iroh_net/tls/
certificate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
//! X.509 certificate handling.
//!
//! This module handles generation, signing, and verification of certificates.
//!
//! Based on rust-libp2p/transports/tls/src/certificate.rs originally licensed under MIT by Parity
//! Technologies (UK) Ltd.

use std::sync::Arc;

use der::{asn1::OctetStringRef, Decode, Encode, Sequence};
use x509_parser::prelude::*;

use crate::key::{PublicKey, SecretKey, Signature};

/// The libp2p Public Key Extension is a X.509 extension
/// with the Object Identifier 1.3.6.1.4.1.53594.1.1,
/// allocated by IANA to the libp2p project at Protocol Labs.
const P2P_EXT_OID: [u64; 9] = [1, 3, 6, 1, 4, 1, 53594, 1, 1];

/// The peer signs the concatenation of the string `libp2p-tls-handshake:`
/// and the public key that it used to generate the certificate carrying
/// the libp2p Public Key Extension, using its private host key.
/// This signature provides cryptographic proof that the peer was
/// in possession of the private host key at the time the certificate was signed.
const P2P_SIGNING_PREFIX: [u8; 21] = *b"libp2p-tls-handshake:";

// Certificates MUST use the NamedCurve encoding for elliptic curve parameters.
// Similarly, hash functions with an output length less than 256 bits MUST NOT be used.
static P2P_SIGNATURE_ALGORITHM: &rcgen::SignatureAlgorithm = &rcgen::PKCS_ECDSA_P256_SHA256;

#[derive(Debug)]
pub(crate) struct AlwaysResolvesCert(Arc<rustls::sign::CertifiedKey>);

impl AlwaysResolvesCert {
    pub(crate) fn new(
        cert: rustls::pki_types::CertificateDer<'static>,
        key: &rustls::pki_types::PrivateKeyDer<'_>,
    ) -> Result<Self, rustls::Error> {
        let certified_key = rustls::sign::CertifiedKey::new(
            vec![cert],
            rustls::crypto::ring::sign::any_ecdsa_type(key)?,
        );
        Ok(Self(Arc::new(certified_key)))
    }
}

impl rustls::client::ResolvesClientCert for AlwaysResolvesCert {
    fn resolve(
        &self,
        _root_hint_subjects: &[&[u8]],
        _sigschemes: &[rustls::SignatureScheme],
    ) -> Option<Arc<rustls::sign::CertifiedKey>> {
        Some(Arc::clone(&self.0))
    }

    fn has_certs(&self) -> bool {
        true
    }
}

impl rustls::server::ResolvesServerCert for AlwaysResolvesCert {
    fn resolve(
        &self,
        _client_hello: rustls::server::ClientHello<'_>,
    ) -> Option<Arc<rustls::sign::CertifiedKey>> {
        Some(Arc::clone(&self.0))
    }
}

/// The public host key and the signature are ANS.1-encoded
/// into the SignedKey data structure, which is carried  in the libp2p Public Key Extension.
#[derive(Clone, Debug, Eq, PartialEq, Sequence)]
struct SignedKey<'a> {
    public_key: OctetStringRef<'a>,
    signature: OctetStringRef<'a>,
}

/// Generates a self-signed TLS certificate that includes a libp2p-specific
/// certificate extension containing the public key of the given secret key.
pub fn generate(
    identity_secret_key: &SecretKey,
) -> Result<
    (
        rustls::pki_types::CertificateDer<'static>,
        rustls::pki_types::PrivateKeyDer<'static>,
    ),
    GenError,
> {
    // SecretKey used to sign the certificate.
    // SHOULD NOT be related to the host's key.
    // Endpoints MAY generate a new key and certificate
    // for every connection attempt, or they MAY reuse the same key
    // and certificate for multiple connections.
    let certificate_keypair = rcgen::KeyPair::generate(P2P_SIGNATURE_ALGORITHM)?;
    let rustls_key =
        rustls::pki_types::PrivateKeyDer::try_from(certificate_keypair.serialize_der()).unwrap();
    let certificate = {
        let mut params = rcgen::CertificateParams::new(vec![]);
        params.distinguished_name = rcgen::DistinguishedName::new();
        params.custom_extensions.push(make_libp2p_extension(
            identity_secret_key,
            &certificate_keypair,
        )?);
        params.alg = P2P_SIGNATURE_ALGORITHM;
        params.key_pair = Some(certificate_keypair);
        rcgen::Certificate::from_params(params)?
    };

    let rustls_certificate = rustls::pki_types::CertificateDer::from(certificate.serialize_der()?);

