intrusive_lru_cache/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
#![doc = include_str!("../README.md")]
#![no_std]
extern crate alloc;
use alloc::rc::Rc;
use core::borrow::Borrow;
use core::cell::UnsafeCell;
use intrusive_collections::intrusive_adapter;
use intrusive_collections::rbtree::Entry as RBTreeEntry;
use intrusive_collections::{KeyAdapter, LinkedList, LinkedListLink, RBTree, RBTreeLink};
// Because KeyAdapter returns a reference, and `find` uses the returned type as `K`,
// I ran into issues where `&K: Borrow<Q>` was not satisfied. Therefore, we need
// to convince the compiler that some `Q` can be borrowed from `&K` by using a
// transparent wrapper type for both halves, and casting `&Q` to `&Borrowed<Q>`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
struct Key<K>(K);
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
struct Borrowed<Q: ?Sized>(Q);
impl<'a, Q: ?Sized> Borrowed<Q> {
#[inline(always)]
const fn new(value: &'a Q) -> &'a Self {
// SAFETY: &Q == &Borrowed<Q> due to transparent repr
unsafe { core::mem::transmute(value) }
}
}
// Magic that allows `&K: Borrow<Q>` to be satisfied
impl<K, Q: ?Sized> Borrow<Borrowed<Q>> for Key<&K>
where
K: Borrow<Q>,
{
#[inline(always)]
fn borrow(&self) -> &Borrowed<Q> {
Borrowed::new(self.0.borrow())
}
}
struct Entry<K, V> {
list_link: LinkedListLink,
tree_link: RBTreeLink,
key: K,
value: UnsafeCell<V>,
}
impl<K, V> Entry<K, V> {
#[inline(always)]
fn new_rc(key: K, value: V) -> Rc<Self> {
Rc::new(Self {
list_link: LinkedListLink::new(),
tree_link: RBTreeLink::new(),
key,
value: UnsafeCell::new(value),
})
}
#[inline(always)]
fn value(&self) -> &V {
unsafe { &*self.value.get() }
}
/// SAFETY: Only use with exclusive access to the Entry
#[inline(always)]
unsafe fn replace_value(&self, value: V) -> V {
core::ptr::replace(self.value.get(), value)
}
}
intrusive_adapter!(EntryListAdapter<K, V> = Rc<Entry<K, V>>: Entry<K, V> { list_link: LinkedListLink });
intrusive_adapter!(EntryTreeAdapter<K, V> = Rc<Entry<K, V>>: Entry<K, V> { tree_link: RBTreeLink });
impl<'a, K: 'a, V> KeyAdapter<'a> for EntryTreeAdapter<K, V> {
type Key = Key<&'a K>; // Allows `Key<&K>: Borrow<Borrowed<Q>>`
#[inline(always)]
fn get_key(&self, value: &'a Entry<K, V>) -> Self::Key {
// SAFETY: &K == Key<&K> == &Key<K> due to transparent repr
unsafe { core::mem::transmute(&value.key) }
}
}
pub struct LRUCache<K, V> {
list: LinkedList<EntryListAdapter<K, V>>,
tree: RBTree<EntryTreeAdapter<K, V>>,
len: usize,
max_capacity: usize,
}
impl<K, V> LRUCache<K, V> {
/// Creates a new unbounded LRU cache.
///
/// This cache has no limit on the number of entries it can hold,
/// so entries must be manually removed via [`pop`](Self::pop),
/// or you can use [`set_max_capacity`](Self::set_max_capacity) to set a limit.
pub fn new() -> Self {
Self::new_with_max_capacity(usize::MAX)
}
/// Creates a new LRU cache with a maximum capacity, after which
/// old entries will be evicted to make room for new ones.
