iroh_quinn_proto/connection/
assembler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
use std::{
    cmp::Ordering,
    collections::{binary_heap::PeekMut, BinaryHeap},
    mem,
};

use bytes::{Buf, Bytes, BytesMut};

use crate::range_set::RangeSet;

/// Helper to assemble unordered stream frames into an ordered stream
#[derive(Debug, Default)]
pub(super) struct Assembler {
    state: State,
    data: BinaryHeap<Buffer>,
    /// Total number of buffered bytes, including duplicates in ordered mode.
    buffered: usize,
    /// Estimated number of allocated bytes, will never be less than `buffered`.
    allocated: usize,
    /// Number of bytes read by the application. When only ordered reads have been used, this is the
    /// length of the contiguous prefix of the stream which has been consumed by the application,
    /// aka the stream offset.
    bytes_read: u64,
    end: u64,
}

impl Assembler {
    pub(super) fn new() -> Self {
        Self::default()
    }

    pub(super) fn ensure_ordering(&mut self, ordered: bool) -> Result<(), IllegalOrderedRead> {
        if ordered && !self.state.is_ordered() {
            return Err(IllegalOrderedRead);
        } else if !ordered && self.state.is_ordered() {
            // Enter unordered mode
            if !self.data.is_empty() {
                // Get rid of possible duplicates
                self.defragment();
            }
            let mut recvd = RangeSet::new();
            recvd.insert(0..self.bytes_read);
            for chunk in &self.data {
                recvd.insert(chunk.offset..chunk.offset + chunk.bytes.len() as u64);
            }
            self.state = State::Unordered { recvd };
        }
        Ok(())
    }

    /// Get the the next chunk
    pub(super) fn read(&mut self, max_length: usize, ordered: bool) -> Option<Chunk> {
        loop {
            let mut chunk = self.data.peek_mut()?;

            if ordered {
                if chunk.offset > self.bytes_read {
                    // Next chunk is after current read index
                    return None;
                } else if (chunk.offset + chunk.bytes.len() as u64) <= self.bytes_read {
                    // Next chunk is useless as the read index is beyond its end
                    self.buffered -= chunk.bytes.len();
                    self.allocated -= chunk.allocation_size;
                    PeekMut::pop(chunk);
                    continue;
                }

                // Determine `start` and `len` of the slice of useful data in chunk
                let start = (self.bytes_read - chunk.offset) as usize;
                if start > 0 {
                    chunk.bytes.advance(start);
                    chunk.offset += start as u64;
                    self.buffered -= start;
                }
            }

            return Some(if max_length < chunk.bytes.len() {
                self.bytes_read += max_length as u64;
                let offset = chunk.offset;
                chunk.offset += max_length as u64;
                self.buffered -= max_length;
                Chunk::new(offset, chunk.bytes.split_to(max_length))
            } else {
                self.bytes_read += chunk.bytes.len() as u64;
                self.buffered -= chunk.bytes.len();
                self.allocated -= chunk.allocation_size;
                let chunk = PeekMut::pop(chunk);
                Chunk::new(chunk.offset, chunk.bytes)
            });
        }
    }

    /// Copy fragmented chunk data to new chunks backed by a single buffer
    ///
    /// This makes sure we're not unnecessarily holding on to many larger allocations.
    /// We merge contiguous chunks in the process of doing so.
    fn defragment(&mut self) {
        let new = BinaryHeap::with_capacity(self.data.len());
        let old = mem::replace(&mut self.data, new);
        let mut buffers = old.into_sorted_vec();
        self.buffered = 0;
        let mut fragmented_buffered = 0;
        let mut offset = 0;
        for chunk in buffers.iter_mut().rev() {
            chunk.try_mark_defragment(offset);
            let size = chunk.bytes.len();
            offset = chunk.offset + size as u64;
            self.buffered += size;
            if !chunk.defragmented {
                fragmented_buffered += size;
            }
        }
        self.allocated = self.buffered;
        let mut buffer = BytesMut::with_capacity(fragmented_buffered);
        let mut offset = 0;
        for chunk in buffers.into_iter().rev() {
            if chunk.defragmented {
                // bytes might be empty after try_mark_defragment
                if !chunk.bytes.is_empty() {
                    self.data.push(chunk);
                }
                continue;
            }
            // Overlap is resolved by try_mark_defragment
            if chunk.offset != offset + (buffer.len() as u64) {
                if !buffer.is_empty() {
                    self.data
                        .push(Buffer::new_defragmented(offset, buffer.split().freeze()));
                }
                offset = chunk.offset;
            }
            buffer.extend_from_slice(&chunk.bytes);
        }
        if !buffer.is_empty() {
            self.data
                .push(Buffer::new_defragmented(offset, buffer.split().freeze()));
        }
    }

