1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
//! Normalization.
//!
//! # IRI normalization (and resolution) can fail
//!
//! Though this is not explicitly stated in RFC 3986, IRI normalization can fail.
//! For example, `foo:.///bar`, `foo:./..//bar`, and `foo:/..//bar` are all
//! normalized to `foo://bar` as a string. However, IRI without authority (note
//! that this is different from "with empty authority") cannot have a path
//! starting with `//`, since it is ambiguous and can be interpreted as an IRI
//! with authority. So, `foo://bar` is decomposed as scheme `foo`, authority
//! `bar`, and empty path. The expected result is the combination of scheme
//! `foo`, no authority, and path `//bar` (though this is not possible to
//! serialize), so the algorithm fails as it cannot return the intended result.
//!
//! IRI resolution can also fail since it (conditionally) invokes normalization
//! during the resolution process. For example, resolving a reference `.///bar`
//! or `/..//bar` against the base `foo:` fail.
//!
//! Thus, IRI resolution can fail for some abnormal cases.
//!
//! Note that this kind of failure can happen only when the base IRI has no
//! authority and empty path. This would be rare in the wild, since many people
//! would use an IRI with authority part, such as `http://`.
//!
//! If you are handling `scheme://`-style URIs and IRIs, don't worry about the
//! failure. Currently no cases are known to fail when at least one of the base
//! IRI or the relative IRI contains authorities.
//!
//! ## Examples
//!
//! ### Normalization failure
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use iri_string::normalize::Error;
//! use iri_string::task::Error as TaskError;
//! use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
//!
//! let base = IriAbsoluteStr::new("foo:.///bar")?;
//! assert!(base.normalize().is_err(), "this normalization should fail");
//! # }
//! # Ok::<_, iri_string::validate::Error>(())
//! ```
//!
//! ### Resolution failure
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use iri_string::task::Error as TaskError;
//! use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
//!
//! let base = IriAbsoluteStr::new("scheme:")?;
//! {
//! let reference = IriReferenceStr::new(".///bar")?;
//! let err = reference.resolve_against(base)
//! .expect_err("this resolution should fail");
//! assert!(matches!(err, TaskError::Process(_)));
//! }
//!
//! {
//! let reference2 = IriReferenceStr::new("/..//bar")?;
//! // Resulting string will be `scheme://bar`, but `bar` should be a path
//! // segment, not a host. So, the semantically correct target IRI cannot
//! // be represented.
//! let err2 = reference2.resolve_against(base)
//! .expect_err("this resolution should fail");
//! assert!(matches!(err2, TaskError::Process(_)));
//! }
//! # }
//! # Ok::<_, iri_string::validate::Error>(())
//! ```
mod error;
mod path;
use core::marker::PhantomData;
#[cfg(feature = "alloc")]
use alloc::string::String;
use crate::buffer::{Buffer, ByteSliceBuf};
use crate::components::RiReferenceComponents;
use crate::parser::char;
use crate::spec::Spec;
use crate::task::{Error as TaskError, ProcessAndWrite};
use crate::types::{RiAbsoluteStr, RiStr};
#[cfg(feature = "alloc")]
use crate::types::{RiAbsoluteString, RiString};
pub use self::error::Error;
pub(crate) use self::path::{Path, PathToNormalize};
/// Normalization type.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum NormalizationType {
/// Full generic syntax-based normalization.
Full,
/// Only `remove_dot_segments` algorithm.
RemoveDotSegments,
}
/// IRI normalization/resolution task.
///
/// Most of the main functionalities are provided from [`ProcessAndWrite`] trait,
/// so you may need to write `use iri_string::task::ProcessAndWrite` where you
/// use this task type.
#[derive(Debug, Clone, Copy)]
pub struct NormalizationTask<'a, T: ?Sized> {
/// Common data.
common: NormalizationTaskCommon<'a>,
/// Spec.
