1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! IRI reference.
use core::convert::TryFrom;
#[cfg(feature = "alloc")]
use alloc::{borrow::Cow, string::String};
use crate::{
raw,
spec::Spec,
types::{RiFragmentStr, RiRelativeStr, RiStr},
validate::iri_reference,
};
#[cfg(feature = "alloc")]
use crate::{
resolve::resolve,
types::{RiAbsoluteStr, RiRelativeString, RiString},
validate::iri,
};
define_custom_string_slice! {
/// A borrowed string of an absolute IRI possibly with fragment part.
///
/// This corresponds to [`IRI-reference` rule] in [RFC 3987]
/// (and [`URI-reference` rule] in [RFC 3986]).
/// The rule for `IRI-reference` is `IRI / irelative-ref`.
/// In other words, this is union of [`RiStr`] and [`RiRelativeStr`].
///
/// # Valid values
///
/// This type can have an IRI reference (which can be absolute or relative).
///
/// ```
/// # use iri_string::types::IriReferenceStr;
/// assert!(IriReferenceStr::new("https://user:pass@example.com:8080").is_ok());
/// assert!(IriReferenceStr::new("https://example.com/").is_ok());
/// assert!(IriReferenceStr::new("https://example.com/foo?bar=baz").is_ok());
/// assert!(IriReferenceStr::new("https://example.com/foo?bar=baz#qux").is_ok());
/// assert!(IriReferenceStr::new("foo:bar").is_ok());
/// assert!(IriReferenceStr::new("foo:").is_ok());
/// // `foo://.../` below are all allowed. See the crate documentation for detail.
/// assert!(IriReferenceStr::new("foo:/").is_ok());
/// assert!(IriReferenceStr::new("foo://").is_ok());
/// assert!(IriReferenceStr::new("foo:///").is_ok());
/// assert!(IriReferenceStr::new("foo:////").is_ok());
/// assert!(IriReferenceStr::new("foo://///").is_ok());
/// assert!(IriReferenceStr::new("foo/bar").is_ok());
/// assert!(IriReferenceStr::new("/foo/bar").is_ok());
/// assert!(IriReferenceStr::new("//foo/bar").is_ok());
/// assert!(IriReferenceStr::new("#foo").is_ok());
/// ```
///
/// Some characters and sequences cannot used in an IRI reference.
///
/// ```
/// # use iri_string::types::IriReferenceStr;
/// // `<` and `>` cannot directly appear in an IRI reference.
/// assert!(IriReferenceStr::new("<not allowed>").is_err());
/// // Broken percent encoding cannot appear in an IRI reference.
/// assert!(IriReferenceStr::new("%").is_err());
/// assert!(IriReferenceStr::new("%GG").is_err());
/// ```
///
/// [RFC 3986]: https://tools.ietf.org/html/rfc3986
/// [RFC 3987]: https://tools.ietf.org/html/rfc3987
/// [`IRI-reference` rule]: https://tools.ietf.org/html/rfc3987#section-2.2
/// [`URI-reference` rule]: https://tools.ietf.org/html/rfc3986#section-4.1
/// [`RiRelativeStr`]: struct.RiRelativeStr.html
/// [`RiStr`]: struct.RiStr.html
struct RiReferenceStr {
validator = iri_reference,
expecting_msg = "IRI reference string",
}
}
#[cfg(feature = "alloc")]
define_custom_string_owned! {
/// An owned string of an absolute IRI possibly with fragment part.
///
/// This corresponds to [`IRI-reference` rule] in [RFC 3987]
/// (and [`URI-reference` rule] in [RFC 3986]).
/// The rule for `IRI-reference` is `IRI / irelative-ref`.
/// In other words, this is union of [`RiString`] and [`RiRelativeString`].
///
/// For details, see the document for [`RiReferenceStr`].
///
/// Enabled by `alloc` or `std` feature.
