ink_env/call/execution.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
// Copyright (C) Use Ink (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::{
utils::ReturnType,
Selector,
};
use crate::Environment;
/// The input data and the expected return type of a contract execution.
pub struct Execution<Args, Output> {
/// The input data for initiating a contract execution.
pub input: ExecutionInput<Args>,
/// The type of the expected return value of the contract execution.
pub output: ReturnType<Output>,
}
impl<Args, Output> Execution<Args, Output>
where
Args: scale::Encode,
Output: scale::Decode,
{
/// Construct a new contract execution with the given input data.
pub fn new(input: ExecutionInput<Args>) -> Self {
Self {
input,
output: ReturnType::default(),
}
}
/// Perform the execution of the contract with the given executor.
pub fn exec<I, E>(
self,
executor: &I,
) -> Result<ink_primitives::MessageResult<Output>, I::Error>
where
E: Environment,
I: Executor<E>,
{
executor.exec(&self.input)
}
}
/// Implemented in different environments to perform contract execution.
pub trait Executor<E: Environment> {
/// The type of the error that can be returned during execution.
type Error;
/// Perform the contract execution with the given input data, and return the result.
fn exec<Args, Output>(
&self,
input: &ExecutionInput<Args>,
) -> Result<ink_primitives::MessageResult<Output>, Self::Error>
where
Args: scale::Encode,
Output: scale::Decode;
}
/// The input data for a smart contract execution.
#[derive(Clone, Default, Debug)]
pub struct ExecutionInput<Args> {
/// The selector for the smart contract execution.
selector: Selector,
/// The arguments of the smart contract execution.
args: Args,
}
impl ExecutionInput<EmptyArgumentList> {
/// Creates a new execution input with the given selector.
#[inline]
pub fn new(selector: Selector) -> Self {
Self {
selector,
args: ArgumentList::empty(),
}
}
/// Pushes an argument to the execution input.
#[inline]
pub fn push_arg<T>(
self,
arg: T,
) -> ExecutionInput<ArgumentList<Argument<T>, EmptyArgumentList>>
where
T: scale::Encode,
{
ExecutionInput {
selector: self.selector,
args: self.args.push_arg(arg),
}
}
}
impl<Head, Rest> ExecutionInput<ArgumentList<Argument<Head>, Rest>> {
/// Pushes an argument to the execution input.
#[inline]
pub fn push_arg<T>(self, arg: T) -> ExecutionInput<ArgsList<T, ArgsList<Head, Rest>>>
where
T: scale::Encode,
{
ExecutionInput {
selector: self.selector,
args: self.args.push_arg(arg),
}
}
}
impl<Args> ExecutionInput<Args> {
/// Modify the selector.
///
/// Useful when using the [`ExecutionInput`] generated as part of the
/// `ContractRef`, but using a custom selector.
pub fn update_selector(&mut self, selector: Selector) {
self.selector = selector;
}
}
/// An argument list.
///
/// This type is constructed mainly at compile type via type constructions
/// to avoid having to allocate heap memory while constructing the encoded
/// arguments. The potentially heap allocating encoding is done right at the end
/// where we can leverage the static environmental buffer instead of allocating
/// heap memory.
#[derive(Clone, Default, Debug)]
pub struct ArgumentList<Head, Rest> {
/// The first argument of the argument list.
head: Head,
/// All the rest arguments.
rest: Rest,
}
/// Minor simplification of an argument list with a head and rest.
pub type ArgsList<Head, Rest> = ArgumentList<Argument<Head>, Rest>;
/// A single argument and its reference to a known value.
#[derive(Clone, Debug)]
pub struct Argument<T> {
/// The reference to the known value.
///
/// Used for the encoding at the end of the construction.
arg: T,
}
impl<T> Argument<T> {
/// Creates a new argument.
#[inline]
fn new(arg: T) -> Self {
Self { arg }
}
}
/// The end of an argument list.
#[derive(Clone, Default, Debug)]
pub struct ArgumentListEnd;
/// An empty argument list.
pub type EmptyArgumentList = ArgumentList<ArgumentListEnd, ArgumentListEnd>;
impl EmptyArgumentList {
/// Creates a new empty argument list.
