ipc_channel/platform/windows/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
// Copyright 2016 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::ipc;
use bincode;
use lazy_static::lazy_static;
use serde;
use std::{
cell::{Cell, RefCell},
cmp::PartialEq,
convert::TryInto,
env,
ffi::CString,
fmt, io,
marker::{PhantomData, Send, Sync},
mem,
ops::{Deref, DerefMut, RangeFrom},
ptr, slice, thread,
time::Duration,
};
use uuid::Uuid;
use windows::{
core::{Error as WinError, PCSTR},
Win32::{
Foundation::{
CloseHandle, DuplicateHandle, GetLastError, DUPLICATE_CLOSE_SOURCE,
DUPLICATE_HANDLE_OPTIONS, DUPLICATE_SAME_ACCESS, ERROR_BROKEN_PIPE,
ERROR_IO_INCOMPLETE, ERROR_IO_PENDING, ERROR_NOT_FOUND, ERROR_NO_DATA,
ERROR_PIPE_CONNECTED, HANDLE, INVALID_HANDLE_VALUE, WAIT_TIMEOUT,
},
Storage::FileSystem::{
CreateFileA, ReadFile, WriteFile, FILE_ATTRIBUTE_NORMAL, FILE_FLAG_OVERLAPPED,
FILE_GENERIC_WRITE, FILE_SHARE_MODE, OPEN_EXISTING, PIPE_ACCESS_INBOUND,
},
System::{
Memory::{
CreateFileMappingA, MapViewOfFile, UnmapViewOfFile, FILE_MAP_ALL_ACCESS,
MEMORY_MAPPED_VIEW_ADDRESS, PAGE_READWRITE, SEC_COMMIT,
},
Pipes::{
ConnectNamedPipe, CreateNamedPipeA, GetNamedPipeServerProcessId,
PIPE_READMODE_BYTE, PIPE_REJECT_REMOTE_CLIENTS, PIPE_TYPE_BYTE,
},
Threading::{
CreateEventA, GetCurrentProcess, GetCurrentProcessId, OpenProcess, ResetEvent,
INFINITE, PROCESS_DUP_HANDLE,
},
IO::{
CancelIoEx, CreateIoCompletionPort, GetOverlappedResult, GetOverlappedResultEx,
GetQueuedCompletionStatus, OVERLAPPED,
},
},
},
};
#[cfg(feature = "windows-shared-memory-equality")]
use windows::Win32::{
Foundation::BOOL,
System::LibraryLoader::{GetProcAddress, LoadLibraryA},
};
mod aliased_cell;
use self::aliased_cell::AliasedCell;
lazy_static! {
static ref CURRENT_PROCESS_ID: u32 = unsafe { GetCurrentProcessId() };
static ref CURRENT_PROCESS_HANDLE: WinHandle = WinHandle::new(unsafe { GetCurrentProcess() });
}
// Added to overcome build error where Box<OVERLAPPED> was used and
// struct had a trait of #[derive(Debug)]. Adding NoDebug<> overrode the Debug() trait.
// e.g. - NoDebug<Box<OVERLAPPED>>,
struct NoDebug<T>(T);
impl<T> Deref for NoDebug<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T> DerefMut for NoDebug<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.0
}
}
impl<T> fmt::Debug for NoDebug<T> {
fn fmt(&self, _f: &mut fmt::Formatter) -> fmt::Result {
Ok(())
}
}
lazy_static! {
static ref DEBUG_TRACE_ENABLED: bool = env::var_os("IPC_CHANNEL_WIN_DEBUG_TRACE").is_some();
}
/// Debug macro to better track what's going on in case of errors.
macro_rules! win32_trace {
($($rest:tt)*) => {
if cfg!(feature = "win32-trace") {
if *DEBUG_TRACE_ENABLED { println!($($rest)*); }
}
}
}
/// When we create the pipe, how big of a write buffer do we specify?
///
/// This is reserved in the nonpaged pool. The fragment size is the
/// max we can write to the pipe without fragmentation, and the
/// buffer size is what we tell the pipe it is, so we have room
/// for out of band data etc.
const MAX_FRAGMENT_SIZE: usize = 64 * 1024;
/// Size of the pipe's write buffer, with excess room for the header.
const PIPE_BUFFER_SIZE: usize = MAX_FRAGMENT_SIZE + 4 * 1024;
pub fn channel() -> Result<(OsIpcSender, OsIpcReceiver), WinError> {
let pipe_id = make_pipe_id();
let pipe_name = make_pipe_name(&pipe_id);
let receiver = OsIpcReceiver::new_named(&pipe_name)?;
let sender = OsIpcSender::connect_named(&pipe_name)?;
Ok((sender, receiver))
}
struct MessageHeader {
data_len: u32,
oob_len: u32,
}
impl MessageHeader {
fn total_message_bytes_needed(&self) -> usize {
mem::size_of::<MessageHeader>() + self.data_len as usize + self.oob_len as usize
}
}
struct Message<'data> {
data_len: usize,
oob_len: usize,
bytes: &'data [u8],
}
impl<'data> Message<'data> {
fn from_bytes(bytes: &'data [u8]) -> Option<Message> {
if bytes.len() < mem::size_of::<MessageHeader>() {
return None;
}
unsafe {
let ref header = *(bytes.as_ptr() as *const MessageHeader);
if bytes.len() < header.total_message_bytes_needed() {
return None;
}
Some(Message {
data_len: header.data_len as usize,
oob_len: header.oob_len as usize,
bytes: &bytes[0..header.total_message_bytes_needed()],
})
}
}
fn data(&self) -> &[u8] {
&self.bytes
[mem::size_of::<MessageHeader>()..(mem::size_of::<MessageHeader>() + self.data_len)]
}
fn oob_bytes(&self) -> &[u8] {
&self.bytes[(mem::size_of::<MessageHeader>() + self.data_len)..]
}
fn oob_data(&self) -> Option<OutOfBandMessage> {
if self.oob_len > 0 {
let oob = bincode::deserialize::<OutOfBandMessage>(self.oob_bytes())
.expect("Failed to deserialize OOB data");
if oob.target_process_id != *CURRENT_PROCESS_ID {
panic!("Windows IPC channel received handles intended for pid {}, but this is pid {}. \
This likely happened because a receiver was transferred while it had outstanding data \
that contained a channel or shared memory in its pipe. \
This isn't supported in the Windows implementation.",
oob.target_process_id, *CURRENT_PROCESS_ID);
}
Some(oob)
} else {
None
}
}
fn size(&self) -> usize {
mem::size_of::<MessageHeader>() + self.data_len + self.oob_len
}
}
/// If we have any channel handles or shmem segments, then we'll send an
/// OutOfBandMessage after the data message.
///
/// This includes the receiver's process ID, which the receiver checks to
/// make sure that the message was originally sent to it, and was not sitting
/// in another channel's buffer when that channel got transferred to another
/// process. On Windows, we duplicate handles on the sender side to a specific
/// receiver. If the wrong receiver gets it, those handles are not valid.
///
/// TODO(vlad): We could attempt to recover from the above situation by
/// duplicating from the intended target process to ourselves (the receiver).
/// That would only work if the intended process a) still exists; b) can be
/// opened by the receiver with handle dup privileges. Another approach
/// could be to use a separate dedicated process intended purely for handle
/// passing, though that process would need to be global to any processes
/// amongst which you want to share channels or connect one-shot servers to.
/// There may be a system process that we could use for this purpose, but
/// I haven't found one -- and in the system process case, we'd need to ensure
/// that we don't leak the handles (e.g. dup a handle to the system process,
/// and then everything dies -- we don't want those resources to be leaked).
