iroh_base/
key.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
//! Cryptographic key handling for `iroh-net`.

mod encryption;

use std::{
    fmt::{Debug, Display},
    hash::Hash,
    str::FromStr,
    sync::Mutex,
    time::Duration,
};

pub use ed25519_dalek::{Signature, PUBLIC_KEY_LENGTH};
use ed25519_dalek::{SignatureError, SigningKey, VerifyingKey};
use once_cell::sync::OnceCell;
use rand_core::CryptoRngCore;
use serde::{Deserialize, Serialize};
use ssh_key::LineEnding;
use ttl_cache::TtlCache;

pub use self::encryption::SharedSecret;
use self::encryption::{public_ed_box, secret_ed_box};
use crate::base32::{self, HexOrBase32ParseError};

#[derive(Debug)]
struct CryptoKeys {
    verifying_key: VerifyingKey,
    crypto_box: crypto_box::PublicKey,
}

impl CryptoKeys {
    fn new(verifying_key: VerifyingKey) -> Self {
        let crypto_box = public_ed_box(&verifying_key);
        Self {
            verifying_key,
            crypto_box,
        }
    }
}

/// Expiry time for the crypto key cache.
///
/// Basically, if no crypto operations have been performed with a key for this
/// duration, the crypto keys will be removed from the cache and need to be
/// re-created when they are used again.
const KEY_CACHE_TTL: Duration = Duration::from_secs(60);
/// Maximum number of keys in the crypto key cache. CryptoKeys are 224 bytes,
/// keys are 32 bytes, so each entry is 256 bytes plus some overhead.
///
/// So that is about 4MB of max memory for the cache.
const KEY_CACHE_CAPACITY: usize = 1024 * 16;
static KEY_CACHE: OnceCell<Mutex<TtlCache<[u8; 32], CryptoKeys>>> = OnceCell::new();

fn lock_key_cache() -> std::sync::MutexGuard<'static, TtlCache<[u8; 32], CryptoKeys>> {
    let mutex = KEY_CACHE.get_or_init(|| Mutex::new(TtlCache::new(KEY_CACHE_CAPACITY)));
    mutex.lock().expect("not poisoned")
}

/// Get or create the crypto keys, and project something out of them.
///
/// If the key has been verified before, this will not fail.
fn get_or_create_crypto_keys<T>(
    key: &[u8; 32],
    f: impl Fn(&CryptoKeys) -> T,
) -> std::result::Result<T, SignatureError> {
    let mut state = lock_key_cache();
    Ok(match state.entry(*key) {
        ttl_cache::Entry::Occupied(entry) => {
            // cache hit
            f(entry.get())
        }
        ttl_cache::Entry::Vacant(entry) => {
            // cache miss, create. This might fail if the key is invalid.
            let vk = VerifyingKey::from_bytes(key)?;
            let item = CryptoKeys::new(vk);
            let item = entry.insert(item, KEY_CACHE_TTL);
            f(item)
        }
    })
}

/// A public key.
///
/// The key itself is just a 32 byte array, but a key has associated crypto
/// information that is cached for performance reasons.
///
/// The cache item will be refreshed every time a crypto operation is performed,
/// or when a key is deserialised or created from a byte array.
///
/// Serialisation or creation from a byte array is cheap if the key is already
/// in the cache, but expensive if it is not.
#[derive(Clone, Copy, PartialEq, Eq, Ord, PartialOrd)]
pub struct PublicKey([u8; 32]);