#[inline]
pub fn empty() -> EmptyArgumentList {
ArgumentList {
head: ArgumentListEnd,
rest: ArgumentListEnd,
}
}
/// Pushes the first argument to the empty argument list.
#[inline]
pub fn push_arg<T>(self, arg: T) -> ArgumentList<Argument<T>, Self>
where
T: scale::Encode,
{
ArgumentList {
head: Argument::new(arg),
rest: self,
}
}
}
impl<Head, Rest> ArgumentList<Argument<Head>, Rest> {
/// Pushes another argument to the argument list.
#[inline]
pub fn push_arg<T>(self, arg: T) -> ArgumentList<Argument<T>, Self>
where
T: scale::Encode,
{
ArgumentList {
head: Argument::new(arg),
rest: self,
}
}
}
impl<T> scale::Encode for Argument<T>
where
T: scale::Encode,
{
#[inline]
fn size_hint(&self) -> usize {
<T as scale::Encode>::size_hint(&self.arg)
}
#[inline]
fn encode_to<O: scale::Output + ?Sized>(&self, output: &mut O) {
<T as scale::Encode>::encode_to(&self.arg, output)
}
}
impl scale::Encode for EmptyArgumentList {
#[inline]
fn size_hint(&self) -> usize {
0
}
#[inline]
fn encode_to<O: scale::Output + ?Sized>(&self, _output: &mut O) {}
}
impl<Head, Rest> scale::Encode for ArgumentList<Argument<Head>, Rest>
where
Head: scale::Encode,
Rest: scale::Encode,
{
#[inline]
fn size_hint(&self) -> usize {
scale::Encode::size_hint(&self.head)
.checked_add(scale::Encode::size_hint(&self.rest))
.unwrap()
}
#[inline]
fn encode_to<O: scale::Output + ?Sized>(&self, output: &mut O) {
// We reverse the order of encoding because we build up the list of
// arguments in reverse order, too. This way we encode the arguments
// in the same order in which they have been pushed to the argument list
// while the argument list itself organizes them in reverse order.
scale::Encode::encode_to(&self.rest, output);
scale::Encode::encode_to(&self.head, output);
}
}
impl<Args> scale::Encode for ExecutionInput<Args>
where
Args: scale::Encode,
{
#[inline]
fn size_hint(&self) -> usize {
scale::Encode::size_hint(&self.selector)
.checked_add(scale::Encode::size_hint(&self.args))
.unwrap()
}
#[inline]
fn encode_to<O: scale::Output + ?Sized>(&self, output: &mut O) {
scale::Encode::encode_to(&self.selector, output);
scale::Encode::encode_to(&self.args, output);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty_exec_input_works() {
let selector = Selector::new([0x01, 0x02, 0x03, 0x04]);
let exec_input = ExecutionInput::new(selector);
let encoded = scale::Encode::encode(&exec_input);
assert!(!encoded.is_empty());
let decoded = <Selector as scale::Decode>::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded, selector);
}
#[test]
fn empty_args_works() {
let empty_list = ArgumentList::empty();
let encoded = scale::Encode::encode(&empty_list);
assert_eq!(encoded, <Vec<u8>>::new());
}
#[test]
fn single_argument_works() {
let empty_list = ArgumentList::empty().push_arg(&1i32);
let encoded = scale::Encode::encode(&empty_list);
assert!(!encoded.is_empty());
let decoded = <i32 as scale::Decode>::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded, 1i32);
}
#[test]
fn multiple_arguments_works() {
let empty_list = ArgumentList::empty()
.push_arg(&42i32)
.push_arg(&true)
.push_arg(&[0x66u8; 4]);
let encoded = scale::Encode::encode(&empty_list);
assert!(!encoded.is_empty());
let decoded =
<(i32, bool, [u8; 4]) as scale::Decode>::decode(&mut &encoded[..]).unwrap();
assert_eq!(decoded, (42i32, true, [0x66; 4]));
}
}