#[derive(Debug)]
struct OutOfBandMessage {
target_process_id: u32,
channel_handles: Vec<isize>,
shmem_handles: Vec<(isize, u64)>, // handle and size
big_data_receiver_handle: Option<(isize, u64)>, // handle and size
}
impl OutOfBandMessage {
fn new(target_id: u32) -> OutOfBandMessage {
OutOfBandMessage {
target_process_id: target_id,
channel_handles: vec![],
shmem_handles: vec![],
big_data_receiver_handle: None,
}
}
fn needs_to_be_sent(&self) -> bool {
!self.channel_handles.is_empty()
|| !self.shmem_handles.is_empty()
|| self.big_data_receiver_handle.is_some()
}
}
impl serde::Serialize for OutOfBandMessage {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
((
self.target_process_id,
&self.channel_handles,
&self.shmem_handles,
&self.big_data_receiver_handle,
))
.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for OutOfBandMessage {
fn deserialize<D>(deserializer: D) -> Result<OutOfBandMessage, D::Error>
where
D: serde::Deserializer<'de>,
{
let (target_process_id, channel_handles, shmem_handles, big_data_receiver_handle) =
serde::Deserialize::deserialize(deserializer)?;
Ok(OutOfBandMessage {
target_process_id: target_process_id,
channel_handles: channel_handles,
shmem_handles: shmem_handles,
big_data_receiver_handle: big_data_receiver_handle,
})
}
}
fn make_pipe_id() -> Uuid {
Uuid::new_v4()
}
fn make_pipe_name(pipe_id: &Uuid) -> CString {
CString::new(format!("\\\\.\\pipe\\rust-ipc-{}", pipe_id.to_string())).unwrap()
}
/// Duplicate a given handle from this process to the target one, passing the
/// given flags to DuplicateHandle.
///
/// Unlike win32 DuplicateHandle, this will preserve INVALID_HANDLE_VALUE (which is
/// also the pseudohandle for the current process).
fn dup_handle_to_process_with_flags(
handle: &WinHandle,
other_process: &WinHandle,
flags: DUPLICATE_HANDLE_OPTIONS,
) -> Result<WinHandle, WinError> {
if !handle.is_valid() {
return Ok(WinHandle::invalid());
}
unsafe {
let mut new_handle: HANDLE = INVALID_HANDLE_VALUE;
DuplicateHandle(
CURRENT_PROCESS_HANDLE.as_raw(),
handle.as_raw(),
other_process.as_raw(),
&mut new_handle,
0,
false,
flags,
)
.map(|()| WinHandle::new(new_handle))
}
}
/// Duplicate a handle in the current process.
fn dup_handle(handle: &WinHandle) -> Result<WinHandle, WinError> {
dup_handle_to_process(handle, &WinHandle::new(CURRENT_PROCESS_HANDLE.as_raw()))
}
/// Duplicate a handle to the target process.
fn dup_handle_to_process(
handle: &WinHandle,
other_process: &WinHandle,
) -> Result<WinHandle, WinError> {
dup_handle_to_process_with_flags(handle, other_process, DUPLICATE_SAME_ACCESS)
}
/// Duplicate a handle to the target process, closing the source handle.
fn move_handle_to_process(
handle: WinHandle,
other_process: &WinHandle,
) -> Result<WinHandle, WinError> {
let result = dup_handle_to_process_with_flags(
&handle,
other_process,
DUPLICATE_CLOSE_SOURCE | DUPLICATE_SAME_ACCESS,
);
// Since the handle was moved to another process, the original is no longer valid;
// so we probably shouldn't try to close it explicitly?
mem::forget(handle);
result
}
#[derive(Debug)]
struct WinHandle {
h: HANDLE,
}
unsafe impl Send for WinHandle {}
unsafe impl Sync for WinHandle {}
impl Drop for WinHandle {
fn drop(&mut self) {
unsafe {
if self.is_valid() {
let result = CloseHandle(self.h);
assert!(result.is_ok() || thread::panicking());
}
}
}
}
impl Default for WinHandle {
fn default() -> WinHandle {
WinHandle {
h: INVALID_HANDLE_VALUE,
}
}
}
const WINDOWS_APP_MODULE_NAME: &'static str = "api-ms-win-core-handle-l1-1-0";
const COMPARE_OBJECT_HANDLES_FUNCTION_NAME: &'static str = "CompareObjectHandles";
lazy_static! {
static ref WINDOWS_APP_MODULE_NAME_CSTRING: CString =
CString::new(WINDOWS_APP_MODULE_NAME).unwrap();
static ref COMPARE_OBJECT_HANDLES_FUNCTION_NAME_CSTRING: CString =
CString::new(COMPARE_OBJECT_HANDLES_FUNCTION_NAME).unwrap();
}
#[cfg(feature = "windows-shared-memory-equality")]
impl PartialEq for WinHandle {
fn eq(&self, other: &WinHandle) -> bool {
unsafe {
// Calling LoadLibraryA every time seems to be ok since libraries are refcounted and multiple calls won't produce multiple instances.
let module_handle = LoadLibraryA(PCSTR::from_raw(
WINDOWS_APP_MODULE_NAME_CSTRING.as_ptr() as *const u8,
))
.unwrap_or_else(|e| panic!("Error loading library {}. {}", WINDOWS_APP_MODULE_NAME, e));
let proc = GetProcAddress(
module_handle,
PCSTR::from_raw(COMPARE_OBJECT_HANDLES_FUNCTION_NAME_CSTRING.as_ptr() as *const u8),
)
.unwrap_or_else(|| {
panic!(
"Error calling GetProcAddress to use {}. {:?}",
COMPARE_OBJECT_HANDLES_FUNCTION_NAME,
WinError::from_win32()
)
});
let compare_object_handles: unsafe extern "stdcall" fn(HANDLE, HANDLE) -> BOOL =
std::mem::transmute(proc);
compare_object_handles(self.h, other.h).into()
}
}
}
impl WinHandle {
fn new(h: HANDLE) -> WinHandle {
WinHandle { h: h }
}
fn invalid() -> WinHandle {
WinHandle {
h: INVALID_HANDLE_VALUE,
}
}
fn is_valid(&self) -> bool {
self.h != INVALID_HANDLE_VALUE
}
fn as_raw(&self) -> HANDLE {
self.h
}
fn take_raw(&mut self) -> HANDLE {
mem::replace(&mut self.h, INVALID_HANDLE_VALUE)
}
fn take(&mut self) -> WinHandle {
WinHandle::new(self.take_raw())
}
}
/// Helper struct for all data being aliased by the kernel during async reads.
#[derive(Debug)]
struct AsyncData {
/// File handle of the pipe on which the async operation is performed.
handle: WinHandle,
/// Meta-data for this async read operation, filled by the kernel.
///
/// This must be on the heap, in order for its memory location --
/// which is registered in the kernel during an async read --
/// to remain stable even when the enclosing structure is passed around.
ov: NoDebug<Box<Overlapped>>,
/// Buffer for the kernel to store the results of the async read operation.
///
/// The vector provided here needs to have some allocated yet unused space,
/// i.e. `capacity()` needs to be larger than `len()`.
/// If part of the vector is already filled, that is left in place;
/// the new data will only be written to the unused space.
buf: Vec<u8>,
}
#[repr(transparent)]
struct Overlapped(OVERLAPPED);
impl Drop for Overlapped {
fn drop(&mut self) {
unsafe {
if !self.0.hEvent.is_invalid() {
let result = CloseHandle(self.0.hEvent);
assert!(result.is_ok() || thread::panicking());
}
}
}
}
impl Overlapped {
fn new(ov: OVERLAPPED) -> Self {
Self(ov)
}
}
impl Deref for Overlapped {
type Target = OVERLAPPED;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Overlapped {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// Main object keeping track of a receive handle and its associated state.
///
/// Implements blocking/nonblocking reads of messages from the handle.
#[derive(Debug)]
struct MessageReader {
/// The pipe read handle.
///
/// Note: this is only set while no async read operation
/// is currently in progress with the kernel.
/// When an async read is in progress,
/// it is moved into the `async` sub-structure (see below)
/// along with the other fields used for the async operation,
/// to make sure they all stay in sync,
/// and nothing else can meddle with the the pipe
/// until the operation is completed.
handle: WinHandle,
/// Buffer for outstanding data, that has been received but not yet processed.