    // Note: If a packet contains many frames from the same stream, the estimated over-allocation
    // will be much higher because we are counting the same allocation multiple times.
    pub(super) fn insert(&mut self, mut offset: u64, mut bytes: Bytes, allocation_size: usize) {
        debug_assert!(
            bytes.len() <= allocation_size,
            "allocation_size less than bytes.len(): {:?} < {:?}",
            allocation_size,
            bytes.len()
        );
        self.end = self.end.max(offset + bytes.len() as u64);
        if let State::Unordered { ref mut recvd } = self.state {
            // Discard duplicate data
            for duplicate in recvd.replace(offset..offset + bytes.len() as u64) {
                if duplicate.start > offset {
                    let buffer = Buffer::new(
                        offset,
                        bytes.split_to((duplicate.start - offset) as usize),
                        allocation_size,
                    );
                    self.buffered += buffer.bytes.len();
                    self.allocated += buffer.allocation_size;
                    self.data.push(buffer);
                    offset = duplicate.start;
                }
                bytes.advance((duplicate.end - offset) as usize);
                offset = duplicate.end;
            }
        } else if offset < self.bytes_read {
            if (offset + bytes.len() as u64) <= self.bytes_read {
                return;
            } else {
                let diff = self.bytes_read - offset;
                offset += diff;
                bytes.advance(diff as usize);
            }
        }

        if bytes.is_empty() {
            return;
        }
        let buffer = Buffer::new(offset, bytes, allocation_size);
        self.buffered += buffer.bytes.len();
        self.allocated += buffer.allocation_size;
        self.data.push(buffer);
        // `self.buffered` also counts duplicate bytes, therefore we use
        // `self.end - self.bytes_read` as an upper bound of buffered unique
        // bytes. This will cause a defragmentation if the amount of duplicate
        // bytes exceedes a proportion of the receive window size.
        let buffered = self.buffered.min((self.end - self.bytes_read) as usize);
        let over_allocation = self.allocated - buffered;
        // Rationale: on the one hand, we want to defragment rarely, ideally never
        // in non-pathological scenarios. However, a pathological or malicious
        // peer could send us one-byte frames, and since we use reference-counted
        // buffers in order to prevent copying, this could result in keeping a lot
        // of memory allocated. This limits over-allocation in proportion to the
        // buffered data. The constants are chosen somewhat arbitrarily and try to
        // balance between defragmentation overhead and over-allocation.
        let threshold = 32768.max(buffered * 3 / 2);
        if over_allocation > threshold {
            self.defragment()
        }
    }

    /// Number of bytes consumed by the application
    pub(super) fn bytes_read(&self) -> u64 {
        self.bytes_read
    }

    /// Discard all buffered data
    pub(super) fn clear(&mut self) {
        self.data.clear();
        self.buffered = 0;
        self.allocated = 0;
    }
}

/// A chunk of data from the receive stream
#[derive(Debug, PartialEq, Eq)]
pub struct Chunk {
    /// The offset in the stream
    pub offset: u64,
    /// The contents of the chunk
    pub bytes: Bytes,
}

impl Chunk {
    fn new(offset: u64, bytes: Bytes) -> Self {
        Self { offset, bytes }
    }
}