    Ok((rustls_certificate, rustls_key))
}

/// Attempts to parse the provided bytes as a [`P2pCertificate`].
///
/// For this to succeed, the certificate must contain the specified extension and the signature must
/// match the embedded public key.
pub fn parse<'a>(
    certificate: &'a rustls::pki_types::CertificateDer<'_>,
) -> Result<P2pCertificate<'a>, ParseError> {
    let certificate = parse_unverified(certificate.as_ref())?;

    certificate.verify()?;

    Ok(certificate)
}

/// An X.509 certificate with a libp2p-specific extension
/// is used to secure libp2p connections.
#[derive(Debug)]
pub struct P2pCertificate<'a> {
    certificate: X509Certificate<'a>,
    /// This is a specific libp2p Public Key Extension with two values:
    /// * the public host key
    /// * a signature performed using the private host key
    extension: P2pExtension,
}

/// The contents of the specific libp2p extension, containing the public host key
/// and a signature performed using the private host key.
#[derive(Debug)]
pub struct P2pExtension {
    public_key: crate::key::PublicKey,
    /// This signature provides cryptographic proof that the peer was
    /// in possession of the private host key at the time the certificate was signed.
    signature: crate::key::Signature,
}

/// An error that occurs during certificate generation.
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub struct GenError(#[from] rcgen::Error);

/// An error that occurs during certificate parsing.
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub struct ParseError(#[from] pub(crate) webpki::Error);

/// An error that occurs during signature verification.
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub struct VerificationError(#[from] pub(crate) webpki::Error);

/// Internal function that only parses but does not verify the certificate.
///
/// Useful for testing but unsuitable for production.
fn parse_unverified(der_input: &[u8]) -> Result<P2pCertificate, webpki::Error> {
    let x509 = X509Certificate::from_der(der_input)
        .map(|(_rest_input, x509)| x509)
        .map_err(|_| webpki::Error::BadDer)?;

    let p2p_ext_oid = der_parser::oid::Oid::from(&P2P_EXT_OID)
        .expect("This is a valid OID of p2p extension; qed");

    let mut libp2p_extension = None;

    for ext in x509.extensions() {
        let oid = &ext.oid;
        if oid == &p2p_ext_oid && libp2p_extension.is_some() {
            // The extension was already parsed
            return Err(webpki::Error::BadDer);
        }

        if oid == &p2p_ext_oid {
            let signed_key =
                SignedKey::from_der(ext.value).map_err(|_| webpki::Error::ExtensionValueInvalid)?;
            let public_key_raw = signed_key.public_key.as_bytes();
            let public_key =
                PublicKey::try_from(public_key_raw).map_err(|_| webpki::Error::UnknownIssuer)?;

            let signature = Signature::from_slice(signed_key.signature.as_bytes())
                .map_err(|_| webpki::Error::UnknownIssuer)?;
            let ext = P2pExtension {
                public_key,
                signature,
            };
            libp2p_extension = Some(ext);
            continue;
        }

        if ext.critical {
            // Endpoints MUST abort the connection attempt if the certificate
            // contains critical extensions that the endpoint does not understand.
            return Err(webpki::Error::UnsupportedCriticalExtension);
        }

        // Implementations MUST ignore non-critical extensions with unknown OIDs.
    }

    // The certificate MUST contain the libp2p Public Key Extension.
    // If this extension is missing, endpoints MUST abort the connection attempt.
    let extension = libp2p_extension.ok_or(webpki::Error::BadDer)?;

    let certificate = P2pCertificate {
        certificate: x509,
        extension,
    };