///
/// Note: just like `handle` above,
/// this is only set while no async read is in progress.
/// When an async read is in progress,
/// the receive buffer is aliased by the kernel;
/// so we need to temporarily move it into an `AliasedCell`,
/// thus making it inaccessible from safe code --
/// see `async` below.
/// We only move it back once the kernel signals completion of the async read.
read_buf: Vec<u8>,
/// Data used by the kernel during an async read operation.
///
/// Note: Since this field only has a value
/// when an async read operation is in progress
/// (i.e. has been issued to the system, and not completed yet),
/// this also serves as an indicator of the latter.
///
/// WARNING: As the kernel holds mutable aliases of this data
/// while an async read is in progress,
/// it is crucial that it is never accessed in user space
/// from the moment we issue an async read in `start_read()`,
/// until the moment we process the event
/// signalling completion of the async read in `notify_completion()`.
///
/// Since Rust's type system is not aware of the kernel aliases,
/// the compiler cannot guarantee exclusive access the way it normally would,
/// i.e. any access to this value is inherently unsafe!
/// We thus wrap it in an `AliasedCell`,
/// making sure the data is only accessible from code marked `unsafe`;
/// and only move it out when the kernel signals that the async read is done.
r#async: Option<AliasedCell<AsyncData>>,
/// Token identifying the reader/receiver within an `OsIpcReceiverSet`.
///
/// This is returned to callers of `OsIpcReceiverSet.add()` and `OsIpcReceiverSet.select()`.
///
/// `None` if this `MessageReader` is not part of any set.
entry_id: Option<u64>,
}
// We need to explicitly declare this, because of the raw pointer
// contained in the `OVERLAPPED` structure.
//
// Note: the `Send` claim is only really fulfilled
// as long as nothing can ever alias the aforementioned raw pointer.
// As explained in the documentation of the `async` field,
// this is a tricky condition (because of kernel aliasing),
// which we however need to uphold regardless of the `Send` property --
// so claiming `Send` should not introduce any additional issues.
unsafe impl Send for OsIpcReceiver {}
impl Drop for MessageReader {
fn drop(&mut self) {
// Before dropping the `ov` structure and read buffer,
// make sure the kernel won't do any more async updates to them!
self.cancel_io();
}
}
impl MessageReader {
fn new(handle: WinHandle) -> MessageReader {
MessageReader {
handle,
read_buf: Vec::new(),
r#async: None,
entry_id: None,
}
}
fn take(&mut self) -> MessageReader {
// This is currently somewhat inefficient,
// because of the initialisation of things that won't be used.
// Moving the data items of `MessageReader` into an enum will fix this,
// as that way we will be able to just define a data-less `Invalid` case.
mem::replace(self, MessageReader::new(WinHandle::invalid()))
}
/// Request the kernel to cancel a pending async I/O operation on this reader.
///
/// Note that this only schedules the cancel request;
/// but doesn't guarantee that the operation is done
/// (and the buffers are no longer used by the kernel)
/// before this method returns.
///
/// A caller that wants to ensure the operation is really done,
/// will need to wait using `fetch_async_result()`.
/// (Or `fetch_iocp_result()` for readers in a set.)
///
/// The only exception is if the kernel indicates
/// that no operation was actually outstanding at this point.
/// In that case, the `async` data is released immediately;
/// and the caller should not attempt waiting for completion.
fn issue_async_cancel(&mut self) {
unsafe {
let result = CancelIoEx(
self.r#async.as_ref().unwrap().alias().handle.as_raw(),
self.r#async
.as_ref()
.map(|a| std::ptr::addr_of!(a.alias().ov.0.deref().0)),
);
if let Err(error) = result {
// A cancel operation is not expected to fail.
// If it does, callers are not prepared for that -- so we have to bail.
//
// Note that we should never ignore a failed cancel,
// since that would affect further operations;
// and the caller definitely must not free the aliased data in that case!
//
// Sometimes `CancelIoEx()` fails with `ERROR_NOT_FOUND` though,
// meaning there is actually no async operation outstanding at this point.
// (Specifically, this is triggered by the `receiver_set_big_data()` test.)
// Not sure why that happens -- but I *think* it should be benign...
//
// In that case, we can safely free the async data right now;
// and the caller should not attempt to wait for completion.
assert!(error.code() == ERROR_NOT_FOUND.to_hresult());
let async_data = self.r#async.take().unwrap().into_inner();
self.handle = async_data.handle;
self.read_buf = async_data.buf;
}
}
}
fn cancel_io(&mut self) {
if self.r#async.is_some() {
// This doesn't work for readers in a receiver set.
// (`fetch_async_result()` would hang indefinitely.)
// Receiver sets have to handle cancellation specially,
// and make sure they always do that *before* dropping readers.
assert!(self.entry_id.is_none());
self.issue_async_cancel();
// If there is an operation still in flight, wait for it to complete.
//
// This will usually fail with `ERROR_OPERATION_ABORTED`;
// but it could also return success, or some other error,
// if the operation actually completed in the mean time.
// We don't really care either way --
// we just want to be certain there is no operation in flight any more.
if self.r#async.is_some() {
let _ = self.fetch_async_result(BlockingMode::Blocking);
}
}
}
/// Kick off an asynchronous read.
///
/// When an async read is started successfully,
/// the receive buffer is moved out of `read_buf`
/// into the `AliasedCell<>` in `async`,
/// thus making it inaccessible from safe code;
/// it will only be moved back in `notify_completion()`.
/// (See documentation of the `read_buf` and `async` fields.)
fn start_read(&mut self) -> Result<(), WinIpcError> {
// Nothing needs to be done if an async read operation is already in progress.
if self.r#async.is_some() {
return Ok(());
}
win32_trace!("[$ {:?}] start_read", self.handle);
if self.read_buf.len() == self.read_buf.capacity() {
self.read_buf.reserve(PIPE_BUFFER_SIZE);
}
unsafe {
// Temporarily extend the vector to span its entire capacity,
// so we can safely sub-slice it for the actual read.
let buf_len = self.read_buf.len();
let buf_cap = self.read_buf.capacity();
self.read_buf.set_len(buf_cap);
// issue the read to the buffer, at the current length offset
self.r#async = Some(AliasedCell::new(AsyncData {
handle: self.handle.take(),
ov: NoDebug(Box::new({
let mut overlapped: OVERLAPPED = mem::zeroed();
// Create a manually reset event. The documentation for GetOverlappedResultEx
// states you must do this in the remarks section.
overlapped.hEvent = CreateEventA(None, true, false, None)?;
Overlapped::new(overlapped)
})),
buf: mem::replace(&mut self.read_buf, vec![]),
}));
let result = {
let async_data = self.r#async.as_mut().unwrap().alias_mut();
let remaining_buf = &mut async_data.buf[buf_len..];
ReadFile(
async_data.handle.as_raw(),
Some(remaining_buf),
None,
Some(&mut ***async_data.ov.deref_mut()),
)
};
// Reset the vector to only expose the already filled part.
//
// This means that the async read
// will actually fill memory beyond the exposed part of the vector.
// While this use of a vector is officially sanctioned for such cases,
// it still feel rather icky to me...
//
// On the other hand, this way we make sure
// the buffer never appears to have more valid data
// than what is actually present,
// which could pose a potential danger in its own right.
// Also, it avoids the need to keep a separate state variable --
// which would bear some risk of getting out of sync.
self.r#async
.as_mut()
.unwrap()
.alias_mut()
.buf
.set_len(buf_len);
match result.as_ref().map_err(|e| e.code()) {
// Normally, for an async operation, a call like
// `ReadFile` would return `false`, and the error code
// would be `ERROR_IO_PENDING`. But in some situations,
// `ReadFile` can complete synchronously (returns `true`).
// Even if it does, a notification that the IO completed
// is still sent to the IO completion port that this
// handle is part of, meaning that we don't have to do any
// special handling for sync-completed operations.
