1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Inherit methods from a field automatically (via procedural macros).
//!
//! # Motivation
//!
//! While Rust is partially inspired by the object-oriented programming (OOP) paradigm
//! and has some typical OOP features (like objects, encapsulation, and polymorphism),
//! it is not an OOP language. One piece of evidence is the lack of _inheritance_, which an
//! important pillar of OOP. But don't take me wrong: this lack of inheritance is actually a
//! good thing since it promotes the practice of
//! [_composition over inheritance_](https://en.wikipedia.org/wiki/Composition_over_inheritance)
//! in Rust programs. Despite all the benefits of composition, Rust programmers
//! have to write trivial [fowarding methods](https://en.wikipedia.org/wiki/Forwarding_(object-oriented_programming)),
//! which is a tedious task, especially when you have to write many of them.
//!
//! To address this pain point of using composition in Rust, the crate provides a convenient
//! procedure macro that generates forwarding methods automatically for you. In other words,
//! your structs can now "inherit" methods from their fields, enjoying the best of both worlds:
//! the convenience of inheritance and the flexibility of composition.
//!
//! # Examples
//!
//! ## Implementing the new type idiom
//!
//! Suppose that you want to create a new struct named `Stack<T>`, which can be implemented by
//! simply wrapping around `Vec<T>` and exposing only a subset of the APIs of `Vec`. Here is
//! how this crate can help you do it easily.
//!
//! ```rust
//! use inherit_methods_macro::inherit_methods;
//!
//! pub struct Stack<T>(Vec<T>);
//!
//! // Annotate an impl block with #[inherit_methods(from = "...")] to enable automatically
//! // inheriting methods from a field, which is specifiedd by the from attribute.
//! #[inherit_methods(from = "self.0")]
//! // This prevent cargo-fmt from issuing false alarms due to the way that this crate extends
//! // the Rust syntax (i.e., allowing method definitions without code blocks).
//! #[rustfmt::skip]
//! impl<T> Stack<T> {
//!     // Normal methods can be implemented with inherited methods in the same impl block.
//!     pub fn new() -> Self {
//!         Self(Vec::new())
//!     }
//!
//!     // All methods without code blocks will "inherit" the implementation of Vec by
//!     // forwarding their method calls to self.0.
//!     pub fn push(&mut self, value: T);
//!     pub fn pop(&mut self) -> Option<T>;
//!     pub fn len(&self) -> usize;
//! }
//! ```
//!
//! If you want to derive common traits (like `AsRef` and `Deref`) for a wrapper type, check out
//! the [shrinkwraprs](https://crates.io/crates/shrinkwraprs) crate.
//!
//! ## Emulating the classic OOP inheritance
//!
//! In many OOP frameworks or applications, it is useful to have a base class from which all objects
//! inherit. In this example, we would like to do the same thing, creating a base class
//! (the `Object` trait for the interface and the `ObjectBase` struct for the implementation).
//! that all objects should "inherit".
//!
//! ```rust
//! use std::sync::atomic::{AtomicU64, Ordering};
//! use std::sync::Mutex;
//!
//! use inherit_methods_macro::inherit_methods;
//!
//! pub trait Object {
//!     fn type_name(&self) -> &'static str;
//!     fn object_id(&self) -> u64;
//!     fn name(&self) -> String;
//!     fn set_name(&self, new_name: String);
//! }
//!
//! struct ObjectBase {
//!     object_id: u64,
//!     name: Mutex<String>,
//! }
//!
//! impl ObjectBase {
//!     pub fn new() -> Self {
//!         static NEXT_ID: AtomicU64 = AtomicU64::new(0);
//!         Self {
//!             object_id: NEXT_ID.fetch_add(1, Ordering::Relaxed),
//!             name: Mutex::new(String::new()),
//!         }
//!     }
//!
//!     pub fn object_id(&self) -> u64 {
//!         self.object_id
//!     }
//!
//!     pub fn name(&self) -> String {
//!         self.name.lock().unwrap().clone()
//!     }
//!
//!     pub fn set_name(&self, new_name: String) {
//!         *self.name.lock().unwrap() = new_name;
//!     }
//! }
//!
//! struct DummyObject {
//!     base: ObjectBase,
//! }
//!
//! impl DummyObject {
//!     pub fn new() -> Self {
//!         Self {
//!             base: ObjectBase::new(),
//!         }
//!     }
//! }
//!
//! #[inherit_methods(from = "self.base")]
//! #[rustfmt::skip]
//! impl Object for DummyObject {
//!     // Give this method an implementation specific to this type
//!     fn type_name(&self) -> &'static str {
//!         "DummyObject"
//!     }
//!
//!     // Inherit methods from the base class
//!     fn object_id(&self) -> u64;
//!     fn name(&self) -> String;
//!     fn set_name(&self, new_name: String);
//! }
//! ```