_spec: PhantomData<fn() -> T>,
}
impl<'a, S: Spec> From<&'a RiStr<S>> for NormalizationTask<'a, RiStr<S>> {
fn from(iri: &'a RiStr<S>) -> Self {
let components = RiReferenceComponents::<S>::from(iri.as_ref());
let (scheme, authority, path, query, fragment) = components.to_major();
let scheme = scheme.expect("[validity] `absolute IRI must have `scheme`");
let path = Path::NeedsProcessing(PathToNormalize::from_single_path(path));
let common = NormalizationTaskCommon {
scheme,
authority,
path,
query,
fragment,
op: NormalizationType::Full,
};
common.into()
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Spec> From<&'a RiString<S>> for NormalizationTask<'a, RiStr<S>> {
#[inline]
fn from(iri: &'a RiString<S>) -> Self {
NormalizationTask::from(iri.as_slice())
}
}
impl<'a, S: Spec> From<&'a RiAbsoluteStr<S>> for NormalizationTask<'a, RiAbsoluteStr<S>> {
fn from(iri: &'a RiAbsoluteStr<S>) -> Self {
let components = RiReferenceComponents::<S>::from(iri.as_ref());
let (scheme, authority, path, query, fragment) = components.to_major();
let scheme = scheme.expect("[validity] `absolute IRI must have `scheme`");
let path = Path::NeedsProcessing(PathToNormalize::from_single_path(path));
let common = NormalizationTaskCommon {
scheme,
authority,
path,
query,
fragment,
op: NormalizationType::Full,
};
common.into()
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Spec> From<&'a RiAbsoluteString<S>> for NormalizationTask<'a, RiAbsoluteStr<S>> {
#[inline]
fn from(iri: &'a RiAbsoluteString<S>) -> Self {
NormalizationTask::from(iri.as_slice())
}
}
impl<'a, T: ?Sized + AsRef<str>> NormalizationTask<'a, T> {
/// Enables normalization for the task.
pub(crate) fn enable_normalization(&mut self) {
debug_assert!(
matches!(
self.common.op,
NormalizationType::Full | NormalizationType::RemoveDotSegments
),
"No cases should be overlooked"
);
self.common.op = NormalizationType::Full;
}
/// Resolves the IRI, and writes it to the buffer.
fn write_to_buf<'b, B: Buffer<'b>>(&self, buf: B) -> Result<&'b [u8], TaskError<Error>>
where
TaskError<Error>: From<B::ExtendError>,
{
self.common.write_to_buf(buf).map_err(Into::into)
}
/// Returns the estimated maximum size required for IRI normalization/resolution.
///
/// With a buffer of the returned size, IRI normalization/resolution would
/// succeed without OOM error. The operation may succeed with smaller
/// buffer than this function estimates, but it is not guaranteed.
///
/// Note that this is `O(N)` operation (where N is input length).
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// let max_size = task.estimate_max_buf_size_for_resolution();
/// let mut buf = vec![0_u8; max_size];
/// let resolved = task.write_to_byte_slice(&mut buf[..])?;
///
/// assert_eq!(resolved, "http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// # Ok::<_, Error>(())
/// ```
#[must_use]
pub fn estimate_max_buf_size_for_resolution(&self) -> usize {
let known_exact = self.common.scheme.len()
+ self.common.authority.map_or(0, |s| s.len() + 2)
+ self.common.query.map_or(0, |s| s.len() + 1)
+ self.common.fragment.map_or(0, |s| s.len() + 1);
let path_max = self.common.path.estimate_max_buf_size_for_resolution();
known_exact + path_max
}
}
impl<'a, T: ?Sized> From<NormalizationTaskCommon<'a>> for NormalizationTask<'a, T> {
#[inline]
fn from(common: NormalizationTaskCommon<'a>) -> Self {
Self {
common,
_spec: PhantomData,
}
}
}
impl<S: Spec> ProcessAndWrite for &NormalizationTask<'_, RiStr<S>> {
type OutputBorrowed = RiStr<S>;
#[cfg(feature = "alloc")]
type OutputOwned = RiString<S>;
type ProcessError = Error;
/// Processes the data, and writes it to the newly allocated buffer.
///
/// # Failures
///
/// This fails if:
///
/// * failed to allocate memory, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// assert_eq!(
/// task.allocate_and_write()?,
/// "http://example.com/slash%2Fslash/\u{03B1}%CE%B1"
/// );
/// # Ok::<_, Error>(())
/// ```
#[cfg(feature = "alloc")]
fn allocate_and_write(self) -> Result<Self::OutputOwned, TaskError<Self::ProcessError>> {
let mut s = String::new();
self.write_to_buf(&mut s)?;
Ok(RiString::try_from(s).expect("[consistency] the resolved IRI must be valid"))
}
/// Processes the data, and writes it to the given byte slice.
///
/// # Failures
///
/// This fails if:
///
/// * buffer is not large enough, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// // Long enough!