Ok(_) => Ok(()),
Err(err) => {
if err == ERROR_IO_PENDING.to_hresult() {
Ok(())
} else if err == ERROR_BROKEN_PIPE.to_hresult() {
win32_trace!("[$ {:?}] BROKEN_PIPE straight from ReadFile", self.handle);
let async_data = self.r#async.take().unwrap().into_inner();
self.handle = async_data.handle;
self.read_buf = async_data.buf;
Err(WinIpcError::ChannelClosed)
} else {
let async_data = self.r#async.take().unwrap().into_inner();
self.handle = async_data.handle;
self.read_buf = async_data.buf;
result.map_err(|e| e.into())
}
},
}
}
}
/// Called when we receive an IO Completion Packet for this handle.
///
/// During its course, this method moves `async.buf` back into `read_buf`,
/// thus making it accessible from normal code again;
/// so `get_message()` can extract the received messages from the buffer.
///
/// Invoking this is unsafe, since calling it in error
/// while an async read is actually still in progress in the kernel
/// would have catastrophic effects,
/// as the `async` data is still mutably aliased by the kernel in that case!
/// (See documentation of the `async` field.)
///
/// Also, this method relies on `async` actually having valid data,
/// i.e. nothing should modify its constituent fields
/// between receiving the completion notification from the kernel
/// and invoking this method.
unsafe fn notify_completion(
&mut self,
io_result: Result<(), WinError>,
) -> Result<(), WinIpcError> {
win32_trace!(
"[$ {:?}] notify_completion",
self.r#async.as_ref().unwrap().alias().handle
);
// Regardless whether the kernel reported success or error,
// it doesn't have an async read operation in flight at this point anymore.
// (And it's safe again to access the `async` data.)
let async_data = self.r#async.take().unwrap().into_inner();
self.handle = async_data.handle;
let ov = async_data.ov;
self.read_buf = async_data.buf;
match io_result {
Ok(()) => {},
Err(err) => {
if err.code() == ERROR_BROKEN_PIPE.to_hresult() {
// Remote end closed the channel.
return Err(WinIpcError::ChannelClosed);
}
return Err(err.into());
},
}
let nbytes = ov.InternalHigh as u32;
let offset = ov.Anonymous.Anonymous.Offset;
assert!(offset == 0);
let new_size = self.read_buf.len() + nbytes as usize;
win32_trace!(
"nbytes: {}, offset {}, buf len {}->{}, capacity {}",
nbytes,
offset,
self.read_buf.len(),
new_size,
self.read_buf.capacity()
);
assert!(new_size <= self.read_buf.capacity());
self.read_buf.set_len(new_size);
Ok(())
}
/// Attempt to conclude an already issued async read operation.
///
/// If successful, the result will be ready for picking up by `get_message()`.
///
/// (`get_message()` might still yield nothing though,
/// in case only part of the message was received in this read,
/// and further read operations are necessary to get the rest.)
///
/// In non-blocking mode, this may return with `WinError:NoData`,
/// while the async operation remains in flight.
/// The read buffer remains unavailable in that case,
/// since it's still aliased by the kernel.
/// (And there is nothing new to pick up anyway.)
/// It will only become available again
/// when `fetch_async_result()` returns successfully upon retry.
/// (Or the async read is aborted with `cancel_io()`.)
fn fetch_async_result(&mut self, blocking_mode: BlockingMode) -> Result<(), WinIpcError> {
unsafe {
// Get the overlapped result, blocking if we need to.
let mut nbytes: u32 = 0;
let timeout = match blocking_mode {
BlockingMode::Blocking => INFINITE,
BlockingMode::Nonblocking => 0,
BlockingMode::Timeout(duration) => {
duration.as_millis().try_into().unwrap_or(INFINITE)
},
};
let result = GetOverlappedResultEx(
self.r#async.as_ref().unwrap().alias().handle.as_raw(),
&mut ***self.r#async.as_mut().unwrap().alias_mut().ov.deref_mut(),
&mut nbytes,
timeout,
false,
);
let _ = ResetEvent(
self.r#async
.as_mut()
.unwrap()
.alias_mut()
.ov
.deref_mut()
.hEvent,
);
let io_result = if result.is_err() {
let err = GetLastError();
if blocking_mode != BlockingMode::Blocking && err == ERROR_IO_INCOMPLETE {
// Async read hasn't completed yet.
// Inform the caller, while keeping the read in flight.
return Err(WinIpcError::NoData);
}
// Timeout has elapsed, so we must cancel the read operation before proceeding
if err.0 == WAIT_TIMEOUT.0 {
self.cancel_io();
return Err(WinIpcError::NoData);
}
// We pass err through to notify_completion so
// that it can handle other errors.
Err(WinError::new(err.to_hresult(), ""))
} else {
Ok(())
};
// Notify that the read completed, which will update the
// read pointers
self.notify_completion(io_result)
}
}
fn get_message(
&mut self,
) -> Result<Option<(Vec<u8>, Vec<OsOpaqueIpcChannel>, Vec<OsIpcSharedMemory>)>, WinIpcError>
{
// Never touch the buffer while it's still mutably aliased by the kernel!
if self.r#async.is_some() {
return Ok(None);
}
let drain_bytes;
let result;
if let Some(message) = Message::from_bytes(&self.read_buf) {
let mut channels: Vec<OsOpaqueIpcChannel> = vec![];
let mut shmems: Vec<OsIpcSharedMemory> = vec![];
let mut big_data = None;
if let Some(oob) = message.oob_data() {
win32_trace!("[$ {:?}] msg with total {} bytes, {} channels, {} shmems, big data handle {:?}",
self.handle, message.data_len, oob.channel_handles.len(), oob.shmem_handles.len(),
oob.big_data_receiver_handle);
for handle in oob.channel_handles {
channels.push(OsOpaqueIpcChannel::new(WinHandle::new(HANDLE(handle as _))));
}
for (handle, size) in oob.shmem_handles {
shmems.push(
OsIpcSharedMemory::from_handle(
WinHandle::new(HANDLE(handle as _)),
size as usize,
)
.unwrap(),
);
}
if oob.big_data_receiver_handle.is_some() {
let (handle, big_data_size) = oob.big_data_receiver_handle.unwrap();
let receiver = OsIpcReceiver::from_handle(WinHandle::new(HANDLE(handle as _)));
big_data = Some(receiver.recv_raw(big_data_size as usize)?);
}
}
let buf_data = big_data.unwrap_or_else(|| message.data().to_vec());
win32_trace!(
"[$ {:?}] get_message success -> {} bytes, {} channels, {} shmems",
self.handle,
buf_data.len(),
channels.len(),
shmems.len()
);
drain_bytes = Some(message.size());
result = Some((buf_data, channels, shmems));
} else {
drain_bytes = None;
result = None;
}
if let Some(size) = drain_bytes {
// If the only valid bytes in the buffer are what we just
// consumed, then just set the vector's length to 0. This
// avoids reallocations as in the drain() case, and is
// a significant speedup.
if self.read_buf.len() == size {
self.read_buf.clear();
} else {
self.read_buf.drain(0..size);
}
}
Ok(result)
}
fn add_to_iocp(&mut self, iocp: &WinHandle, entry_id: u64) -> Result<(), WinIpcError> {
unsafe {
assert!(self.entry_id.is_none());
let completion_key = self.handle.as_raw().0;
CreateIoCompletionPort(
self.handle.as_raw(),
iocp.as_raw(),
completion_key as usize,
0,
)?;
}
self.entry_id = Some(entry_id);
// The readers in the IOCP need to have async reads in flight,
// so they can actually get completion events --
// otherwise, a subsequent `select()` call would just hang indefinitely.
self.start_read()
}
/// Specialized read for out-of-band data ports.
///
/// Here the buffer size is known in advance,
/// and the transfer doesn't have our typical message framing.