/// The identifier for a node in the (iroh) network.
///
/// Each node in iroh has a unique identifier created as a cryptographic key.  This can be
/// used to globally identify a node.  Since it is also a cryptographic key it is also the
/// mechanism by which all traffic is always encrypted for a specific node only.
///
/// This is equivalent to [`PublicKey`].  By convention we will (or should) use `PublicKey`
/// as type name when performing cryptographic operations, but use `NodeId` when referencing
/// a node.  E.g.:
///
/// - `encrypt(key: PublicKey)`
/// - `send_to(node: NodeId)`
pub type NodeId = PublicKey;

impl Hash for PublicKey {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl Serialize for PublicKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        if serializer.is_human_readable() {
            serializer.serialize_str(&self.to_string())
        } else {
            self.0.serialize(serializer)
        }
    }
}

impl<'de> Deserialize<'de> for PublicKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        if deserializer.is_human_readable() {
            let s = String::deserialize(deserializer)?;
            Self::from_str(&s).map_err(serde::de::Error::custom)
        } else {
            let data: [u8; 32] = serde::Deserialize::deserialize(deserializer)?;
            Self::try_from(data.as_ref()).map_err(serde::de::Error::custom)
        }
    }
}

impl PublicKey {
    /// Get this public key as a byte array.
    pub fn as_bytes(&self) -> &[u8; 32] {
        &self.0
    }

    fn public(&self) -> VerifyingKey {
        get_or_create_crypto_keys(&self.0, |item| item.verifying_key).expect("key has been checked")
    }

    fn public_crypto_box(&self) -> crypto_box::PublicKey {
        get_or_create_crypto_keys(&self.0, |item| item.crypto_box.clone())
            .expect("key has been checked")
    }

    /// Construct a `PublicKey` from a slice of bytes.
    ///
    /// # Warning
    ///
    /// This will return a [`SignatureError`] if the bytes passed into this method do not represent
    /// a valid `ed25519_dalek` curve point. Will never fail for bytes return from [`Self::as_bytes`].
    /// See [`VerifyingKey::from_bytes`] for details.
    pub fn from_bytes(bytes: &[u8; 32]) -> Result<Self, SignatureError> {
        get_or_create_crypto_keys(bytes, |item| item.verifying_key)?;
        Ok(Self(*bytes))
    }

    /// Verify a signature on a message with this secret key's public key.
    ///
    /// # Return
    ///
    /// Returns `Ok(())` if the signature is valid, and `Err` otherwise.
    pub fn verify(&self, message: &[u8], signature: &Signature) -> Result<(), SignatureError> {
        self.public().verify_strict(message, signature)
    }

    /// Convert to a base32 string limited to the first 10 bytes for a friendly string
    /// representation of the key.
    pub fn fmt_short(&self) -> String {
        base32::fmt_short(self.as_bytes())
    }
}

impl TryFrom<&[u8]> for PublicKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        Ok(match <[u8; 32]>::try_from(bytes) {
            Ok(bytes) => {
                // using from_bytes is faster than going via the verifying
                // key in case the key is already in the cache, which should
                // be quite common.
                Self::from_bytes(&bytes)?
            }
            Err(_) => {
                // this will always fail since the size is wrong.
                // but there is no public constructor for SignatureError,
                // so ¯\_(ツ)_/¯...
                let vk = VerifyingKey::try_from(bytes)?;
                vk.into()
            }
        })
    }
}

impl TryFrom<&[u8; 32]> for PublicKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8; 32]) -> Result<Self, Self::Error> {
        Self::from_bytes(bytes)
    }
}

impl AsRef<[u8]> for PublicKey {
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl From<VerifyingKey> for PublicKey {
    fn from(verifying_key: VerifyingKey) -> Self {
        let item = CryptoKeys::new(verifying_key);
        let key = *verifying_key.as_bytes();
        let mut table = lock_key_cache();
        // we already have performed the crypto operation, so no need for
        // get_or_create_crypto_keys. Just insert in any case.
        table.insert(key, item, KEY_CACHE_TTL);
        PublicKey(key)
    }
}

impl Debug for PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "PublicKey({})", base32::fmt_short(self.as_bytes()))
    }
}

impl Display for PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if f.alternate() {
            write!(f, "{}", base32::fmt_short(self.as_bytes()))
        } else {
            write!(f, "{}", base32::fmt(self.as_bytes()))
        }
    }
}