/// let mut buf = [0_u8; 128];
/// let normalized = task.write_to_byte_slice(&mut buf[..])?;
///
/// assert_eq!(normalized, "http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// # Ok::<_, Error>(())
/// ```
///
/// This returns error when the buffer is not long enough for processing.
///
/// Note that it would be still not enough even if the buffer is long enough
/// to store the result. During processing, the resolver might use more
/// memory than the result. You can get maximum required buffer size by
/// [`estimate_max_buf_size_for_resolution`] method.
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl From<iri_string::normalize::Error> for Error {
/// # fn from(e: iri_string::normalize::Error) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::{Error as TaskError, ProcessAndWrite};
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("http://example.com/a/b/c/d/e/../../../../../f")?;
/// const EXPECTED: &str = "http://example.com/f";
/// let task = NormalizationTask::from(iri);
///
/// // Buffer is too short for processing, even though it is long enough
/// // to store the result.
/// let mut buf = [0_u8; EXPECTED.len()];
/// let resolved = task.write_to_byte_slice(&mut buf[..]);
/// assert!(
/// matches!(resolved, Err(TaskError::Buffer(_))),
/// "failed due to not enough buffer size"
/// );
/// // You can retry writing if you have larger buffer,
/// // since `task` was not consumed.
/// # Ok::<_, Error>(())
/// ```
///
/// [`estimate_max_buf_size_for_resolution`]: `NormalizationTask::estimate_max_buf_size_for_resolution`
fn write_to_byte_slice(
self,
buf: &mut [u8],
) -> Result<&Self::OutputBorrowed, TaskError<Self::ProcessError>> {
let buf = ByteSliceBuf::new(buf);
let s = self.write_to_buf(buf)?;
// Convert the type.
// This should never fail (unless the crate has bugs), but do the
// validation here for extra safety.
let s = <&RiStr<S>>::try_from(s).expect("[consistency] the resolved IRI must be valid");
Ok(s)
}
/// Processes the data, and appends it to the buffer inside the provided [`String`].
///
/// # Failures
///
/// This fails if failed to process data.
///
/// # Panics
///
/// This panics if failed to allocate memory.
/// To avoid panic on allocation failure, use [`try_append_to_std_string`].
///
/// [`try_append_to_std_string`]: `ProcessAndWrite::try_append_to_std_string`
#[cfg(feature = "alloc")]
fn append_to_std_string(
self,
buf: &mut String,
) -> Result<&Self::OutputBorrowed, Self::ProcessError> {
match self.try_append_to_std_string(buf) {
Ok(v) => Ok(v),
Err(TaskError::Buffer(e)) => panic!("buffer error: {}", e),
Err(TaskError::Process(e)) => Err(e),
}
}
/// Processes the data, and appends it to the buffer inside the provided [`String`].
///
/// # Failures
///
/// This fails if:
///
/// * failed to allocate memory, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "alloc")] {
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// let mut buf = String::from("Result: ");
///
/// let result: Result<&IriStr, _> = task.try_append_to_std_string(&mut buf);
/// if let Ok(s) = result {
/// assert_eq!(s, "http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// assert_eq!(buf, "Result: http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// }
/// # }
/// # Ok::<_, iri_string::validate::Error>(())
/// ```
#[cfg(feature = "alloc")]
fn try_append_to_std_string(
self,
buf: &mut String,
) -> Result<&Self::OutputBorrowed, TaskError<Self::ProcessError>> {
let s = self.write_to_buf(buf)?;
// Convert the type.
// This should never fail (unless the crate has bugs), but do the
// validation here for extra safety.
let s = <&RiStr<S>>::try_from(s).expect("[consistency] the resolved IRI must be valid");
Ok(s)
}
}
impl<S: Spec> ProcessAndWrite for &NormalizationTask<'_, RiAbsoluteStr<S>> {
type OutputBorrowed = RiAbsoluteStr<S>;
#[cfg(feature = "alloc")]
type OutputOwned = RiAbsoluteString<S>;
type ProcessError = Error;
/// Processes the data, and writes it to the newly allocated buffer.
///
/// # Failures
///
/// This fails if:
///
/// * failed to allocate memory, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// assert_eq!(
/// task.allocate_and_write()?,
/// "http://example.com/slash%2Fslash/\u{03B1}%CE%B1"
/// );
/// # Ok::<_, Error>(())
/// ```
#[cfg(feature = "alloc")]
fn allocate_and_write(self) -> Result<Self::OutputOwned, TaskError<Self::ProcessError>> {
let mut s = String::new();
self.write_to_buf(&mut s)?;
Ok(RiAbsoluteString::try_from(s).expect("[consistency] the resolved IRI must be valid"))
}
/// Processes the data, and writes it to the given byte slice.