///
/// It's only valid to call this as the one and only call after creating a MessageReader.
fn read_raw_sized(mut self, size: usize) -> Result<Vec<u8>, WinIpcError> {
assert!(self.read_buf.len() == 0);
self.read_buf.reserve(size);
while self.read_buf.len() < size {
// Because our handle is asynchronous, we have to do a two-part read --
// first issue the operation, then wait for its completion.
match self.start_read() {
Err(WinIpcError::ChannelClosed) => {
// If the helper channel closes unexpectedly
// (i.e. before supplying the expected amount of data),
// don't report that as a "sender closed" condition on the main channel:
// rather, fail with the actual raw error code.
return Err(WinError::new(ERROR_BROKEN_PIPE.to_hresult(), "ReadFile").into());
},
Err(err) => return Err(err),
Ok(()) => {},
};
match self.fetch_async_result(BlockingMode::Blocking) {
Err(WinIpcError::ChannelClosed) => {
return Err(WinError::new(ERROR_BROKEN_PIPE.to_hresult(), "ReadFile").into());
},
Err(err) => return Err(err),
Ok(()) => {},
};
}
Ok(mem::replace(&mut self.read_buf, vec![]))
}
/// Get raw handle of the receive port.
///
/// This is only for debug tracing purposes, and must not be used for anything else.
fn get_raw_handle(&self) -> HANDLE {
self.handle.as_raw()
}
}
#[derive(Clone, Copy, Debug)]
enum AtomicMode {
Atomic,
Nonatomic,
}
/// Write data to a handle.
///
/// In `Atomic` mode, this panics if the data can't be written in a single system call.
fn write_buf(handle: &WinHandle, bytes: &[u8], atomic: AtomicMode) -> Result<(), WinError> {
let total = bytes.len();
if total == 0 {
return Ok(());
}
let mut written = 0;
while written < total {
let mut sz: u32 = 0;
let bytes_to_write = &bytes[written..];
unsafe { WriteFile(handle.as_raw(), Some(bytes_to_write), Some(&mut sz), None)? }
written += sz as usize;
match atomic {
AtomicMode::Atomic => {
if written != total {
panic!("Windows IPC write_buf expected to write full buffer, but only wrote partial (wrote {} out of {} bytes)", written, total);
}
},
AtomicMode::Nonatomic => {
win32_trace!(
"[c {:?}] ... wrote {} bytes, total {}/{} err {}",
handle.as_raw(),
sz,
written,
total,
WinError::from_win32()
);
},
}
}
Ok(())
}
#[derive(Clone, Copy, Debug, PartialEq)]
enum BlockingMode {
Blocking,
Nonblocking,
Timeout(Duration),
}
#[derive(Debug)]
pub struct OsIpcReceiver {
/// The receive handle and its associated state.
///
/// We can't just deal with raw handles like in the other platform back-ends,
/// since this implementation -- using plain pipes with no native packet handling --
/// requires keeping track of various bits of receiver state,
/// which must not be separated from the handle itself.
///
/// Note: Inner mutability is necessary,
/// since the `consume()` method needs to move out the reader
/// despite only getting a shared reference to `self`.
reader: RefCell<MessageReader>,
}
#[cfg(feature = "windows-shared-memory-equality")]
impl PartialEq for OsIpcReceiver {
fn eq(&self, other: &OsIpcReceiver) -> bool {
self.reader.borrow().handle == other.reader.borrow().handle
}
}
impl OsIpcReceiver {
fn from_handle(handle: WinHandle) -> OsIpcReceiver {
OsIpcReceiver {
reader: RefCell::new(MessageReader::new(handle)),
}
}
fn new_named(pipe_name: &CString) -> Result<OsIpcReceiver, WinError> {
unsafe {
// create the pipe server
let handle = CreateNamedPipeA(
PCSTR::from_raw(pipe_name.as_ptr() as *const u8),
PIPE_ACCESS_INBOUND | FILE_FLAG_OVERLAPPED,
PIPE_TYPE_BYTE | PIPE_READMODE_BYTE | PIPE_REJECT_REMOTE_CLIENTS,
// 1 max instance of this pipe
1,
// out/in buffer sizes
0,
PIPE_BUFFER_SIZE as u32,
0, // default timeout for WaitNamedPipe (0 == 50ms as default)
None,
)?;
Ok(OsIpcReceiver {
reader: RefCell::new(MessageReader::new(WinHandle::new(handle))),
})
}
}
fn prepare_for_transfer(&self) -> Result<bool, WinError> {
let mut reader = self.reader.borrow_mut();
// cancel any outstanding IO request
reader.cancel_io();
// this is only okay if we have nothing in the read buf
Ok(reader.read_buf.is_empty())
}
pub fn consume(&self) -> OsIpcReceiver {
let mut reader = self.reader.borrow_mut();
assert!(reader.r#async.is_none());
OsIpcReceiver::from_handle(reader.handle.take())
}
// This is only used for recv/try_recv/try_recv_timeout. When this is added to an IpcReceiverSet, then
// the implementation in select() is used. It does much the same thing, but across multiple
// channels.
fn receive_message(
&self,
mut blocking_mode: BlockingMode,
) -> Result<(Vec<u8>, Vec<OsOpaqueIpcChannel>, Vec<OsIpcSharedMemory>), WinIpcError> {
let mut reader = self.reader.borrow_mut();
assert!(
reader.entry_id.is_none(),
"receive_message is only valid before this OsIpcReceiver was added to a Set"
);
// This function loops, because in the case of a blocking read, we may need to
// read multiple sets of bytes from the pipe to receive a complete message.
loop {
// First, try to fetch a message, in case we have one pending
// in the reader's receive buffer
if let Some((data, channels, shmems)) = reader.get_message()? {
return Ok((data, channels, shmems));
}
// Then, issue a read if we don't have one already in flight.
reader.start_read()?;
// Attempt to complete the read.
//
// May return `WinError::NoData` in non-blocking mode.
// The async read remains in flight in that case;
// and another attempt at getting a result
// can be done the next time we are called.
reader.fetch_async_result(blocking_mode)?;
// If we're not blocking, pretend that we are blocking, since we got part of
// a message already. Keep reading until we get a complete message.
blocking_mode = BlockingMode::Blocking;
}
}
pub fn recv(
&self,
) -> Result<(Vec<u8>, Vec<OsOpaqueIpcChannel>, Vec<OsIpcSharedMemory>), WinIpcError> {
win32_trace!("recv");
self.receive_message(BlockingMode::Blocking)
}
pub fn try_recv(
&self,
) -> Result<(Vec<u8>, Vec<OsOpaqueIpcChannel>, Vec<OsIpcSharedMemory>), WinIpcError> {
win32_trace!("try_recv");
self.receive_message(BlockingMode::Nonblocking)
}
pub fn try_recv_timeout(
&self,
duration: Duration,
) -> Result<(Vec<u8>, Vec<OsOpaqueIpcChannel>, Vec<OsIpcSharedMemory>), WinIpcError> {
win32_trace!("try_recv_timeout");
self.receive_message(BlockingMode::Timeout(duration))
}
/// Do a pipe connect.
///
/// Only used for one-shot servers.
fn accept(&self) -> Result<(), WinError> {
unsafe {
let reader_borrow = self.reader.borrow();
let handle = &reader_borrow.handle;
// Boxing this to get a stable address is not strictly necesssary here,
// since we are not moving the local variable around -- but better safe than sorry...
let mut ov = AliasedCell::new(Box::new(mem::zeroed::<OVERLAPPED>()));
let result = ConnectNamedPipe(handle.as_raw(), Some(ov.alias_mut().deref_mut()));
// we should always get false with async IO
assert!(result.is_err());
let result = match GetLastError() {
// did we successfully connect? (it's reported as an error [ok==false])
ERROR_PIPE_CONNECTED => {
win32_trace!("[$ {:?}] accept (PIPE_CONNECTED)", handle.as_raw());
Ok(())
},
// This is a weird one -- if we create a named pipe (like we do
// in new() ), the client connects, sends data, then drops its handle,
// a Connect here will get ERROR_NO_DATA -- but there may be data in
// the pipe that we'll be able to read. So we need to go do some reads
// like normal and wait until ReadFile gives us ERROR_NO_DATA.