///
/// [RFC 3986]: https://tools.ietf.org/html/rfc3986
/// [RFC 3987]: https://tools.ietf.org/html/rfc3987
/// [`IRI-reference` rule]: https://tools.ietf.org/html/rfc3987#section-2.2
/// [`URI-reference` rule]: https://tools.ietf.org/html/rfc3986#section-4.1
/// [`RiReferenceStr`]: struct.RiReferenceString.html
/// [`RiRelativeString`]: struct.RiRelativeString.html
/// [`RiString`]: struct.RiString.html
struct RiReferenceString {
validator = iri_reference,
slice = RiReferenceStr,
expecting_msg = "IRI reference string",
}
}
impl<S: Spec> RiReferenceStr<S> {
/// Returns the string as [`&RiStr`][`RiStr`], if it is valid as an IRI.
///
/// If it is not an IRI, then [`&RiRelativeStr`][`RiRelativeStr`] is returned as `Err(_)`.
///
/// [`RiRelativeStr`]: struct.RiRelativeStr.html
/// [`RiStr`]: struct.RiStr.html
pub fn to_iri(&self) -> Result<&RiStr<S>, &RiRelativeStr<S>> {
// Check with `IRI` rule first, because the syntax rule for `IRI-reference` is
// `IRI / irelative-ref`.
//
// > Some productions are ambiguous. The "first-match-wins" (a.k.a.
// > "greedy") algorithm applies. For details, see [RFC3986].
// >
// > --- <https://tools.ietf.org/html/rfc3987#section-2.2>.
<&RiStr<S>>::try_from(self.as_str()).map_err(|_| unsafe {
// This is safe because of the syntax rule `IRI-reference = IRI / irelative-ref`.
// It says that if an IRI reference is not an IRI, then it is a relative IRI.
RiRelativeStr::new_maybe_unchecked(self.as_str())
})
}
/// Returns the string as [`&RiRelativeStr`][`RiRelativeStr`], if it is valid as an IRI.
///
/// If it is not an IRI, then [`&RiStr`][`RiStr`] is returned as `Err(_)`.
///
/// [`RiRelativeStr`]: struct.RiRelativeStr.html
/// [`RiStr`]: struct.RiStr.html
pub fn to_relative_iri(&self) -> Result<&RiRelativeStr<S>, &RiStr<S>> {
match self.to_iri() {
Ok(iri) => Err(iri),
Err(relative) => Ok(relative),
}
}
/// Returns resolved IRI against the given base IRI, using strict resolver.
///
/// About reference resolution output example, see [RFC 3986 section 5.4].
///
/// About resolver strictness, see [RFC 3986 section 5.4.2]:
///
/// > Some parsers allow the scheme name to be present in a relative
/// > reference if it is the same as the base URI scheme. This is considered
/// > to be a loophole in prior specifications of partial URI
/// > [RFC1630](https://tools.ietf.org/html/rfc1630). Its use should be
/// > avoided but is allowed for backward compatibility.
/// >
/// > --- <https://tools.ietf.org/html/rfc3986#section-5.4.2>
///
/// Usual users will want to use strict resolver.
///
/// Enabled by `alloc` or `std` feature.
///
/// [RFC 3986 section 5.4]: https://tools.ietf.org/html/rfc3986#section-5.4
/// [RFC 3986 section 5.4.2]: https://tools.ietf.org/html/rfc3986#section-5.4.2
#[cfg(feature = "alloc")]
pub fn resolve_against<'a>(&'a self, base: &'_ RiAbsoluteStr<S>) -> Cow<'a, RiStr<S>> {
match self.to_iri() {
Ok(iri) => Cow::Borrowed(iri),
Err(relative) => Cow::Owned(resolve(relative, base, true)),
}
}
/// Returns the fragment part if exists.
///
/// A leading `#` character is truncated if the fragment part exists.
///
/// # Examples
///
/// If the IRI has a fragment part, `Some(_)` is returned.
///
/// ```
/// # use iri_string::{spec::IriSpec, types::{IriFragmentStr, IriReferenceStr}, validate::Error};
/// let iri = IriReferenceStr::new("foo://bar/baz?qux=quux#corge")?;
/// let fragment = IriFragmentStr::new("corge")?;
/// assert_eq!(iri.fragment(), Some(fragment));
/// # Ok::<_, Error>(())
/// ```
///
/// ```
/// # use iri_string::{spec::IriSpec, types::{IriFragmentStr, IriReferenceStr}, validate::Error};
/// let iri = IriReferenceStr::new("#foo")?;
/// let fragment = IriFragmentStr::new("foo")?;
/// assert_eq!(iri.fragment(), Some(fragment));
/// # Ok::<_, Error>(())
/// ```
///
/// When the fragment part exists but is empty string, `Some(_)` is returned.