/// Error when deserialising a [`PublicKey`] or a [`SecretKey`].
#[derive(thiserror::Error, Debug)]
pub enum KeyParsingError {
    /// Error when decoding the base32.
    #[error("decoding: {0}")]
    Base32(#[from] HexOrBase32ParseError),
    /// Error when decoding the public key.
    #[error("key: {0}")]
    Key(#[from] ed25519_dalek::SignatureError),
}

/// Deserialises the [`PublicKey`] from it's base32 encoding.
///
/// [`Display`] is capable of serialising this format.
impl FromStr for PublicKey {
    type Err = KeyParsingError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let bytes = base32::parse_array_hex_or_base32::<32>(s)?;
        Ok(Self::try_from(bytes.as_ref())?)
    }
}

/// A secret key.
#[derive(Clone)]
pub struct SecretKey {
    secret: SigningKey,
    secret_crypto_box: OnceCell<crypto_box::SecretKey>,
}

impl Debug for SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "SecretKey({})", base32::fmt_short(self.to_bytes()))
    }
}

impl Display for SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", base32::fmt(self.to_bytes()))
    }
}

impl FromStr for SecretKey {
    type Err = KeyParsingError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(SecretKey::from(base32::parse_array_hex_or_base32::<32>(s)?))
    }
}

impl Serialize for SecretKey {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        self.secret.serialize(serializer)
    }
}

impl<'de> Deserialize<'de> for SecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let secret = SigningKey::deserialize(deserializer)?;
        Ok(secret.into())
    }
}

impl SecretKey {
    /// The public key of this [`SecretKey`].
    pub fn public(&self) -> PublicKey {
        self.secret.verifying_key().into()
    }

    /// Generate a new [`SecretKey`] with the default randomness generator.
    pub fn generate() -> Self {
        let mut rng = rand::rngs::OsRng;
        Self::generate_with_rng(&mut rng)
    }

    /// Generate a new [`SecretKey`] with a randomness generator.
    pub fn generate_with_rng<R: CryptoRngCore + ?Sized>(csprng: &mut R) -> Self {
        let secret = SigningKey::generate(csprng);

        Self {
            secret,
            secret_crypto_box: OnceCell::default(),
        }
    }

    /// Serialise this key to OpenSSH format.
    pub fn to_openssh(&self) -> ssh_key::Result<zeroize::Zeroizing<String>> {
        let ckey = ssh_key::private::Ed25519Keypair {
            public: self.secret.verifying_key().into(),
            private: self.secret.clone().into(),
        };
        ssh_key::private::PrivateKey::from(ckey).to_openssh(LineEnding::default())
    }

    /// Deserialise this key from OpenSSH format.
    pub fn try_from_openssh<T: AsRef<[u8]>>(data: T) -> anyhow::Result<Self> {
        let ser_key = ssh_key::private::PrivateKey::from_openssh(data)?;
        match ser_key.key_data() {
            ssh_key::private::KeypairData::Ed25519(kp) => Ok(SecretKey {
                secret: kp.private.clone().into(),
                secret_crypto_box: OnceCell::default(),
            }),
            _ => anyhow::bail!("invalid key format"),
        }
    }

    /// Sign the given message and return a digital signature
    pub fn sign(&self, msg: &[u8]) -> Signature {
        use ed25519_dalek::Signer;

        self.secret.sign(msg)
    }

    /// Convert this to the bytes representing the secret part.
    /// The public part can always be recovered.
    pub fn to_bytes(&self) -> [u8; 32] {
        self.secret.to_bytes()
    }

