if the set contains an element equal to the value.
///
/// The value may be any borrowed form of the set's element type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the element type.
pub fn contains<Q: ?Sized>(&self, key: &Q) -> bool
where
T: Borrow<Q> + Ord,
Q: Ord,
{
self.key2slot.contains_key(key)
}
/// Returns a reference to the element in the set, if any, that is equal to
/// the value.
///
/// The value may be any borrowed form of the set's element type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the element type.
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
where
T: Borrow<Q> + Ord,
Q: Ord,
{
self.key2slot
.get(value)
.map(|index| &self.slots[index.index()])
}
/// Returns the index-value pair corresponding to the supplied value.
///
/// The supplied key may be any borrowed form of the map's key type,
/// but the ordering on the borrowed form *must* match the ordering
/// on the key type.
pub fn get_full<Q: ?Sized>(&self, key: &Q) -> Option<(usize, &T)>
where
T: Borrow<Q> + Ord,
Q: Ord,
{
self.key2slot
.get_key_value(key)
.map(|(key, slot)| (slot.index(), key))
}
/// Returns the unique index corresponding to the supplied value.
///
/// The supplied key may be any borrowed form of the map's key type,
/// but the ordering on the borrowed form *must* match the ordering
/// on the key type.
pub fn get_index_of<Q: ?Sized>(&self, key: &Q) -> Option<usize>
where
T: Borrow<Q> + Ord,
Q: Ord,
{
self.key2slot.get(key).copied().map(SlotIndex::index)
}
/// Returns a shared reference to the value at the given index.
pub fn get_index(&self, index: usize) -> Option<&T> {
self.slots.get(index)
}
/// Adds a value to the set.
///
/// Returns whether the value was newly inserted. That is:
///
/// - If the set did not previously contain an equal value, `true` is
/// returned.
/// - If the set already contained an equal value, `false` is returned, and
/// the entry is not updated.
pub fn insert(&mut self, value: T) -> bool
where
T: Ord + Clone,
{
let (_index, inserted) = self.insert_full(value);
inserted
}
/// Adds a value to the set.
///
/// Returns the unique index to the value as well as a `bool` flag telling
/// whether the value was newly inserted. That is:
///
/// - If the set did not previously contain an equal value, `true` is
/// returned.
/// - If the set already contained an equal value, `false` is returned, and
/// the entry is not updated.
pub fn insert_full(&mut self, value: T) -> (usize, bool)
where
T: Ord + Clone,
{
match self.key2slot.entry(value.clone()) {
btree_map::Entry::Vacant(entry) => {
let index = self.slots.len();
entry.insert(SlotIndex(index));
self.slots.push(value);
(index, true)
}
btree_map::Entry::Occupied(entry) => {
let index = entry.get().index();
self.slots[index] = value;
(index, false)
}
}
}
/// Gets an iterator that visits the elements in the [`IndexSet`]
/// in the order in which they have been inserted into the set unless
/// there have been removals.
pub fn iter(&self) -> Iter<T> {
Iter {
iter: self.slots.iter(),
}
}
/// Clears the set, removing all elements.
pub fn clear(&mut self) {
self.key2slot.clear();
self.slots.clear();
}
}
impl<T> Index<usize> for IndexSet<T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
self.get_index(index)
.expect("IndexSet: index out of bounds")
}
}
impl<'a, T> Extend<&'a T> for IndexSet<T>
where
T: Ord + Copy,
{
#[allow(clippy::map_clone)] // lifetime issue: seems to be a clippy bug
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = &'a T>,
{
self.extend(iter.into_iter().map(|value| *value))
}
}
impl<T> Extend<T> for IndexSet<T>
where
T: Ord + Clone,
{
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = T>,
{
iter.into_iter().for_each(move |value| {
self.insert(value);
});
}
}
impl<T> FromIterator<T> for IndexSet<T>
where
T: Ord + Clone,
{
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = T>,
{
let mut set = IndexSet::new();
set.extend(iter);
set
}
}
impl<T, const N: usize> From<[T; N]> for IndexSet<T>
where
T: Ord + Clone,
{
fn from(items: [T; N]) -> Self {
items.into_iter().collect()
}
}
impl<'a, T> IntoIterator for &'a IndexSet<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T> IntoIterator for IndexSet<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
iter: self.slots.into_iter(),
}
}
}
/// An iterator over the items of a [`IndexSet`].
///
/// This `struct` is created by the [`iter`] method on [`IndexSet`].
///
/// [`iter`]: IndexSet::iter
#[derive(Debug, Clone)]
pub struct Iter<'a, T> {
iter: SliceIter<'a, T>,
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.count()
}
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
}
impl<'a, T> ExactSizeIterator for Iter<'a, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<'a, T> FusedIterator for Iter<'a, T> {}
/// An owning iterator over the items of a [`IndexSet`].
///
/// This `struct` is created by the [`into_iter`] method on [`IndexSet`]
/// (provided by the [`IntoIterator`] trait).
///
/// [`into_iter`]: IntoIterator::into_iter
/// [`IntoIterator`]: core::iter::IntoIterator
#[derive(Debug)]
pub struct IntoIter<T> {
iter: VecIntoIter<T>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.count()
}
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
}
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for IntoIter<T> {}