#[derive(Debug, Eq)]
struct Buffer {
    offset: u64,
    bytes: Bytes,
    /// Size of the allocation behind `bytes`, if `defragmented == false`.
    /// Otherwise this will be set to `bytes.len()` by `try_mark_defragment`.
    /// Will never be less than `bytes.len()`.
    allocation_size: usize,
    defragmented: bool,
}

impl Buffer {
    /// Constructs a new fragmented Buffer
    fn new(offset: u64, bytes: Bytes, allocation_size: usize) -> Self {
        Self {
            offset,
            bytes,
            allocation_size,
            defragmented: false,
        }
    }

    /// Constructs a new defragmented Buffer
    fn new_defragmented(offset: u64, bytes: Bytes) -> Self {
        let allocation_size = bytes.len();
        Self {
            offset,
            bytes,
            allocation_size,
            defragmented: true,
        }
    }

    /// Discards data before `offset` and flags `self` as defragmented if it has good utilization
    fn try_mark_defragment(&mut self, offset: u64) {
        let duplicate = offset.saturating_sub(self.offset) as usize;
        self.offset = self.offset.max(offset);
        if duplicate >= self.bytes.len() {
            // All bytes are duplicate
            self.bytes = Bytes::new();
            self.defragmented = true;
            self.allocation_size = 0;
            return;
        }
        self.bytes.advance(duplicate);
        // Make sure that fragmented buffers with high utilization become defragmented and
        // defragmented buffers remain defragmented
        self.defragmented = self.defragmented || self.bytes.len() * 6 / 5 >= self.allocation_size;
        if self.defragmented {
            // Make sure that defragmented buffers do not contribute to over-allocation
            self.allocation_size = self.bytes.len();
        }
    }
}

impl Ord for Buffer {
    // Invert ordering based on offset (max-heap, min offset first),
    // prioritize longer chunks at the same offset.
    fn cmp(&self, other: &Self) -> Ordering {
        self.offset
            .cmp(&other.offset)
            .reverse()
            .then(self.bytes.len().cmp(&other.bytes.len()))
    }
}

impl PartialOrd for Buffer {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Buffer {
    fn eq(&self, other: &Self) -> bool {
        (self.offset, self.bytes.len()) == (other.offset, other.bytes.len())
    }
}

#[derive(Debug)]
enum State {
    Ordered,
    Unordered {
        /// The set of offsets that have been received from the peer, including portions not yet
        /// read by the application.
        recvd: RangeSet,
    },
}

impl State {
    fn is_ordered(&self) -> bool {
        matches!(self, Self::Ordered)
    }
}

impl Default for State {
    fn default() -> Self {
        Self::Ordered
    }
}

/// Error indicating that an ordered read was performed on a stream after an unordered read
#[derive(Debug)]
pub struct IllegalOrderedRead;

#[cfg(test)]
mod test {
    use super::*;
    use assert_matches::assert_matches;