    Ok(certificate)
}

fn make_libp2p_extension(
    identity_secret_key: &SecretKey,
    certificate_keypair: &rcgen::KeyPair,
) -> Result<rcgen::CustomExtension, rcgen::Error> {
    // The peer signs the concatenation of the string `libp2p-tls-handshake:`
    // and the public key that it used to generate the certificate carrying
    // the libp2p Public Key Extension, using its private host key.
    let signature = {
        let mut msg = vec![];
        msg.extend(P2P_SIGNING_PREFIX);
        msg.extend(certificate_keypair.public_key_der());

        identity_secret_key.sign(&msg)
    };

    let public_key = identity_secret_key.public();
    let public_key_ref = OctetStringRef::new(&public_key.as_bytes()[..])
        .map_err(|_| rcgen::Error::CouldNotParseKeyPair)?;
    let signature = signature.to_bytes();
    let signature_ref =
        OctetStringRef::new(&signature).map_err(|_| rcgen::Error::CouldNotParseCertificate)?;
    let key = SignedKey {
        public_key: public_key_ref,
        signature: signature_ref,
    };

    let mut extension_content = Vec::new();
    key.encode_to_vec(&mut extension_content).expect("vec");

    // This extension MAY be marked critical.
    let mut ext = rcgen::CustomExtension::from_oid_content(&P2P_EXT_OID, extension_content);
    ext.set_criticality(true);

    Ok(ext)
}

impl P2pCertificate<'_> {
    /// The [`PublicKey`] of the remote peer.
    pub fn peer_id(&self) -> PublicKey {
        self.extension.public_key
    }

    /// Verify the `signature` of the `message` signed by the secret key corresponding to the public key stored
    /// in the certificate.
    pub fn verify_signature(
        &self,
        signature_scheme: rustls::SignatureScheme,
        message: &[u8],
        signature: &[u8],
    ) -> Result<(), VerificationError> {
        let pk = self.public_key(signature_scheme)?;
        pk.verify(message, signature)
            .map_err(|_| webpki::Error::InvalidSignatureForPublicKey)?;

        Ok(())
    }

    /// Get a [`ring::signature::UnparsedPublicKey`] for this `signature_scheme`.
    /// Return `Error` if the `signature_scheme` does not match the public key signature
    /// and hashing algorithm or if the `signature_scheme` is not supported.
    fn public_key(
        &self,
        signature_scheme: rustls::SignatureScheme,
    ) -> Result<ring::signature::UnparsedPublicKey<&[u8]>, webpki::Error> {
        use ring::signature;
        use rustls::SignatureScheme::*;

        let current_signature_scheme = self.signature_scheme()?;
        if signature_scheme != current_signature_scheme {
            // This certificate was signed with a different signature scheme
            return Err(webpki::Error::UnsupportedSignatureAlgorithmForPublicKey);
        }

        let verification_algorithm: &dyn signature::VerificationAlgorithm = match signature_scheme {
            ECDSA_NISTP256_SHA256 => &signature::ECDSA_P256_SHA256_ASN1,
            ECDSA_NISTP384_SHA384 => &signature::ECDSA_P384_SHA384_ASN1,
            ECDSA_NISTP521_SHA512 => {
                // See https://github.com/briansmith/ring/issues/824
                return Err(webpki::Error::UnsupportedSignatureAlgorithm);
            }
            ED25519 => &signature::ED25519,
            ED448 => {
                // See https://github.com/briansmith/ring/issues/463
                return Err(webpki::Error::UnsupportedSignatureAlgorithm);
            }
            // No support for RSA
            RSA_PKCS1_SHA256 | RSA_PKCS1_SHA384 | RSA_PKCS1_SHA512 | RSA_PSS_SHA256
            | RSA_PSS_SHA384 | RSA_PSS_SHA512 => {
                return Err(webpki::Error::UnsupportedSignatureAlgorithm)
            }
            // Similarly, hash functions with an output length less than 256 bits
            // MUST NOT be used, due to the possibility of collision attacks.
            // In particular, MD5 and SHA1 MUST NOT be used.
            RSA_PKCS1_SHA1 => return Err(webpki::Error::UnsupportedSignatureAlgorithm),
            ECDSA_SHA1_Legacy => return Err(webpki::Error::UnsupportedSignatureAlgorithm),
            Unknown(_) => return Err(webpki::Error::UnsupportedSignatureAlgorithm),
            _ => return Err(webpki::Error::UnsupportedSignatureAlgorithm),
        };
        let spki = &self.certificate.tbs_certificate.subject_pki;
        let key = signature::UnparsedPublicKey::new(
            verification_algorithm,
            spki.subject_public_key.as_ref(),
        );

        Ok(key)
    }

    /// This method validates the certificate according to libp2p TLS 1.3 specs.
    /// The certificate MUST:
    /// 1. be valid at the time it is received by the peer;
    /// 2. use the NamedCurve encoding;
    /// 3. use hash functions with an output length not less than 256 bits;
    /// 4. be self signed;
    /// 5. contain a valid signature in the specific libp2p extension.
    fn verify(&self) -> Result<(), webpki::Error> {
        use webpki::Error;