///
/// This does not preallocate any memory, only sets an upper limit.
pub fn new_with_max_capacity(max_capacity: usize) -> Self {
Self {
list: LinkedList::new(EntryListAdapter::new()),
tree: RBTree::new(EntryTreeAdapter::new()),
len: 0,
max_capacity,
}
}
}
impl<K, V> Default for LRUCache<K, V> {
fn default() -> Self {
Self::new()
}
}
impl<K, V> LRUCache<K, V>
where
K: Ord + 'static,
{
/// Returns a reference to the value corresponding to the key,
/// and bumps the key to the front of the LRU list.
pub fn get<'a, 'b, Q>(&'a mut self, key: &Q) -> Option<&'a V>
where
K: Borrow<Q>,
Q: Ord + ?Sized,
'a: 'b,
{
let entry = self.tree.find(Borrowed::new(key)).get()?;
let cursor = unsafe {
self.list
.cursor_mut_from_ptr(entry)
.remove()
.expect("tree and list are inconsistent")
};
self.list.front_mut().insert_before(cursor);
Some(entry.value())
}
/// Returns a reference to the value corresponding to the key,
/// without updating the LRU list.
pub fn peek<'a, 'b, Q>(&'a self, key: &Q) -> Option<&'a V>
where
K: Borrow<Q>,
Q: Ord + ?Sized,
'a: 'b,
{
self.tree
.find(Borrowed::new(key))
.get()
.map(|entry| entry.value())
}
/// Inserts a key-value pair into the cache, returning
/// the old value if the key was already present.
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
match self.tree.entry(Borrowed::new(&key)) {
RBTreeEntry::Occupied(cursor) => unsafe {
let entry = cursor.get().unwrap();
// NOTE: Treat cursor/entry as if it were mutable for replace_value
// since we can't ever actually acquire a mutable reference to the entry
// as per the restrictions of `intrusive_collections`
let old_value = Some(entry.replace_value(value));
let lru = self
.list
.cursor_mut_from_ptr(entry)
.remove()
.expect("tree and list are inconsistent");
self.list.push_front(lru);
old_value
},
RBTreeEntry::Vacant(cursor) => {
let entry = Entry::new_rc(key, value);
cursor.insert(entry.clone());
self.list.push_front(entry);
self.len += 1;
self.shrink();
None
}
}
}
/// Removes the value corresponding to the key from the cache,
/// and returning it if it was present.
pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Ord + ?Sized,
{
let entry = self.tree.find_mut(Borrowed::new(key)).remove()?;
let _ = unsafe {
self.list
.cursor_mut_from_ptr(&*entry)
.remove()
.expect("tree and list are inconsistent")
};
self.len -= 1;
let Ok(Entry { value, .. }) = Rc::try_unwrap(entry) else {
unreachable!("tree and list are inconsistent")
};
Some(value.into_inner())
}
}
impl<K, V> LRUCache<K, V> {
/// Sets the maximum capacity of the cache.
///
/// This does not remove any entries, but will cause the cache to evict
/// entries when inserting new ones if the length exceeds the new capacity.
///
/// Use [`shrink`](Self::shrink) to manually trigger removal of entries
/// to meet the new capacity.
pub fn set_max_capacity(&mut self, max_capacity: usize) {
self.max_capacity = max_capacity;
}
/// Removes entries from the cache until the length is less than or equal to the maximum capacity.
pub fn shrink(&mut self) {
while self.len > self.max_capacity {
let _ = self.pop();
}
}
/// Returns the number of key-value pairs in the cache.
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the cache is empty.
pub fn is_empty(&self) -> bool {
debug_assert_eq!(self.len == 0, self.list.is_empty());
self.len == 0
}
/// Removes and returns the least recently used key-value pair.
pub fn pop(&mut self) -> Option<(K, V)> {
let entry = self.list.pop_back()?;
let _ = unsafe {
self.tree
.cursor_mut_from_ptr(&*entry)
.remove()
.expect("tree and list are inconsistent")
};
self.len -= 1;
let Ok(Entry { key, value, .. }) = Rc::try_unwrap(entry) else {
unreachable!("tree and list are inconsistent")
};
Some((key, value.into_inner()))
}
}