ipc_channel/router.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
// Copyright 2015 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Routers allow converting IPC channels to crossbeam channels.
//! The [RouterProxy](crate::router::RouterProxy) provides various methods to register
//! `IpcReceiver<T>`s. The router will then either call the appropriate callback or route the
//! message to a crossbeam `Sender<T>` or `Receiver<T>`. You should use the global `ROUTER` to
//! access the `RouterProxy` methods (via `ROUTER`'s `Deref` for `RouterProxy`.
use lazy_static::lazy_static;
use std::collections::HashMap;
use std::sync::Mutex;
use std::thread;
use crate::ipc::OpaqueIpcReceiver;
use crate::ipc::{
self, IpcReceiver, IpcReceiverSet, IpcSelectionResult, IpcSender, OpaqueIpcMessage,
};
use crossbeam_channel::{self, Receiver, Sender};
use serde::{Deserialize, Serialize};
lazy_static! {
/// Global object wrapping a `RouterProxy`.
/// Add routes ([add_route](RouterProxy::add_route)), or convert IpcReceiver<T>
/// to crossbeam channels (e.g. [route_ipc_receiver_to_new_crossbeam_receiver](RouterProxy::route_ipc_receiver_to_new_crossbeam_receiver))
pub static ref ROUTER: RouterProxy = RouterProxy::new();
}
/// A `RouterProxy` provides methods for talking to the router. Calling
/// [new](RouterProxy::new) automatically spins up a router thread which
/// waits for events on its registered `IpcReceiver<T>`s. The `RouterProxy`'s
/// methods communicate with the running router thread to register new
/// `IpcReceiver<T>`'s
pub struct RouterProxy {
comm: Mutex<RouterProxyComm>,
}
#[allow(clippy::new_without_default)]
impl RouterProxy {
pub fn new() -> RouterProxy {
// Router acts like a receiver, running in its own thread with both
// receiver ends.
// Router proxy takes both sending ends.
let (msg_sender, msg_receiver) = crossbeam_channel::unbounded();
let (wakeup_sender, wakeup_receiver) = ipc::channel().unwrap();
thread::spawn(move || Router::new(msg_receiver, wakeup_receiver).run());
RouterProxy {
comm: Mutex::new(RouterProxyComm {
msg_sender,
wakeup_sender,
shutdown: false,
}),
}
}
/// Add a new (receiver, callback) pair to the router, and send a wakeup message
/// to the router.
pub fn add_route(&self, receiver: OpaqueIpcReceiver, callback: RouterHandler) {
let comm = self.comm.lock().unwrap();
if comm.shutdown {
return;
}
comm.msg_sender
.send(RouterMsg::AddRoute(receiver, callback))
.unwrap();
comm.wakeup_sender.send(()).unwrap();
}
/// Send a shutdown message to the router containing a ACK sender,
/// send a wakeup message to the router, and block on the ACK.
/// Calling it is idempotent,
/// which can be useful when running a multi-process system in single-process mode.
pub fn shutdown(&self) {
let mut comm = self.comm.lock().unwrap();
if comm.shutdown {
return;
}
comm.shutdown = true;
let (ack_sender, ack_receiver) = crossbeam_channel::unbounded();
comm.wakeup_sender
.send(())
.map(|_| {
comm.msg_sender
.send(RouterMsg::Shutdown(ack_sender))
.unwrap();
ack_receiver.recv().unwrap();
})
.unwrap();
}
/// A convenience function to route an `IpcReceiver<T>` to an existing `Sender<T>`.
pub fn route_ipc_receiver_to_crossbeam_sender<T>(
&self,
ipc_receiver: IpcReceiver<T>,
crossbeam_sender: Sender<T>,
) where
T: for<'de> Deserialize<'de> + Serialize + Send + 'static,
{
self.add_route(
ipc_receiver.to_opaque(),
Box::new(move |message| drop(crossbeam_sender.send(message.to::<T>().unwrap()))),
)
}
/// A convenience function to route an `IpcReceiver<T>` to a `Receiver<T>`: the most common
/// use of a `Router`.
pub fn route_ipc_receiver_to_new_crossbeam_receiver<T>(
&self,
ipc_receiver: IpcReceiver<T>,
) -> Receiver<T>
where
T: for<'de> Deserialize<'de> + Serialize + Send + 'static,
{
let (crossbeam_sender, crossbeam_receiver) = crossbeam_channel::unbounded();
self.route_ipc_receiver_to_crossbeam_sender(ipc_receiver, crossbeam_sender);
crossbeam_receiver
}
}
struct RouterProxyComm {
msg_sender: Sender<RouterMsg>,
wakeup_sender: IpcSender<()>,
shutdown: bool,
}
/// Router runs in its own thread listening for events. Adds events to its IpcReceiverSet
/// and listens for events using select().
struct Router {
/// Get messages from RouterProxy.
msg_receiver: Receiver<RouterMsg>,
/// The ID/index of the special channel we use to identify messages from msg_receiver.
msg_wakeup_id: u64,
/// Set of all receivers which have been registered for us to select on.
ipc_receiver_set: IpcReceiverSet,
/// Maps ids to their handler functions.
handlers: HashMap<u64, RouterHandler>,
}
impl Router {
fn new(msg_receiver: Receiver<RouterMsg>, wakeup_receiver: IpcReceiver<()>) -> Router {
let mut ipc_receiver_set = IpcReceiverSet::new().unwrap();
let msg_wakeup_id = ipc_receiver_set.add(wakeup_receiver).unwrap();
Router {
msg_receiver,
msg_wakeup_id,
ipc_receiver_set,
handlers: HashMap::new(),
}
}
/// Continuously loop waiting for wakeup signals from router proxy.
/// Iterate over events either:
/// 1) If a message comes in from our special `wakeup_receiver` (identified through
/// msg_wakeup_id. Read message from `msg_receiver` and add a new receiver
/// to our receiver set.
/// 2) Call appropriate handler based on message id.
/// 3) Remove handler once channel closes.
fn run(&mut self) {
loop {
// Wait for events to come from our select() new channels are added to
// our ReceiverSet below.
let results = match self.ipc_receiver_set.select() {
Ok(results) => results,
Err(_) => break,
};
// Iterate over numerous events that were ready at this time.
for result in results.into_iter() {
match result {
// Message came from the RouterProxy. Listen on our `msg_receiver`
// channel.
IpcSelectionResult::MessageReceived(id, _) if id == self.msg_wakeup_id => {
match self.msg_receiver.recv().unwrap() {
RouterMsg::AddRoute(receiver, handler) => {
let new_receiver_id =
self.ipc_receiver_set.add_opaque(receiver).unwrap();
self.handlers.insert(new_receiver_id, handler);
},
RouterMsg::Shutdown(sender) => {
sender
.send(())
.expect("Failed to send comfirmation of shutdown.");
break;
},
}
},
// Event from one of our registered receivers, call callback.
IpcSelectionResult::MessageReceived(id, message) => {
self.handlers.get_mut(&id).unwrap()(message)
},
IpcSelectionResult::ChannelClosed(id) => {
let _ = self.handlers.remove(&id).unwrap();
},
}
}
}
}
}
enum RouterMsg {
/// Register the receiver OpaqueIpcReceiver for listening for events on.
/// When a message comes from this receiver, call RouterHandler.
AddRoute(OpaqueIpcReceiver, RouterHandler),
/// Shutdown the router, providing a sender to send an acknowledgement.
Shutdown(Sender<()>),
}
/// Function to call when a new event is received from the corresponding receiver.
pub type RouterHandler = Box<dyn FnMut(OpaqueIpcMessage) + Send>;