1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
//! URI and IRI resolvers.
//!
//! # IRI resolution can fail
//!
//! Though this is not explicitly stated in RFC 3986, IRI resolution can fail.
//! Below are examples:
//!
//! * base=`scheme:`, ref=`.///bar`.
//! + Resulting IRI should have scheme `scheme` and path `//bar`, but does not have authority.
//! * base=`scheme:foo`, ref=`.///bar`.
//! + Resulting IRI should have scheme `scheme` and path `//bar`, but does not have authority.
//! * base=`scheme:`, ref=`/..//baz`.
//! + Resulting IRI should have scheme `scheme` and path `//bar`, but does not have authority.
//! * base=`scheme:foo/bar`, ref=`..//baz`.
//! + Resulting IRI should have scheme `scheme` and path `//bar`, but does not have authority.
//!
//! IRI without authority (note that this is different from "with empty authority")
//! cannot have a path starting with `//`, since it is ambiguous and can be
//! interpreted as an IRI with authority. For the above examples, `scheme://bar`
//! is not valid output, as `bar` in `scheme://bar` will be interpreted as an
//! authority, not a path.
//!
//! Thus, IRI resolution can fail for some abnormal cases.
//!
//! Note that this kind of failure can happen only when the base IRI has no
//! authority and empty path. This would be rare in the wild, since many people
//! would use an IRI with authority part, such as `http://`.
//!
//! If you are handling `scheme://`-style URIs and IRIs, don't worry about the
//! failure. Currently no cases are known to fail when at least one of the base
//! IRI or the relative IRI contains authorities.
//!
//! If you want this kind of abnormal IRI resolution to succeed and to be
//! idempotent, use WHATWG variation of resolution and normalization.
//!
//! ## Examples
//!
//! ```
//! # #[cfg(feature = "alloc")] {
//! use iri_string::task::Error as TaskError;
//! use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
//!
//! let base = IriAbsoluteStr::new("scheme:")?;
//! {
//! let reference = IriReferenceStr::new(".///not-a-host")?;
//! let err = reference.resolve_against(base)
//! .expect_err("this resolution should fail");
//! assert!(matches!(err, TaskError::Process(_)), "normalization error");
//!
//! // WHATWG version.
//! let resolved_whatwg = reference.resolve_whatwg_against(base)
//! .expect("memory allocation failed");
//! assert_eq!(*resolved_whatwg, "scheme:/.//not-a-host");
//! }
//!
//! {
//! let reference2 = IriReferenceStr::new("/..//not-a-host")?;
//! // Resulting string will be `scheme://not-a-host`, but `not-a-host`
//! // should be a path segment, not a host. So, the semantically correct
//! // target IRI cannot be represented by RFC 3986 IRI resolution.
//! let err2 = reference2.resolve_against(base)
//! .expect_err("this resolution should fail");
//! assert!(matches!(err2, TaskError::Process(_)), "normalization error");
//!
//! // Algorithm defined in WHATWG URL Standard addresses this case.
//! let resolved_whatwg2 = reference2.resolve_whatwg_against(base)
//! .expect("memory allocation failed");
//! assert_eq!(*resolved_whatwg2, "scheme:/.//not-a-host");
//! }
//! # }
//! # Ok::<_, iri_string::validate::Error>(())
//! ```
#[cfg(test)]
mod tests;
#[cfg(feature = "alloc")]
use core::convert::Infallible;
use crate::components::RiReferenceComponents;
#[cfg(feature = "alloc")]
use crate::normalize::Error;
use crate::normalize::{
NormalizationOp, NormalizationTask, NormalizationTaskCommon, Path, PathToNormalize,
};
use crate::spec::Spec;
#[cfg(feature = "alloc")]
use crate::task::{Error as TaskError, ProcessAndWrite};
#[cfg(feature = "alloc")]
use crate::types::RiString;
use crate::types::{RiAbsoluteStr, RiReferenceStr, RiStr};
/// Resolves the IRI reference.
///
/// It is recommended to use methods such as [`RiReferenceStr::resolve_against()`] and
/// [`RiRelativeStr::resolve_against()`], rather than this freestanding function.
///
/// If you are going to resolve multiple references against the common base,
/// consider using [`FixedBaseResolver`].
///
/// Enabled by `alloc` or `std` feature.
///
/// # Failures
///
/// This fails if
///
/// * memory allocation failed, or
/// * the IRI referernce is unresolvable against the base.