ERROR_NO_DATA => {
win32_trace!("[$ {:?}] accept (ERROR_NO_DATA)", handle.as_raw());
Ok(())
},
// the connect is pending; wait for it to complete
ERROR_IO_PENDING => {
let mut nbytes: u32 = 0;
GetOverlappedResult(
handle.as_raw(),
ov.alias_mut().deref_mut(),
&mut nbytes,
true,
)
},
// Anything else signifies some actual I/O error.
err => {
win32_trace!("[$ {:?}] accept error -> {:?}", handle.as_raw(), err);
Err(WinError::new(err.to_hresult(), "ConnectNamedPipe"))
},
};
ov.into_inner();
result
}
}
/// Does a single explicitly-sized recv from the handle,
/// consuming the receiver in the process.
///
/// This is used for receiving data from the out-of-band big data buffer.
fn recv_raw(self, size: usize) -> Result<Vec<u8>, WinIpcError> {
self.reader.into_inner().read_raw_sized(size)
}
}
#[derive(Debug)]
#[cfg_attr(feature = "windows-shared-memory-equality", derive(PartialEq))]
pub struct OsIpcSender {
handle: WinHandle,
// Make sure this is `!Sync`, to match `mpsc::Sender`; and to discourage sharing references.
//
// (Rather, senders should just be cloned, as they are shared internally anyway --
// another layer of sharing only adds unnecessary overhead...)
nosync_marker: PhantomData<Cell<()>>,
}
impl Clone for OsIpcSender {
fn clone(&self) -> OsIpcSender {
OsIpcSender::from_handle(dup_handle(&self.handle).unwrap())
}
}
impl OsIpcSender {
pub fn connect(name: String) -> Result<OsIpcSender, WinError> {
let pipe_name = make_pipe_name(&Uuid::parse_str(&name).unwrap());
OsIpcSender::connect_named(&pipe_name)
}
pub fn get_max_fragment_size() -> usize {
MAX_FRAGMENT_SIZE
}
fn from_handle(handle: WinHandle) -> OsIpcSender {
OsIpcSender {
handle: handle,
nosync_marker: PhantomData,
}
}
/// Connect to a pipe server.
fn connect_named(pipe_name: &CString) -> Result<OsIpcSender, WinError> {
unsafe {
let handle = CreateFileA(
PCSTR::from_raw(pipe_name.as_ptr() as *const u8),
FILE_GENERIC_WRITE.0,
FILE_SHARE_MODE(0),
None, // lpSecurityAttributes
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
None,
)?;
win32_trace!("[c {:?}] connect_to_server success", handle);
Ok(OsIpcSender::from_handle(WinHandle::new(handle)))
}
}
fn get_pipe_server_process_id(&self) -> Result<u32, WinError> {
unsafe {
let mut server_pid = 0;
GetNamedPipeServerProcessId(self.handle.as_raw(), &mut server_pid).map(|()| server_pid)
}
}
fn get_pipe_server_process_handle_and_pid(&self) -> Result<(WinHandle, u32), WinError> {
unsafe {
let server_pid = self.get_pipe_server_process_id()?;
if server_pid == *CURRENT_PROCESS_ID {
return Ok((WinHandle::new(CURRENT_PROCESS_HANDLE.as_raw()), server_pid));
}
let raw_handle = OpenProcess(PROCESS_DUP_HANDLE, false, server_pid)?;
Ok((WinHandle::new(raw_handle), server_pid))
}
}
fn needs_fragmentation(data_len: usize, oob: &OutOfBandMessage) -> bool {
let oob_size = if oob.needs_to_be_sent() {
bincode::serialized_size(oob).unwrap()
} else {
0
};
// make sure we don't have too much oob data to begin with
assert!(
(oob_size as usize) <= (PIPE_BUFFER_SIZE - mem::size_of::<MessageHeader>()),
"too much oob data"
);
let bytes_left_for_data =
(PIPE_BUFFER_SIZE - mem::size_of::<MessageHeader>()) - (oob_size as usize);
data_len >= bytes_left_for_data
}
/// An internal-use-only send method that sends just raw data, with no header.
fn send_raw(&self, data: &[u8]) -> Result<(), WinError> {
win32_trace!(
"[c {:?}] writing {} bytes raw to (pid {}->{})",
self.handle.as_raw(),
data.len(),
*CURRENT_PROCESS_ID,
self.get_pipe_server_process_id()?
);
// Write doesn't need to be atomic,
// since the pipe is exclusive for this message,
// so we don't have to fear intermixing with parts of other messages.
write_buf(&self.handle, data, AtomicMode::Nonatomic)
}
pub fn send(
&self,
data: &[u8],
ports: Vec<OsIpcChannel>,
shared_memory_regions: Vec<OsIpcSharedMemory>,
) -> Result<(), WinIpcError> {
// We limit the max size we can send here; we can fix this
// just by upping the header to be 2x u64 if we really want
// to.
assert!(data.len() <= u32::max_value() as usize);
let (server_h, server_pid) = if !shared_memory_regions.is_empty() || !ports.is_empty() {
self.get_pipe_server_process_handle_and_pid()?
} else {
(WinHandle::invalid(), 0)
};
let mut oob = OutOfBandMessage::new(server_pid);
for ref shmem in shared_memory_regions {
// shmem.handle, shmem.length
let mut remote_handle = dup_handle_to_process(&shmem.handle, &server_h)?;
oob.shmem_handles
.push((remote_handle.take_raw().0 as _, shmem.length as u64));
}
for port in ports {
match port {
OsIpcChannel::Sender(s) => {
let mut raw_remote_handle = move_handle_to_process(s.handle, &server_h)?;
oob.channel_handles
.push(raw_remote_handle.take_raw().0 as _);
},
OsIpcChannel::Receiver(r) => {
if r.prepare_for_transfer()? == false {
panic!("Sending receiver with outstanding partial read buffer, noooooo! What should even happen?");
}
let handle = r.reader.into_inner().handle.take();
let mut raw_remote_handle = move_handle_to_process(handle, &server_h)?;
oob.channel_handles
.push(raw_remote_handle.take_raw().0 as _);
},
}
}
// Do we need to fragment?
let big_data_sender: Option<OsIpcSender> =
if OsIpcSender::needs_fragmentation(data.len(), &oob) {
// We need to create a channel for the big data
let (sender, receiver) = channel()?;
let (server_h, server_pid) = if server_h.is_valid() {
(server_h, server_pid)
} else {
self.get_pipe_server_process_handle_and_pid()?
};
// Put the receiver in the OOB data
let handle = receiver.reader.into_inner().handle.take();
let mut raw_receiver_handle = move_handle_to_process(handle, &server_h)?;
oob.big_data_receiver_handle =
Some((raw_receiver_handle.take_raw().0 as _, data.len() as u64));
oob.target_process_id = server_pid;
Some(sender)
} else {
None
};
// If we need to send OOB data, serialize it
let mut oob_data: Vec<u8> = vec![];
if oob.needs_to_be_sent() {
oob_data = bincode::serialize(&oob).unwrap();
}
let in_band_data_len = if big_data_sender.is_none() {
data.len()
} else {
0
};
let header = MessageHeader {
data_len: in_band_data_len as u32,
oob_len: oob_data.len() as u32,
};
let full_in_band_len = header.total_message_bytes_needed();
assert!(full_in_band_len <= PIPE_BUFFER_SIZE);
let mut full_message = Vec::<u8>::with_capacity(full_in_band_len);
{
let header_bytes = unsafe {
slice::from_raw_parts(&header as *const _ as *const u8, mem::size_of_val(&header))
};
full_message.extend_from_slice(header_bytes);
}
if big_data_sender.is_none() {
full_message.extend_from_slice(&*data);
full_message.extend_from_slice(&*oob_data);
assert!(full_message.len() == full_in_band_len);
// Write needs to be atomic, since otherwise concurrent sending
// could result in parts of different messages getting intermixed,
// and the receiver would not be able to extract the individual messages.
write_buf(&self.handle, &*full_message, AtomicMode::Atomic)?;
} else {
full_message.extend_from_slice(&*oob_data);
assert!(full_message.len() == full_in_band_len);
write_buf(&self.handle, &*full_message, AtomicMode::Atomic)?;
big_data_sender.unwrap().send_raw(data)?;
}
Ok(())
}
}
pub enum OsIpcSelectionResult {
DataReceived(
u64,
Vec<u8>,
Vec<OsOpaqueIpcChannel>,
Vec<OsIpcSharedMemory>,
),
ChannelClosed(u64),
}
pub struct OsIpcReceiverSet {
/// Our incrementor, for unique handle IDs.
incrementor: RangeFrom<u64>,
/// The IOCP that we select on.
iocp: WinHandle,
/// The set of receivers, stored as MessageReaders.
readers: Vec<MessageReader>,
/// Readers that got closed before adding them to the set.