    /// Create a secret key from its byte representation.
    pub fn from_bytes(bytes: &[u8; 32]) -> Self {
        let secret = SigningKey::from_bytes(bytes);
        secret.into()
    }

    fn secret_crypto_box(&self) -> &crypto_box::SecretKey {
        self.secret_crypto_box
            .get_or_init(|| secret_ed_box(&self.secret))
    }
}

impl From<SigningKey> for SecretKey {
    fn from(secret: SigningKey) -> Self {
        SecretKey {
            secret,
            secret_crypto_box: OnceCell::default(),
        }
    }
}

impl From<[u8; 32]> for SecretKey {
    fn from(value: [u8; 32]) -> Self {
        Self::from_bytes(&value)
    }
}

impl TryFrom<&[u8]> for SecretKey {
    type Error = SignatureError;

    #[inline]
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        let secret = SigningKey::try_from(bytes)?;
        Ok(secret.into())
    }
}

#[cfg(test)]
mod tests {
    use iroh_test::{assert_eq_hex, hexdump::parse_hexdump};

    use super::*;

    #[test]
    fn test_public_key_postcard() {
        let public_key =
            PublicKey::from_str("ae58ff8833241ac82d6ff7611046ed67b5072d142c588d0063e942d9a75502b6")
                .unwrap();
        let bytes = postcard::to_stdvec(&public_key).unwrap();
        let expected =
            parse_hexdump("ae58ff8833241ac82d6ff7611046ed67b5072d142c588d0063e942d9a75502b6")
                .unwrap();
        assert_eq_hex!(bytes, expected);
    }

    #[test]
    fn test_secret_key_openssh_roundtrip() {
        let kp = SecretKey::generate();
        let ser = kp.to_openssh().unwrap();
        let de = SecretKey::try_from_openssh(&ser).unwrap();
        assert_eq!(kp.to_bytes(), de.to_bytes());
    }

    #[test]
    fn public_key_postcard() {
        let key = PublicKey::from_bytes(&[0; 32]).unwrap();
        let bytes = postcard::to_stdvec(&key).unwrap();
        let key2: PublicKey = postcard::from_bytes(&bytes).unwrap();
        assert_eq!(key, key2);
    }

    #[test]
    fn public_key_json() {
        let key = PublicKey::from_bytes(&[0; 32]).unwrap();
        let bytes = serde_json::to_string(&key).unwrap();
        let key2: PublicKey = serde_json::from_str(&bytes).unwrap();
        assert_eq!(key, key2);
    }

    #[test]
    fn test_display_from_str() {
        let key = SecretKey::generate();
        assert_eq!(
            SecretKey::from_str(&key.to_string()).unwrap().to_bytes(),
            key.to_bytes()
        );

        assert_eq!(
            PublicKey::from_str(&key.public().to_string()).unwrap(),
            key.public()
        );
    }

    /// Test the different ways a key can come into existence, and that they
    /// all populate the key cache.
    #[test]
    fn test_key_creation_cache() {
        let random_verifying_key = || {
            let sk = SigningKey::generate(&mut rand::thread_rng());
            sk.verifying_key()
        };
        let random_public_key = || random_verifying_key().to_bytes();
        let k1 = random_public_key();
        let _key = PublicKey::from_bytes(&k1).unwrap();
        assert!(lock_key_cache().contains_key(&k1));

        let k2 = random_public_key();
        let _key = PublicKey::try_from(&k2).unwrap();
        assert!(lock_key_cache().contains_key(&k2));

        let k3 = random_public_key();
        let _key = PublicKey::try_from(k3.as_slice()).unwrap();
        assert!(lock_key_cache().contains_key(&k3));

        let k4 = random_verifying_key();
        let _key = PublicKey::from(k4);
        assert!(lock_key_cache().contains_key(k4.as_bytes()));

        let k5 = random_verifying_key();
        let bytes = postcard::to_stdvec(&k5).unwrap();
        // VerifyingKey serialises with a length prefix, PublicKey does not.
        let _key: PublicKey = postcard::from_bytes(&bytes[1..]).unwrap();
        assert!(lock_key_cache().contains_key(k5.as_bytes()));
    }
}