///
/// To see examples of unresolvable IRIs, visit the documentation
/// for [`normalize::Error`][`crate::normalize::Error`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::{resolve, FixedBaseResolver};
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("http://example.com/base/")?;
/// let reference = IriReferenceStr::new("../there")?;
///
/// // Resolve `reference` against `base`.
/// let resolved = resolve(reference, base)?;
/// assert_eq!(resolved, "http://example.com/there");
///
/// // These two produces the same result with the same type.
/// assert_eq!(
/// FixedBaseResolver::new(base).resolve(reference)?,
/// "http://example.com/there"
/// );
/// assert_eq!(
/// FixedBaseResolver::new(base).create_task(reference).allocate_and_write()?,
/// "http://example.com/there"
/// );
/// # Ok::<_, Error>(())
/// ```
///
/// [`RiReferenceStr::resolve_against()`]: `RiReferenceStr::resolve_against`
/// [`RiRelativeStr::resolve_against()`]: `crate::types::RiRelativeStr::resolve_against`
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve<S: Spec>(
reference: impl AsRef<RiReferenceStr<S>>,
base: impl AsRef<RiAbsoluteStr<S>>,
) -> Result<RiString<S>, TaskError<Error>> {
FixedBaseResolver::new(base.as_ref()).resolve(reference.as_ref())
}
/// Resolves the IRI reference.
///
/// It is recommended to use methods such as [`RiReferenceStr::resolve_whatwg_against()`]
/// and [`RiRelativeStr::resolve_whatwg_against()`], rather than this freestanding function.
///
/// If you are going to resolve multiple references against the common base,
/// consider using [`FixedBaseResolver`].
///
/// Enabled by `alloc` or `std` feature.
///
/// # Failures
///
/// This fails if memory allocation failed.
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::{resolve_whatwg, FixedBaseResolver};
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("scheme:/path")?;
/// let reference = IriReferenceStr::new("..//not-a-host")?;
///
/// // Resolve `reference` against `base`.
/// let resolved = resolve_whatwg(reference, base)?;
/// // Note that the result is not `scheme://not-a-host`.
/// assert_eq!(resolved, "scheme:/.//not-a-host");
/// # Ok::<_, Error>(())
/// ```
///
/// [`RiReferenceStr::resolve_whatwg_against()`]: `RiReferenceStr::resolve_whatwg_against`
/// [`RiRelativeStr::resolve_whatwg_against()`]:
/// `crate::types::RiRelativeStr::resolve_whatwg_against`
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve_whatwg<S: Spec>(
reference: impl AsRef<RiReferenceStr<S>>,
base: impl AsRef<RiAbsoluteStr<S>>,
) -> Result<RiString<S>, TaskError<Infallible>> {
let mut task = FixedBaseResolver::new(base.as_ref()).create_task(reference.as_ref());
task.enable_whatwg_serialization();
task.allocate_and_write().map_err(|e| match e {
TaskError::Buffer(e) => TaskError::Buffer(e),
TaskError::Process(_) => unreachable!("WHATWG normaliation algorithm should not fail"),
})
}
/// Resolves and normalizes the IRI reference.
///
/// It is recommended to use methods such as [`RiReferenceStr::resolve_normalize_against()`]
/// and [`RiRelativeStr::resolve_normalize_against()`], rather than this
/// freestanding function.
///
/// If you are going to resolve multiple references against the common base,
/// consider using [`FixedBaseResolver`].
///
/// Enabled by `alloc` or `std` feature.
///
/// # Failures
///
/// This fails if
///
/// * memory allocation failed, or
/// * the IRI referernce is unresolvable against the base.
///
/// To see examples of unresolvable IRIs, visit the
/// [module documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::{resolve_normalize, FixedBaseResolver};
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("http://example.com/base/")?;
/// let reference = IriReferenceStr::new("../there")?;
///
/// // Resolve and normalize `reference` against `base`.
/// let resolved = resolve_normalize(reference, base)?;
/// assert_eq!(resolved, "http://example.com/there");
///
/// // These two produces the same result with the same type.
/// assert_eq!(
/// FixedBaseResolver::new(base).resolve(reference)?,
/// "http://example.com/there"
/// );
/// assert_eq!(
/// FixedBaseResolver::new(base)
/// .create_normalizing_task(reference)
/// .allocate_and_write()?,
/// "http://example.com/there"
/// );
///
/// # Ok::<_, Error>(())
/// ```
///
/// [RFC 3986 section 5.2]: https://tools.ietf.org/html/rfc3986#section-5.2
/// [`RiReferenceStr::resolve_normalize_against()`]: `RiReferenceStr::resolve_normalize_against`
/// [`RiRelativeStr::resolve_normalize_against()`]: `crate::types::RiRelativeStr::resolve_normalize_against`
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve_normalize<S: Spec>(
reference: impl AsRef<RiReferenceStr<S>>,
base: impl AsRef<RiAbsoluteStr<S>>,
) -> Result<RiString<S>, TaskError<Error>> {
FixedBaseResolver::new(base.as_ref()).resolve_normalize(reference.as_ref())
}
/// Resolves and normalizes the IRI reference.