    #[test]
    fn assemble_ordered() {
        let mut x = Assembler::new();
        assert_matches!(next(&mut x, 32), None);
        x.insert(0, Bytes::from_static(b"123"), 3);
        assert_matches!(next(&mut x, 1), Some(ref y) if &y[..] == b"1");
        assert_matches!(next(&mut x, 3), Some(ref y) if &y[..] == b"23");
        x.insert(3, Bytes::from_static(b"456"), 3);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"456");
        x.insert(6, Bytes::from_static(b"789"), 3);
        x.insert(9, Bytes::from_static(b"10"), 2);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"789");
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"10");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_unordered() {
        let mut x = Assembler::new();
        x.ensure_ordering(false).unwrap();
        x.insert(3, Bytes::from_static(b"456"), 3);
        assert_matches!(next(&mut x, 32), None);
        x.insert(0, Bytes::from_static(b"123"), 3);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123");
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"456");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_duplicate() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"123"), 3);
        x.insert(0, Bytes::from_static(b"123"), 3);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_duplicate_compact() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"123"), 3);
        x.insert(0, Bytes::from_static(b"123"), 3);
        x.defragment();
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_contained() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"12345"), 5);
        x.insert(1, Bytes::from_static(b"234"), 3);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"12345");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_contained_compact() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"12345"), 5);
        x.insert(1, Bytes::from_static(b"234"), 3);
        x.defragment();
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"12345");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_contains() {
        let mut x = Assembler::new();
        x.insert(1, Bytes::from_static(b"234"), 3);
        x.insert(0, Bytes::from_static(b"12345"), 5);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"12345");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_contains_compact() {
        let mut x = Assembler::new();
        x.insert(1, Bytes::from_static(b"234"), 3);
        x.insert(0, Bytes::from_static(b"12345"), 5);
        x.defragment();
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"12345");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_overlapping() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"123"), 3);
        x.insert(1, Bytes::from_static(b"234"), 3);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123");
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"4");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_overlapping_compact() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"123"), 4);
        x.insert(1, Bytes::from_static(b"234"), 4);
        x.defragment();
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"1234");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_complex() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"1"), 1);
        x.insert(2, Bytes::from_static(b"3"), 1);
        x.insert(4, Bytes::from_static(b"5"), 1);
        x.insert(0, Bytes::from_static(b"123456"), 6);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123456");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_complex_compact() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"1"), 1);
        x.insert(2, Bytes::from_static(b"3"), 1);
        x.insert(4, Bytes::from_static(b"5"), 1);
        x.insert(0, Bytes::from_static(b"123456"), 6);
        x.defragment();
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"123456");
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn assemble_old() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"1234"), 4);
        assert_matches!(next(&mut x, 32), Some(ref y) if &y[..] == b"1234");
        x.insert(0, Bytes::from_static(b"1234"), 4);
        assert_matches!(next(&mut x, 32), None);
    }

    #[test]
    fn compact() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"abc"), 4);
        x.insert(3, Bytes::from_static(b"def"), 4);
        x.insert(9, Bytes::from_static(b"jkl"), 4);
        x.insert(12, Bytes::from_static(b"mno"), 4);
        x.defragment();
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(0, Bytes::from_static(b"abcdef"))
        );
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(9, Bytes::from_static(b"jklmno"))
        );
    }

    #[test]
    fn defrag_with_missing_prefix() {
        let mut x = Assembler::new();
        x.insert(3, Bytes::from_static(b"def"), 3);
        x.defragment();
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(3, Bytes::from_static(b"def"))
        );
    }

    #[test]
    fn defrag_read_chunk() {
        let mut x = Assembler::new();
        x.insert(3, Bytes::from_static(b"def"), 4);
        x.insert(0, Bytes::from_static(b"abc"), 4);
        x.insert(7, Bytes::from_static(b"hij"), 4);
        x.insert(11, Bytes::from_static(b"lmn"), 4);
        x.defragment();
        assert_matches!(x.read(usize::MAX, true), Some(ref y) if &y.bytes[..] == b"abcdef");
        x.insert(5, Bytes::from_static(b"fghijklmn"), 9);
        assert_matches!(x.read(usize::MAX, true), Some(ref y) if &y.bytes[..] == b"ghijklmn");
        x.insert(13, Bytes::from_static(b"nopq"), 4);
        assert_matches!(x.read(usize::MAX, true), Some(ref y) if &y.bytes[..] == b"opq");
        x.insert(15, Bytes::from_static(b"pqrs"), 4);
        assert_matches!(x.read(usize::MAX, true), Some(ref y) if &y.bytes[..] == b"rs");
        assert_matches!(x.read(usize::MAX, true), None);
    }

    #[test]
    fn unordered_happy_path() {
        let mut x = Assembler::new();
        x.ensure_ordering(false).unwrap();
        x.insert(0, Bytes::from_static(b"abc"), 3);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(0, Bytes::from_static(b"abc"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
        x.insert(3, Bytes::from_static(b"def"), 3);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(3, Bytes::from_static(b"def"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
    }