///
/// # Failures
///
/// This fails if:
///
/// * buffer is not large enough, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// // Long enough!
/// let mut buf = [0_u8; 128];
/// let normalized = task.write_to_byte_slice(&mut buf[..])?;
///
/// assert_eq!(normalized, "http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// # Ok::<_, Error>(())
/// ```
///
/// This returns error when the buffer is not long enough for processing.
///
/// Note that it would be still not enough even if the buffer is long enough
/// to store the result. During processing, the resolver might use more
/// memory than the result. You can get maximum required buffer size by
/// [`estimate_max_buf_size_for_resolution`] method.
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl From<iri_string::normalize::Error> for Error {
/// # fn from(e: iri_string::normalize::Error) -> Self { Self } }
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::{Error as TaskError, ProcessAndWrite};
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("http://example.com/a/b/c/d/e/../../../../../f")?;
/// const EXPECTED: &str = "http://example.com/f";
/// let task = NormalizationTask::from(iri);
///
/// // Buffer is too short for processing, even though it is long enough
/// // to store the result.
/// let mut buf = [0_u8; EXPECTED.len()];
/// let resolved = task.write_to_byte_slice(&mut buf[..]);
/// assert!(
/// matches!(resolved, Err(TaskError::Buffer(_))),
/// "failed due to not enough buffer size"
/// );
/// // You can retry writing if you have larger buffer,
/// // since `task` was not consumed.
/// # Ok::<_, Error>(())
/// ```
///
/// [`estimate_max_buf_size_for_resolution`]: `NormalizationTask::estimate_max_buf_size_for_resolution`
fn write_to_byte_slice(
self,
buf: &mut [u8],
) -> Result<&Self::OutputBorrowed, TaskError<Self::ProcessError>> {
let buf = ByteSliceBuf::new(buf);
let s = self.write_to_buf(buf)?;
// Convert the type.
// This should never fail (unless the crate has bugs), but do the
// validation here for extra safety.
let s =
<&RiAbsoluteStr<S>>::try_from(s).expect("[consistency] the resolved IRI must be valid");
Ok(s)
}
/// Processes the data, and appends it to the buffer inside the provided [`String`].
///
/// # Failures
///
/// This fails if failed to process data.
///
/// # Panics
///
/// This panics if failed to allocate memory.
/// To avoid panic on allocation failure, use [`try_append_to_std_string`].
///
/// [`try_append_to_std_string`]: `ProcessAndWrite::try_append_to_std_string`
#[cfg(feature = "alloc")]
fn append_to_std_string(
self,
buf: &mut String,
) -> Result<&Self::OutputBorrowed, Self::ProcessError> {
match self.try_append_to_std_string(buf) {
Ok(v) => Ok(v),
Err(TaskError::Buffer(e)) => panic!("buffer error: {}", e),
Err(TaskError::Process(e)) => Err(e),
}
}
/// Processes the data, and appends it to the buffer inside the provided [`String`].
///
/// # Failures
///
/// This fails if:
///
/// * failed to allocate memory, or
/// * failed to process data.
///
/// To see examples of unresolvable IRIs, visit the [module
/// documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "alloc")] {
/// use iri_string::normalize::NormalizationTask;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::IriStr;
///
/// let iri = IriStr::new("HTTP://e%78ample%2ecom/a/../slash%2fslash/\u{03B1}%ce%b1")?;
/// let task = NormalizationTask::from(iri);
///
/// let mut buf = String::from("Result: ");
///
/// let result: Result<&IriStr, _> = task.try_append_to_std_string(&mut buf);
/// if let Ok(s) = result {
/// assert_eq!(s, "http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// assert_eq!(buf, "Result: http://example.com/slash%2Fslash/\u{03B1}%CE%B1");
/// }
/// # }
/// # Ok::<_, iri_string::validate::Error>(())
/// ```
#[cfg(feature = "alloc")]
fn try_append_to_std_string(
self,
buf: &mut String,
) -> Result<&Self::OutputBorrowed, TaskError<Self::ProcessError>> {
let s = self.write_to_buf(buf)?;
// Convert the type.
// This should never fail (unless the crate has bugs), but do the
// validation here for extra safety.
let s =
<&RiAbsoluteStr<S>>::try_from(s).expect("[consistency] the resolved IRI must be valid");
Ok(s)
}
}
/// Spec-agnostic IRI normalization/resolution task.