// TODO: fix the compatibility issue with cargo-fmt.

extern crate proc_macro;

use darling::FromMeta;
use proc_macro2::{Punct, Spacing, TokenStream};
use quote::{quote, ToTokens, TokenStreamExt};
use syn::{
    AttributeArgs, Block, Expr, FnArg, Ident, ImplItem, ImplItemMethod, Item, ItemImpl, Pat, Stmt,
};

#[derive(Debug, FromMeta)]
struct MacroAttr {
    #[darling(default = "default_from_val")]
    from: String,
}

fn default_from_val() -> String {
    "self.0".to_string()
}

#[proc_macro_attribute]
pub fn inherit_methods(
    attr: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let attr = {
        let attr_tokens = syn::parse_macro_input!(attr as AttributeArgs);
        match MacroAttr::from_list(&attr_tokens) {
            Ok(attr) => attr,
            Err(e) => {
                return e.write_errors().into();
            }
        }
    };
    let item_impl = syn::parse_macro_input!(item as syn::ItemImpl);
    do_inherit_methods(attr, item_impl).into()
}

fn do_inherit_methods(attr: MacroAttr, mut item_impl: ItemImpl) -> TokenStream {
    // Parse the field to which we will forward method calls
    let field: Expr = syn::parse_str(&attr.from).unwrap();

    // Transform this impl item by adding method forwarding code to inherited methods.
    for impl_item in &mut item_impl.items {
        let impl_item_method = match is_method_missing_fn_block(impl_item) {
            Some(method) => method,
            None => continue,
        };
        add_fn_block(impl_item_method, &field);
    }
    item_impl.into_token_stream()
}

// Returns whether an item inside `impl XXX { ... }` is a method without code block.
fn is_method_missing_fn_block(impl_item: &mut ImplItem) -> Option<&mut ImplItemMethod> {
    // We only care about method items.
    let impl_item_method = if let ImplItem::Method(method) = impl_item {
        method
    } else {
        return None;
    };
    // We only care about methods without a code block.
    if !impl_item_method.block.is_empty() {
        return None;
    }
    Some(impl_item_method)
}

// Add a code block of method forwarding for the method item.
fn add_fn_block(impl_item_method: &mut ImplItemMethod, field: &Expr) {
    let fn_sig = &impl_item_method.sig;
    let fn_name = &fn_sig.ident;
    let fn_arg_tokens = {
        // Extract all argument idents (except self) from the signature
        let fn_arg_idents: Vec<&Ident> = fn_sig
            .inputs
            .iter()
            .filter_map(|fn_arg| match fn_arg {
                FnArg::Receiver(_) => None,
                FnArg::Typed(pat_type) => Some(pat_type),
            })
            .filter_map(|pat_type| match &*pat_type.pat {
                Pat::Ident(pat_ident) => Some(&pat_ident.ident),
                _ => None,
            })
            .collect();

        // Combine all arguments into a comma-separated token stream
        let mut fn_arg_tokens = TokenStream::new();
        for fn_arg_ident in fn_arg_idents {
            let fn_arg_ident = fn_arg_ident.clone();
            fn_arg_tokens.append(fn_arg_ident);
            fn_arg_tokens.append(Punct::new(',', Spacing::Alone));
        }
        fn_arg_tokens
    };

    let new_fn_block: Block = {
        let new_fn_tokens = quote! {
            // This is the code block added to the incomplete method, which
            // is just forwarding the function call to the field.
            {
                #field.#fn_name(#fn_arg_tokens)
            }
        };
        syn::parse(new_fn_tokens.into()).unwrap()
    };
    impl_item_method.block = new_fn_block;
}

trait BlockExt {
    /// Check if a block is empty, which means only contains a ";".
    fn is_empty(&self) -> bool;
}

impl BlockExt for Block {
    fn is_empty(&self) -> bool {
        if self.stmts.len() == 0 {
            return true;
        }
        if self.stmts.len() > 1 {
            return false;
        }

        if let Stmt::Item(item) = &self.stmts[0] {
            if let Item::Verbatim(token_stream) = item {
                token_stream.to_string().trim() == ";"
            } else {
                false
            }
        } else {
            false
        }
    }
}