    #[test]
    fn unordered_dedup() {
        let mut x = Assembler::new();
        x.ensure_ordering(false).unwrap();
        x.insert(3, Bytes::from_static(b"def"), 3);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(3, Bytes::from_static(b"def"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
        x.insert(0, Bytes::from_static(b"a"), 1);
        x.insert(0, Bytes::from_static(b"abcdefghi"), 9);
        x.insert(0, Bytes::from_static(b"abcd"), 4);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(0, Bytes::from_static(b"a"))
        );
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(1, Bytes::from_static(b"bc"))
        );
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(6, Bytes::from_static(b"ghi"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
        x.insert(8, Bytes::from_static(b"ijkl"), 4);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(9, Bytes::from_static(b"jkl"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
        x.insert(12, Bytes::from_static(b"mno"), 3);
        assert_eq!(
            next_unordered(&mut x),
            Chunk::new(12, Bytes::from_static(b"mno"))
        );
        assert_eq!(x.read(usize::MAX, false), None);
        x.insert(2, Bytes::from_static(b"cde"), 3);
        assert_eq!(x.read(usize::MAX, false), None);
    }

    #[test]
    fn chunks_dedup() {
        let mut x = Assembler::new();
        x.insert(3, Bytes::from_static(b"def"), 3);
        assert_eq!(x.read(usize::MAX, true), None);
        x.insert(0, Bytes::from_static(b"a"), 1);
        x.insert(1, Bytes::from_static(b"bcdefghi"), 9);
        x.insert(0, Bytes::from_static(b"abcd"), 4);
        assert_eq!(
            x.read(usize::MAX, true),
            Some(Chunk::new(0, Bytes::from_static(b"abcd")))
        );
        assert_eq!(
            x.read(usize::MAX, true),
            Some(Chunk::new(4, Bytes::from_static(b"efghi")))
        );
        assert_eq!(x.read(usize::MAX, true), None);
        x.insert(8, Bytes::from_static(b"ijkl"), 4);
        assert_eq!(
            x.read(usize::MAX, true),
            Some(Chunk::new(9, Bytes::from_static(b"jkl")))
        );
        assert_eq!(x.read(usize::MAX, true), None);
        x.insert(12, Bytes::from_static(b"mno"), 3);
        assert_eq!(
            x.read(usize::MAX, true),
            Some(Chunk::new(12, Bytes::from_static(b"mno")))
        );
        assert_eq!(x.read(usize::MAX, true), None);
        x.insert(2, Bytes::from_static(b"cde"), 3);
        assert_eq!(x.read(usize::MAX, true), None);
    }

    #[test]
    fn ordered_eager_discard() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"abc"), 3);
        assert_eq!(x.data.len(), 1);
        assert_eq!(
            x.read(usize::MAX, true),
            Some(Chunk::new(0, Bytes::from_static(b"abc")))
        );
        x.insert(0, Bytes::from_static(b"ab"), 2);
        assert_eq!(x.data.len(), 0);
        x.insert(2, Bytes::from_static(b"cd"), 2);
        assert_eq!(
            x.data.peek(),
            Some(&Buffer::new(3, Bytes::from_static(b"d"), 2))
        );
    }

    #[test]
    fn ordered_insert_unordered_read() {
        let mut x = Assembler::new();
        x.insert(0, Bytes::from_static(b"abc"), 3);
        x.insert(0, Bytes::from_static(b"abc"), 3);
        x.ensure_ordering(false).unwrap();
        assert_eq!(
            x.read(3, false),
            Some(Chunk::new(0, Bytes::from_static(b"abc")))
        );
        assert_eq!(x.read(3, false), None);
    }

    fn next_unordered(x: &mut Assembler) -> Chunk {
        x.read(usize::MAX, false).unwrap()
    }

    fn next(x: &mut Assembler, size: usize) -> Option<Bytes> {
        x.read(size, true).map(|chunk| chunk.bytes)
    }
}