#[derive(Debug, Clone, Copy)]
pub(crate) struct NormalizationTaskCommon<'a> {
/// Target scheme.
pub(crate) scheme: &'a str,
/// Target authority.
pub(crate) authority: Option<&'a str>,
/// Target path without dot-removal.
pub(crate) path: Path<'a>,
/// Target query.
pub(crate) query: Option<&'a str>,
/// Target fragment.
pub(crate) fragment: Option<&'a str>,
/// Normalization type.
pub(crate) op: NormalizationType,
}
impl<'a> NormalizationTaskCommon<'a> {
/// Runs the resolution task and write the result to the buffer.
// For the internal algorithm, see [RFC 3986 section 5.3],
// [RFC 3986 section 6.2.2], and [RFC 3987 section 5.3.2].
//
// [RFC 3986 section 5.3]: https://datatracker.ietf.org/doc/html/rfc3986#section-5.3
// [RFC 3986 section 6.2]: https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2
// [RFC 3987 section 5.3.2]: https://datatracker.ietf.org/doc/html/rfc3987#section-5.3.2
fn write_to_buf<'b, B: Buffer<'b>>(&self, mut buf: B) -> Result<&'b [u8], TaskError<Error>>
where
TaskError<Error>: From<B::ExtendError>,
{
let buf_offset = buf.as_bytes().len();
// Write the scheme.
match self.op {
NormalizationType::Full => {
// Apply case normalization.
//
// > namely, that the scheme and US-ASCII only host are case
// > insensitive and therefore should be normalized to lowercase.
// >
// > --- <https://datatracker.ietf.org/doc/html/rfc3987#section-5.3.2.1>.
buf.extend_chars(self.scheme.chars().map(|c| c.to_ascii_lowercase()))?;
}
NormalizationType::RemoveDotSegments => {
buf.push_str(self.scheme)?;
}
}
buf.push_str(":")?;
// Write the authority if available.
if let Some(authority) = self.authority {
buf.push_str("//")?;
match self.op {
NormalizationType::Full => {
// Apply case normalization and percent-encoding normalization.
buf.extend_chars(normalize_case_and_pct_encodings(authority))?;
}
NormalizationType::RemoveDotSegments => {
buf.push_str(authority)?;
}
}
}
// Process and write the path.
let path_start_pos = buf.as_bytes().len();
match self.path {
Path::Done(s) => {
// Not applying `remove_dot_segments`.
buf.push_str(s)?;
}
Path::NeedsProcessing(path) => {
path.normalize(&mut buf, self.op)?;
}
}
// If authority is absent, the path should never start with `//`.
if self.authority.is_none() && buf.as_bytes()[path_start_pos..].starts_with(b"//") {
return Err(TaskError::Process(Error::new()));
}
// Write the query if available.
if let Some(query) = self.query {
buf.push_str("?")?;
match self.op {
NormalizationType::Full => {
// Apply percent-encoding normalization.
buf.extend_chars(normalize_pct_encodings(query))?;
}
NormalizationType::RemoveDotSegments => {
buf.push_str(query)?;
}
}
}
// Write the fragment if available.
if let Some(fragment) = self.fragment {
buf.push_str("#")?;
match self.op {
NormalizationType::Full => {
// Apply percent-encoding normalization.
buf.extend_chars(normalize_pct_encodings(fragment))?;
}
NormalizationType::RemoveDotSegments => {
buf.push_str(fragment)?;
}
}
}
Ok(&buf.into_bytes()[buf_offset..])
}
}
/// A state for case normalization and percent-encoding normalization.
#[derive(Debug, Clone)]
struct NormalizeCaseAndPercentEncodings<'a> {
/// The rest of the input.
rest: &'a str,
/// Number of the rest ASCII characters in a percent-encoded character.
rest_pct_encoded: u8,
/// Whether to normalize the case.
normalize_case: bool,
}
impl NormalizeCaseAndPercentEncodings<'_> {
/// Removes the first character in the buffer.