///
/// ```
/// # use iri_string::{spec::IriSpec, types::{IriFragmentStr, IriReferenceStr}, validate::Error};
/// let iri = IriReferenceStr::new("foo://bar/baz?qux=quux#")?;
/// let fragment = IriFragmentStr::new("")?;
/// assert_eq!(iri.fragment(), Some(fragment));
/// # Ok::<_, Error>(())
/// ```
///
/// ```
/// # use iri_string::{spec::IriSpec, types::{IriFragmentStr, IriReferenceStr}, validate::Error};
/// let iri = IriReferenceStr::new("#")?;
/// let fragment = IriFragmentStr::new("")?;
/// assert_eq!(iri.fragment(), Some(fragment));
/// # Ok::<_, Error>(())
/// ```
///
/// If the IRI has no fragment, `None` is returned.
///
/// ```
/// # use iri_string::{spec::IriSpec, types::IriReferenceStr, validate::Error};
/// let iri = IriReferenceStr::new("foo://bar/baz?qux=quux")?;
/// assert_eq!(iri.fragment(), None);
/// # Ok::<_, Error>(())
/// ```
///
/// ```
/// # use iri_string::{spec::IriSpec, types::IriReferenceStr, validate::Error};
/// let iri = IriReferenceStr::new("")?;
/// assert_eq!(iri.fragment(), None);
/// # Ok::<_, Error>(())
/// ```
pub fn fragment(&self) -> Option<&RiFragmentStr<S>> {
raw::extract_fragment(self.as_str()).map(|fragment| unsafe {
// This is safe because `extract_fragment` returns the fragment part of an IRI, and the
// returned string is substring of the source IRI.
RiFragmentStr::new_maybe_unchecked(fragment)
})
}
}
#[cfg(feature = "alloc")]
impl<S: Spec> RiReferenceString<S> {
/// Returns the string as [`RiString`], if it is valid as an IRI.
///
/// If it is not an IRI, then [`RiRelativeString`] is returned as `Err(_)`.
///
/// [`RiRelativeString`]: struct.RiRelativeString.html
/// [`RiString`]: struct.RiString.html
pub fn into_iri(self) -> Result<RiString<S>, RiRelativeString<S>> {
let s: String = self.into();
// Check with `IRI` rule first, because of the syntax.
//
// > Some productions are ambiguous. The "first-match-wins" (a.k.a.
// > "greedy") algorithm applies. For details, see [RFC3986].
// >
// > --- <https://tools.ietf.org/html/rfc3987#section-2.2>.
if iri::<S>(&s).is_ok() {
Ok(unsafe {
// This is safe because `s` is already validated by condition of `if`.
RiString::new_always_unchecked(s)
})
} else {
Err(unsafe {
// This is safe because of the syntax rule `IRI-reference = IRI / irelative-ref`.
// It says that if an IRI reference is not an IRI, then it is a relative IRI.
RiRelativeString::new_maybe_unchecked(s)
})
}
}
/// Returns the string as [`RiRelativeString`], if it is valid as an IRI.
///
/// If it is not an IRI, then [`RiString`] is returned as `Err(_)`.
///
/// [`RiRelativeString`]: struct.RiRelativeString.html
/// [`RiString`]: struct.RiString.html
pub fn into_relative_iri(self) -> Result<RiRelativeString<S>, RiString<S>> {
match self.into_iri() {
Ok(iri) => Err(iri),
Err(relative) => Ok(relative),
}
}
/// Sets the fragment part to the given string.
///
/// Removes fragment part (and following `#` character) if `None` is given.
pub fn set_fragment(&mut self, fragment: Option<&RiFragmentStr<S>>) {
raw::set_fragment(&mut self.inner, fragment.map(AsRef::as_ref));
debug_assert!(iri::<S>(&self.inner).is_ok());
}
}