///
/// It is recommended to use methods such as
/// [`RiReferenceStr::resolve_normalize_whatwg_against()`] and
/// [`RiRelativeStr::resolve_normalize_whatwg_against()`], rather than this
/// freestanding function.
///
/// If you are going to resolve multiple references against the common base,
/// consider using [`FixedBaseResolver`].
///
/// Enabled by `alloc` or `std` feature.
///
/// # Failures
///
/// This fails if memory allocation failed.
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::{resolve_normalize_whatwg, FixedBaseResolver};
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("scheme:/path")?;
/// let reference = IriReferenceStr::new("..//not-a-host")?;
///
/// // Resolve and normalize `reference` against `base`.
/// let resolved = resolve_normalize_whatwg(reference, base)?;
/// assert_eq!(resolved, "scheme:/.//not-a-host");
/// # Ok::<_, Error>(())
/// ```
///
/// [RFC 3986 section 5.2]: https://tools.ietf.org/html/rfc3986#section-5.2
/// [`RiReferenceStr::resolve_normalize_whatwg_against()`]:
/// `RiReferenceStr::resolve_normalize_whatwg_against`
/// [`RiRelativeStr::resolve_normalize_whatwg_against()`]:
/// `crate::types::RiRelativeStr::resolve_normalize_whatwg_against`
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve_normalize_whatwg<S: Spec>(
reference: impl AsRef<RiReferenceStr<S>>,
base: impl AsRef<RiAbsoluteStr<S>>,
) -> Result<RiString<S>, TaskError<Infallible>> {
let mut task =
FixedBaseResolver::new(base.as_ref()).create_normalizing_task(reference.as_ref());
task.enable_whatwg_serialization();
task.allocate_and_write().map_err(|e| match e {
TaskError::Buffer(e) => TaskError::Buffer(e),
TaskError::Process(_) => unreachable!("WHATWG normaliation algorithm should not fail"),
})
}
/// A resolver against the fixed base.
///
/// If you want more control over how to resolve the buffer, create
/// [`NormalizationTask`] by [`create_task`] or [`create_normalizing_task`] method.
///
/// [`create_normalizing_task`]: `Self::create_normalizing_task`
/// [`create_task`]: `Self::create_task`
#[derive(Debug, Clone, Copy)]
pub struct FixedBaseResolver<'a, S: Spec> {
/// Components of the base IRI.
base_components: RiReferenceComponents<'a, S>,
}
impl<'a, S: Spec> FixedBaseResolver<'a, S> {
/// Creates a new resolver with the given base.
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// # #[cfg(feature = "alloc")] {
/// # // `FixedBaseResolver::resolve()` is available only when
/// # // `alloc` feature is enabled.
/// let base = IriAbsoluteStr::new("http://example.com/base/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// let reference = IriReferenceStr::new("../there")?;
/// let resolved = resolver.resolve(reference)?;
///
/// assert_eq!(resolved, "http://example.com/there");
/// # }
/// # Ok::<_, Error>(())
/// ```
#[must_use]
pub fn new(base: &'a RiAbsoluteStr<S>) -> Self {
Self {
base_components: RiReferenceComponents::from(base.as_ref()),
}
}
/// Returns the base.
///
/// # Examples
///
/// ```
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("http://example.com/base/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// assert_eq!(resolver.base(), base);
/// # Ok::<_, iri_string::validate::Error>(())
/// ```
#[must_use]
pub fn base(&self) -> &'a RiAbsoluteStr<S> {
unsafe {
// SAFETY: `base_components` can only be created from `&RiAbsoluteStr<S>`.
RiAbsoluteStr::new_maybe_unchecked(self.base_components.iri().as_str())
}
}
}
impl<'a, S: Spec> FixedBaseResolver<'a, S> {
/// Resolves the given reference against the fixed base.
///
/// Enabled by `alloc` or `std` feature.
///
/// The task returned by this method does **not** normalize the resolution
/// result. However, `..` and `.` are recognized even when they are
/// percent-encoded.
///
/// # Failures
///
/// This fails if
///
/// * memory allocation failed, or
/// * the IRI referernce is unresolvable against the base.