fn consume_char(&mut self) -> Option<char> {
let mut iter = self.rest.chars();
let next = iter.next()?;
let advanced = self.rest.len() - iter.as_str().len();
self.rest = &self.rest[advanced..];
Some(next)
}
}
impl Iterator for NormalizeCaseAndPercentEncodings<'_> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
let first_char = self.consume_char()?;
if let Some(new_rest_pct) = self.rest_pct_encoded.checked_sub(1) {
self.rest_pct_encoded = new_rest_pct;
return Some(first_char.to_ascii_uppercase());
}
if first_char != '%' {
if self.normalize_case && first_char.is_ascii_uppercase() {
return Some(first_char.to_ascii_lowercase());
}
return Some(first_char);
}
let decoded = {
let bytes = self.rest.as_bytes();
let upper_hex = match bytes[0] {
c @ b'0'..=b'9' => c - b'0',
c @ b'a'..=b'f' => c - b'a' + 10,
c @ b'A'..=b'F' => c - b'A' + 10,
_ => {
unreachable!("valid IRIs must not have incomplete or invalid percent encodings")
}
};
let lower_hex = match bytes[1] {
c @ b'0'..=b'9' => c - b'0',
c @ b'a'..=b'f' => c - b'a' + 10,
c @ b'A'..=b'F' => c - b'A' + 10,
_ => {
unreachable!("valid IRIs must not have incomplete or invalid percent encodings")
}
};
let code = (upper_hex << 4) | lower_hex;
if self.normalize_case && code.is_ascii_uppercase() {
code.to_ascii_lowercase()
} else {
code
}
};
if decoded.is_ascii() && char::is_ascii_unreserved(decoded) {
self.consume_char();
self.consume_char();
return Some(decoded as char);
}
self.rest_pct_encoded = 2;
Some(first_char)
}
}
/// Returns an iterator to apply case normalization and percent encodings normalization.
fn normalize_case_and_pct_encodings(i: &str) -> NormalizeCaseAndPercentEncodings<'_> {
NormalizeCaseAndPercentEncodings {
rest: i,
rest_pct_encoded: 0,
normalize_case: true,
}
}
/// Returns an iterator to apply only percent encodings normalization.
fn normalize_pct_encodings(i: &str) -> NormalizeCaseAndPercentEncodings<'_> {
NormalizeCaseAndPercentEncodings {
rest: i,
rest_pct_encoded: 0,
normalize_case: false,
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use crate::types::IriStr;
#[cfg(feature = "alloc")]
// `&[(expected, &[source_for_expected], &[different_iri])]`
const CASES: &[(&str, &[&str], &[&str])] = &[
(
"https://example.com/pa/th?query#frag",
&["https://example.com/pa/th?query#frag"],
&[],
),
(
"https://example.com/pA/Th?Query#Frag",
&["HTTPs://EXaMPLE.COM/pA/Th?Query#Frag"],
&[
"https://example.com/pa/th?Query#Frag",
"https://example.com/pA/Th?query#Frag",
"https://example.com/pA/Th?Query#frag",
],
),
(
"urn:uuid:7f1450df-6678-465b-a881-188f9b6ec822",
&[
"urn:uuid:7f1450df-6678-465b-a881-188f9b6ec822",
"URN:uuid:7f1450df-6678-465b-a881-188f9b6ec822",
],
&[
"urn:UUID:7f1450df-6678-465b-a881-188f9b6ec822",
"urn:uuid:7F1450DF-6678-465B-A881-188F9B6EC822",
],
),
(
"http://example.com/a/b/d/e",
&[
"http://example.com/a/b/c/%2e%2e/d/e",
"http://example.com/a/b/c/%2E%2E/d/e",
"http://example.com/a/b/c/../d/e",
"http://example.com/a/b/c/%2E%2e/d/e",
"http://example.com/a/b/c/.%2e/d/e",
"http://example.com/a/./././././b/c/.%2e/d/e",
],
&[],
),
(
"http://example.com/~Ascii%21",
&["http://example.com/%7E%41%73%63%69%69%21"],
&[],
),
];
#[test]
#[cfg(feature = "alloc")]
fn normalize() {
for (expected, sources, different_iris) in CASES {
let expected = IriStr::new(*expected).expect("must be a valid IRI");
assert_eq!(
expected
.normalize()
.expect("normalized IRI must be normalizable"),
expected,
"IRI normalization must be idempotent"
);
for src in *sources {
let src = IriStr::new(*src).expect("must be a valid IRI");
let normalized = src.normalize().expect("should be normalizable");
assert_eq!(normalized, expected);
}
for different in *different_iris {
let different = IriStr::new(*different).expect("must be a valid IRI");
let normalized = different.normalize().expect("should be normalizable");
assert_ne!(
normalized, expected,
"{:?} should not be normalized to {:?}",
different, expected
);
}
}
}
}