///
/// These need to report a "closed" event on the next `select()` call.
///
/// Only the `entry_id` is necessary for that.
closed_readers: Vec<u64>,
}
impl Drop for OsIpcReceiverSet {
fn drop(&mut self) {
// We need to cancel any in-flight read operations before we drop the receivers,
// since otherwise the receivers' `Drop` implementation would try to cancel them --
// but the implementation there doesn't work for receivers in a set...
for reader in &mut self.readers {
reader.issue_async_cancel();
}
// Wait for any reads still in flight to complete,
// thus freeing the associated async data.
self.readers.retain(|r| r.r#async.is_some());
while !self.readers.is_empty() {
// We unwrap the outer result (can't deal with the IOCP call failing here),
// but don't care about the actual results of the completed read operations.
let _ = self.fetch_iocp_result().unwrap();
}
}
}
impl OsIpcReceiverSet {
pub fn new() -> Result<OsIpcReceiverSet, WinError> {
unsafe {
let iocp = CreateIoCompletionPort(INVALID_HANDLE_VALUE, None, 0, 0)?;
Ok(OsIpcReceiverSet {
incrementor: 0..,
iocp: WinHandle::new(iocp),
readers: vec![],
closed_readers: vec![],
})
}
}
pub fn add(&mut self, receiver: OsIpcReceiver) -> Result<u64, WinIpcError> {
// consume the receiver, and take the reader out
let mut reader = receiver.reader.into_inner();
let entry_id = self.incrementor.next().unwrap();
match reader.add_to_iocp(&self.iocp, entry_id) {
Ok(()) => {
win32_trace!(
"[# {:?}] ReceiverSet add {:?}, id {}",
self.iocp.as_raw(),
reader.get_raw_handle(),
entry_id
);
self.readers.push(reader);
},
Err(WinIpcError::ChannelClosed) => {
// If the sender has already been closed, we need to stash this information,
// so we can report the corresponding event in the next `select()` call.
win32_trace!(
"[# {:?}] ReceiverSet add {:?} (closed), id {}",
self.iocp.as_raw(),
reader.get_raw_handle(),
entry_id
);
self.closed_readers.push(entry_id);
},
Err(err) => return Err(err),
};
Ok(entry_id)
}
/// Conclude an async read operation on any of the receivers in the set.
///
/// This fetches a completion event from the set's IOCP;
/// finds the matching `MessageReader`;
/// removes it from the list of active readers
/// (since no operation is in flight on this reader at this point);
/// and notifies the reader of the completion event.
///
/// If the IOCP call is successful, this returns the respective reader,
/// along with an inner status describing the type of event received.
/// This can be a success status, indicating data has been received,
/// and is ready to be picked up with `get_message()` on the reader;
/// an error status indicating that the sender connected to this receiver
/// has closed the connection;
/// or some other I/O error status.
///
/// Unless a "closed" status is returned,
/// the respective reader remains a member of the set,
/// and the caller should add it back to the list of active readers
/// after kicking off a new read operation on it.
fn fetch_iocp_result(&mut self) -> Result<(MessageReader, Result<(), WinIpcError>), WinError> {
unsafe {
let mut nbytes: u32 = 0;
let mut completion_key = 0;
let mut ov_ptr: *mut OVERLAPPED = ptr::null_mut();
// XXX use GetQueuedCompletionStatusEx to dequeue multiple CP at once!
let result = GetQueuedCompletionStatus(
self.iocp.as_raw(),
&mut nbytes,
&mut completion_key,
&mut ov_ptr,
INFINITE,
);
win32_trace!(
"[# {:?}] GetQueuedCS -> ok:{} nbytes:{} key:{:?}",
self.iocp.as_raw(),
result.is_ok(),
nbytes,
completion_key
);
let io_result = if let Err(err) = result {
// If the OVERLAPPED result is NULL, then the
// function call itself failed or timed out.
// Otherwise, the async IO operation failed, and
// we want to hand the error to notify_completion below.
if ov_ptr.is_null() {
return Err(err);
}
Err(err)
} else {
Ok(())
};
assert!(!ov_ptr.is_null());
assert!(completion_key != 0);
// Find the matching receiver
let (reader_index, _) = self
.readers
.iter()
.enumerate()
.find(|&(_, ref reader)| {
let raw_handle = reader.r#async.as_ref().unwrap().alias().handle.as_raw();
raw_handle.0 as usize == completion_key
})
.expect(
"Windows IPC ReceiverSet got notification for a receiver it doesn't know about",
);
// Remove the entry from the set for now -- we will re-add it later,
// if we can successfully initiate another async read operation.
let mut reader = self.readers.swap_remove(reader_index);
win32_trace!(
"[# {:?}] result for receiver {:?}",
self.iocp.as_raw(),
reader.get_raw_handle()
);
// tell it about the completed IO op
let result = reader.notify_completion(io_result);
Ok((reader, result))
}
}
pub fn select(&mut self) -> Result<Vec<OsIpcSelectionResult>, WinIpcError> {
assert!(
self.readers.len() + self.closed_readers.len() > 0,
"selecting with no objects?"
);
win32_trace!(
"[# {:?}] select() with {} active and {} closed receivers",
self.iocp.as_raw(),
self.readers.len(),
self.closed_readers.len()
);
// the ultimate results
let mut selection_results = vec![];
// Process any pending "closed" events
// from channels that got closed before being added to the set,
// and thus received "closed" notifications while being added.
self.closed_readers.drain(..).for_each(|entry_id| {
selection_results.push(OsIpcSelectionResult::ChannelClosed(entry_id))
});
// Do this in a loop, because we may need to dequeue multiple packets to
// read a complete message.
while selection_results.is_empty() {
let (mut reader, result) = self.fetch_iocp_result()?;
let mut closed = match result {
Ok(()) => false,
Err(WinIpcError::ChannelClosed) => true,
Err(err) => return Err(err.into()),
};
if !closed {
// Drain as many messages as we can.
while let Some((data, channels, shmems)) = reader.get_message()? {
win32_trace!(
"[# {:?}] receiver {:?} ({}) got a message",
self.iocp.as_raw(),
reader.get_raw_handle(),
reader.entry_id.unwrap()
);
selection_results.push(OsIpcSelectionResult::DataReceived(
reader.entry_id.unwrap(),
data,
channels,
shmems,
));
}
win32_trace!(
"[# {:?}] receiver {:?} ({}) -- no message",
self.iocp.as_raw(),
reader.get_raw_handle(),
reader.entry_id.unwrap()
);
// Now that we are done frobbing the buffer,
// we can safely initiate the next async read operation.
closed = match reader.start_read() {
Ok(()) => {
// We just successfully reinstated it as an active reader --
// so add it back to the list.