///
/// To see examples of unresolvable IRIs, visit the
/// [module documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// let base = IriAbsoluteStr::new("http://example.com/base/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// let reference = IriReferenceStr::new("../there")?;
/// let resolved = resolver.resolve(reference)?;
///
/// assert_eq!(resolved, "http://example.com/there");
/// # Ok::<_, Error>(())
/// ```
///
/// Note that `..` and `.` path segments are recognized even when they are
/// percent-encoded.
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// # #[cfg(feature = "alloc")] {
/// # // `ResolutionTask::allocate_and_write()` is available only when
/// # // `alloc` feature is enabled.
/// let base = IriAbsoluteStr::new("HTTP://example.COM/base/base2/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// // `%2e%2e` is recognized as `..`.
/// // However, `dot%2edot` is NOT normalized into `dot.dot`.
/// let reference = IriReferenceStr::new("%2e%2e/../dot%2edot")?;
/// let task = resolver.create_task(reference);
///
/// let resolved = task.allocate_and_write()?;
/// // Resolved but not normalized.
/// assert_eq!(resolved, "HTTP://example.COM/dot%2edot");
/// # }
/// # Ok::<_, Error>(())
/// ```
///
/// [`create_normalizing_task`]: `Self::create_normalizing_task`
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve(&self, reference: &RiReferenceStr<S>) -> Result<RiString<S>, TaskError<Error>> {
self.create_task(reference).allocate_and_write()
}
/// Resolves the given reference against the fixed base, and normalizes the result.
///
/// Enabled by `alloc` or `std` feature.
///
/// The task returned by this method is normalized.
///
/// If you don't want the result to be normalized, use [`create_task`] method.
///
/// # Failures
///
/// This fails if
///
/// * memory allocation failed, or
/// * the IRI referernce is unresolvable against the base.
///
/// To see examples of unresolvable IRIs, visit the
/// [module documentation][`self`].
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// # #[cfg(feature = "alloc")] {
/// # // `ResolutionTask::allocate_and_write()` is available only when
/// # // `alloc` feature is enabled.
/// let base = IriAbsoluteStr::new("HTTP://example.COM/base/base2/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// // `%2e%2e` is recognized as `..`.
/// let reference = IriReferenceStr::new("%2e%2e/../dot%2edot")?;
/// let task = resolver.create_normalizing_task(reference);
///
/// let resolved = task.allocate_and_write()?;
/// // Not only resolved, but also normalized.
/// assert_eq!(resolved, "http://example.com/dot.dot");
/// # }
/// # Ok::<_, Error>(())
/// ```
///
/// [`create_task`]: `Self::create_task`
/// [`unreserved` characters]: https://datatracker.ietf.org/doc/html/rfc3986#section-2.3
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn resolve_normalize(
&self,
reference: &RiReferenceStr<S>,
) -> Result<RiString<S>, TaskError<Error>> {
self.create_normalizing_task(reference).allocate_and_write()
}
/// Creates a resolution task.
///
/// The returned [`NormalizationTask`] allows you to resolve the IRI without
/// memory allocation, resolve to existing buffers, estimate required
/// memory size, etc. If you need more control than
/// [`resolve`][`Self::resolve`] method, use this.
///
/// The task returned by this method does not normalize the resolution
/// result. However, note that `..` and `.` is recognized even when they
/// are percent-encoded.
///
/// If you want to normalize the result, use
/// [`create_normalizing_task`][`Self::create_normalizing_task`]
/// method instead, or call [`NormalizationTask::enable_normalization`] for
/// the returned task.
///
/// If you want to avoid resolution failure by using resolution described in
/// WHATWG URL Standard, call
/// [`NormalizationTask::enable_whatwg_serialization`] for the returned task.
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// # #[cfg(feature = "alloc")] {
/// # // `ResolutionTask::allocate_and_write()` is available only when
/// # // `alloc` feature is enabled.
/// let base = IriAbsoluteStr::new("HTTP://example.COM/base/base2/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// // `%2e%2e` is recognized as `..`.
/// // However, `dot%2edot` is NOT normalized into `dot.dot`.
/// let reference = IriReferenceStr::new("%2e%2e/../dot%2edot")?;
/// let task = resolver.create_task(reference);
///
/// let resolved = task.allocate_and_write()?;
/// // Resolved but not normalized.