        // The certificate MUST have NotBefore and NotAfter fields set
        // such that the certificate is valid at the time it is received by the peer.
        if !self.certificate.validity().is_valid() {
            return Err(Error::InvalidCertValidity);
        }

        // Certificates MUST use the NamedCurve encoding for elliptic curve parameters.
        // Similarly, hash functions with an output length less than 256 bits
        // MUST NOT be used, due to the possibility of collision attacks.
        // In particular, MD5 and SHA1 MUST NOT be used.
        // Endpoints MUST abort the connection attempt if it is not used.
        let signature_scheme = self.signature_scheme()?;
        // Endpoints MUST abort the connection attempt if the certificate’s
        // self-signature is not valid.
        let raw_certificate = self.certificate.tbs_certificate.as_ref();
        let signature = self.certificate.signature_value.as_ref();
        // check if self signed
        self.verify_signature(signature_scheme, raw_certificate, signature)
            .map_err(|_| Error::SignatureAlgorithmMismatch)?;

        let subject_pki = self.certificate.public_key().raw;

        // The peer signs the concatenation of the string `libp2p-tls-handshake:`
        // and the public key that it used to generate the certificate carrying
        // the libp2p Public Key Extension, using its private host key.
        let mut msg = vec![];
        msg.extend(P2P_SIGNING_PREFIX);
        msg.extend(subject_pki);

        // This signature provides cryptographic proof that the peer was in possession
        // of the private host key at the time the certificate was signed.
        // Peers MUST verify the signature, and abort the connection attempt
        // if signature verification fails.
        let user_owns_sk = self
            .extension
            .public_key
            .verify(&msg, &self.extension.signature)
            .is_ok();
        if !user_owns_sk {
            return Err(Error::UnknownIssuer);
        }

        Ok(())
    }

    /// Return the signature scheme corresponding to [`AlgorithmIdentifier`]s
    /// of `subject_pki` and `signature_algorithm`
    /// according to <https://www.rfc-editor.org/rfc/rfc8446.html#section-4.2.3>.
    fn signature_scheme(&self) -> Result<rustls::SignatureScheme, webpki::Error> {
        // Certificates MUST use the NamedCurve encoding for elliptic curve parameters.
        // Endpoints MUST abort the connection attempt if it is not used.
        use oid_registry::*;
        use rustls::SignatureScheme::*;

        let signature_algorithm = &self.certificate.signature_algorithm;
        let pki_algorithm = &self.certificate.tbs_certificate.subject_pki.algorithm;

        if pki_algorithm.algorithm == OID_KEY_TYPE_EC_PUBLIC_KEY {
            let signature_param = pki_algorithm
                .parameters
                .as_ref()
                .ok_or(webpki::Error::BadDer)?
                .as_oid()
                .map_err(|_| webpki::Error::BadDer)?;
            if signature_param == OID_EC_P256
                && signature_algorithm.algorithm == OID_SIG_ECDSA_WITH_SHA256
            {
                return Ok(ECDSA_NISTP256_SHA256);
            }
            if signature_param == OID_NIST_EC_P384
                && signature_algorithm.algorithm == OID_SIG_ECDSA_WITH_SHA384
            {
                return Ok(ECDSA_NISTP384_SHA384);
            }
            if signature_param == OID_NIST_EC_P521
                && signature_algorithm.algorithm == OID_SIG_ECDSA_WITH_SHA512
            {
                return Ok(ECDSA_NISTP521_SHA512);
            }
            return Err(webpki::Error::UnsupportedSignatureAlgorithm);
        }

        if signature_algorithm.algorithm == OID_SIG_ED25519 {
            return Ok(ED25519);
        }
        if signature_algorithm.algorithm == OID_SIG_ED448 {
            return Ok(ED448);
        }

        Err(webpki::Error::UnsupportedSignatureAlgorithm)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn sanity_check() {
        let secret_key = SecretKey::generate();

        let (cert, _) = generate(&secret_key).unwrap();
        let parsed_cert = parse(&cert).unwrap();

        assert!(parsed_cert.verify().is_ok());
        assert_eq!(secret_key.public(), parsed_cert.extension.public_key);
    }
}