//
// Note: `take()` is a workaround for the compiler not seeing
// that we won't actually be using it anymore after this...
self.readers.push(reader.take());
false
},
Err(WinIpcError::ChannelClosed) => true,
Err(err) => return Err(err),
};
}
// If we got a "sender closed" notification --
// either instead of new data,
// or while trying to re-initiate an async read after receiving data --
// add an event to this effect to the result list.
if closed {
win32_trace!(
"[# {:?}] receiver {:?} ({}) -- now closed!",
self.iocp.as_raw(),
reader.get_raw_handle(),
reader.entry_id.unwrap()
);
selection_results.push(OsIpcSelectionResult::ChannelClosed(
reader.entry_id.unwrap(),
));
}
}
win32_trace!("select() -> {} results", selection_results.len());
Ok(selection_results)
}
}
impl OsIpcSelectionResult {
pub fn unwrap(
self,
) -> (
u64,
Vec<u8>,
Vec<OsOpaqueIpcChannel>,
Vec<OsIpcSharedMemory>,
) {
match self {
OsIpcSelectionResult::DataReceived(id, data, channels, shared_memory_regions) => {
(id, data, channels, shared_memory_regions)
},
OsIpcSelectionResult::ChannelClosed(id) => {
panic!(
"OsIpcSelectionResult::unwrap(): receiver ID {} was closed!",
id
)
},
}
}
}
#[derive(Debug)]
pub struct OsIpcSharedMemory {
handle: WinHandle,
view_handle: MEMORY_MAPPED_VIEW_ADDRESS,
length: usize,
}
unsafe impl Send for OsIpcSharedMemory {}
unsafe impl Sync for OsIpcSharedMemory {}
impl Drop for OsIpcSharedMemory {
fn drop(&mut self) {
unsafe {
let result = UnmapViewOfFile(self.view_handle);
assert!(result.is_ok() || thread::panicking());
}
}
}
impl Clone for OsIpcSharedMemory {
fn clone(&self) -> OsIpcSharedMemory {
OsIpcSharedMemory::from_handle(dup_handle(&self.handle).unwrap(), self.length).unwrap()
}
}
#[cfg(feature = "windows-shared-memory-equality")]
impl PartialEq for OsIpcSharedMemory {
fn eq(&self, other: &OsIpcSharedMemory) -> bool {
self.handle == other.handle
}
}
impl Deref for OsIpcSharedMemory {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
assert!(!self.view_handle.Value.is_null() && self.handle.is_valid());
unsafe { slice::from_raw_parts(self.view_handle.Value as _, self.length) }
}
}
impl OsIpcSharedMemory {
fn new(length: usize) -> Result<OsIpcSharedMemory, WinError> {
unsafe {
assert!(length < u32::max_value() as usize);
let (lhigh, llow) = (
length.checked_shr(32).unwrap_or(0) as u32,
(length & 0xffffffff) as u32,
);
let handle = CreateFileMappingA(
INVALID_HANDLE_VALUE,
None,
PAGE_READWRITE | SEC_COMMIT,
lhigh,
llow,
None,
)?;
OsIpcSharedMemory::from_handle(WinHandle::new(handle), length)
}
}
// There is no easy way to query the size of the mapping -- you
// can use NtQuerySection, but that's an undocumented NT kernel
// API. Instead we'll just always pass the length along.
//
// This function takes ownership of the handle, and will close it
// when finished.
fn from_handle(handle: WinHandle, length: usize) -> Result<OsIpcSharedMemory, WinError> {
unsafe {
let address = MapViewOfFile(handle.as_raw(), FILE_MAP_ALL_ACCESS, 0, 0, 0);
if address.Value.is_null() {
return Err(WinError::from_win32());
}
Ok(OsIpcSharedMemory {
handle: handle,
view_handle: address,
length: length,
})
}
}
pub fn from_byte(byte: u8, length: usize) -> OsIpcSharedMemory {
unsafe {
// panic if we can't create it
let mem = OsIpcSharedMemory::new(length).unwrap();
for element in slice::from_raw_parts_mut(mem.view_handle.Value as _, mem.length) {
*element = byte;
}
mem
}
}
pub fn from_bytes(bytes: &[u8]) -> OsIpcSharedMemory {
unsafe {
// panic if we can't create it
let mem = OsIpcSharedMemory::new(bytes.len()).unwrap();
ptr::copy_nonoverlapping(bytes.as_ptr(), mem.view_handle.Value as _, bytes.len());
mem
}
}
}
pub struct OsIpcOneShotServer {
receiver: OsIpcReceiver,
}
impl OsIpcOneShotServer {
pub fn new() -> Result<(OsIpcOneShotServer, String), WinError> {
let pipe_id = make_pipe_id();
let pipe_name = make_pipe_name(&pipe_id);
let receiver = OsIpcReceiver::new_named(&pipe_name)?;
Ok((
OsIpcOneShotServer { receiver: receiver },
pipe_id.to_string(),
))
}
pub fn accept(
self,
) -> Result<
(
OsIpcReceiver,
Vec<u8>,
Vec<OsOpaqueIpcChannel>,
Vec<OsIpcSharedMemory>,
),
WinIpcError,
> {
let receiver = self.receiver;
receiver.accept()?;
let (data, channels, shmems) = receiver.recv()?;
Ok((receiver, data, channels, shmems))
}
}
pub enum OsIpcChannel {
Sender(OsIpcSender),
Receiver(OsIpcReceiver),
}
#[derive(Debug)]
#[cfg_attr(feature = "windows-shared-memory-equality", derive(PartialEq))]
pub struct OsOpaqueIpcChannel {
handle: WinHandle,
}
impl Drop for OsOpaqueIpcChannel {
fn drop(&mut self) {
// Make sure we don't leak!
//
// The `OsOpaqueIpcChannel` objects should always be used,
// i.e. converted with `to_sender()` or `to_receiver()` --
// so the value should already be unset before the object gets dropped.
debug_assert!(!self.handle.is_valid());
}
}
impl OsOpaqueIpcChannel {
fn new(handle: WinHandle) -> OsOpaqueIpcChannel {
OsOpaqueIpcChannel { handle: handle }
}
pub fn to_receiver(&mut self) -> OsIpcReceiver {
OsIpcReceiver::from_handle(self.handle.take())
}
pub fn to_sender(&mut self) -> OsIpcSender {
OsIpcSender::from_handle(self.handle.take())
}
}
#[derive(Debug)]
pub enum WinIpcError {
WinError(WinError),
ChannelClosed,
NoData,
}
impl WinIpcError {
pub fn channel_is_closed(&self) -> bool {
matches!(self, Self::ChannelClosed)
}
}
impl From<WinIpcError> for bincode::Error {
fn from(error: WinIpcError) -> bincode::Error {
io::Error::from(error).into()
}
}
impl From<WinError> for WinIpcError {
fn from(e: WinError) -> Self {
Self::WinError(e)
}
}
impl From<WinIpcError> for ipc::IpcError {
fn from(error: WinIpcError) -> Self {
match error {
WinIpcError::ChannelClosed => ipc::IpcError::Disconnected,
e => ipc::IpcError::Io(io::Error::from(e)),
}
}
}
impl From<WinIpcError> for ipc::TryRecvError {
fn from(error: WinIpcError) -> Self {
match error {
WinIpcError::ChannelClosed => ipc::TryRecvError::IpcError(ipc::IpcError::Disconnected),
WinIpcError::NoData => ipc::TryRecvError::Empty,
e => ipc::TryRecvError::IpcError(ipc::IpcError::Io(io::Error::from(e))),
}
}
}
impl From<WinIpcError> for io::Error {
fn from(error: WinIpcError) -> io::Error {
match error {
WinIpcError::ChannelClosed => {
// This is the error code we originally got from the Windows API
// to signal the "channel closed" (no sender) condition --
// so hand it back to the Windows API to create an appropriate `Error` value.
io::Error::from_raw_os_error(ERROR_BROKEN_PIPE.0 as i32)
},
WinIpcError::NoData => io::Error::new(
io::ErrorKind::WouldBlock,
"Win channel has no data available",
),
WinIpcError::WinError(err) => io::Error::from_raw_os_error(err.code().0),
}
}
}