/// assert_eq!(resolved, "HTTP://example.COM/dot%2edot");
/// # }
/// # Ok::<_, Error>(())
/// ```
///
/// [`create_task`]: `Self::create_task`
#[must_use]
pub fn create_task(&self, reference: &'a RiReferenceStr<S>) -> NormalizationTask<'a, RiStr<S>> {
let b = self.base_components;
let r = RiReferenceComponents::from(reference);
let (r_scheme, r_authority, r_path, r_query, r_fragment) = r.to_major();
let (b_scheme, b_authority, b_path, b_query, _) = b.to_major();
let b_scheme = b_scheme.expect("[validity] non-relative IRI must have a scheme");
/// The toplevel component the reference has.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum RefToplevel {
/// Scheme.
Scheme,
/// Authority.
Authority,
/// Path.
Path,
/// Query.
Query,
/// Reference is empty or has only fragment.
None,
}
impl RefToplevel {
/// Choose a component from either of the reference or the base,
/// based on the toplevel component of the reference.
fn choose<T>(self, component: RefToplevel, reference: T, base: T) -> T {
if self <= component {
reference
} else {
base
}
}
}
let ref_toplevel = if r_scheme.is_some() {
RefToplevel::Scheme
} else if r_authority.is_some() {
RefToplevel::Authority
} else if !r_path.is_empty() {
RefToplevel::Path
} else if r_query.is_some() {
RefToplevel::Query
} else {
RefToplevel::None
};
let path = match ref_toplevel {
RefToplevel::Scheme | RefToplevel::Authority => {
Path::NeedsProcessing(PathToNormalize::from_single_path(r_path))
}
RefToplevel::Path => {
if r_path.starts_with('/') {
Path::NeedsProcessing(PathToNormalize::from_single_path(r_path))
} else {
// About this branch, see
// <https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.3>.
//
// > o If the base URI has a defined authority component and an empty
// > path, then return a string consisting of "/" concatenated with the
// > reference's path; otherwise,
let b_path = if b_authority.is_some() && b_path.is_empty() {
"/"
} else {
b_path
};
Path::NeedsProcessing(PathToNormalize::from_paths_to_be_resolved(
b_path, r_path,
))
}
}
RefToplevel::Query | RefToplevel::None => Path::Done(b_path),
};
NormalizationTaskCommon {
scheme: r_scheme.unwrap_or(b_scheme),
authority: ref_toplevel.choose(RefToplevel::Authority, r_authority, b_authority),
path,
query: ref_toplevel.choose(RefToplevel::Query, r_query, b_query),
fragment: r_fragment,
op: NormalizationOp {
case_pct_normalization: false,
whatwg_serialization: false,
},
}
.into()
}
/// Creates a resolution task.
///
/// The returned [`NormalizationTask`] allows you to resolve the IRI without
/// memory allocation, resolve to existing buffers, estimate required
/// memory size, etc. If you need more control than
/// [`resolve_normalize`][`Self::resolve_normalize`] method, use this.
///
/// The task returned by this method normalizes the resolution result.
/// If you don't want to normalize the result, use
/// [`create_task`][`Self::create_task`] instead.
///
/// If you want to avoid resolution and normalization failure by using
/// resolution described in WHATWG URL Standard, call
/// [`NormalizationTask::enable_whatwg_serialization`] for the returned task.
///
/// # Examples
///
/// ```
/// # #[derive(Debug)] struct Error;
/// # impl From<iri_string::validate::Error> for Error {
/// # fn from(e: iri_string::validate::Error) -> Self { Self } }
/// # impl<T> From<iri_string::task::Error<T>> for Error {
/// # fn from(e: iri_string::task::Error<T>) -> Self { Self } }
/// use iri_string::resolve::FixedBaseResolver;
/// use iri_string::task::ProcessAndWrite;
/// use iri_string::types::{IriAbsoluteStr, IriReferenceStr};
///
/// # #[cfg(feature = "alloc")] {
/// # // `ResolutionTask::allocate_and_write()` is available only when
/// # // `alloc` feature is enabled.
/// let base = IriAbsoluteStr::new("HTTP://example.COM/base/base2/")?;
/// let resolver = FixedBaseResolver::new(base);
///
/// let reference = IriReferenceStr::new("%2e%2e/../dot%2edot")?;
/// let task = resolver.create_normalizing_task(reference);
///
/// let resolved = task.allocate_and_write()?;
/// // Not only resolved, but also normalized.
/// assert_eq!(resolved, "http://example.com/dot.dot");
/// # }
/// # Ok::<_, Error>(())
/// ```
#[must_use]
pub fn create_normalizing_task(
&self,
reference: &'a RiReferenceStr<S>,
) -> NormalizationTask<'a, RiStr<S>> {
let mut task = self.create_task(reference);
task.enable_normalization();
task
}
}