iroh_quinn/
connection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
use std::{
    any::Any,
    fmt,
    future::Future,
    io,
    net::{IpAddr, SocketAddr},
    pin::Pin,
    sync::{Arc, Weak},
    task::{Context, Poll, Waker},
    time::{Duration, Instant},
};

use bytes::Bytes;
use pin_project_lite::pin_project;
use rustc_hash::FxHashMap;
use thiserror::Error;
use tokio::sync::{futures::Notified, mpsc, oneshot, watch, Notify};
use tracing::{debug_span, Instrument, Span};

use crate::{
    mutex::Mutex,
    recv_stream::RecvStream,
    runtime::{AsyncTimer, AsyncUdpSocket, Runtime, UdpPoller},
    send_stream::SendStream,
    udp_transmit, ConnectionEvent, VarInt,
};
use proto::{
    congestion::Controller, ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent,
    StreamEvent, StreamId,
};

/// In-progress connection attempt future
#[derive(Debug)]
#[must_use = "futures/streams/sinks do nothing unless you `.await` or poll them"]
pub struct Connecting {
    conn: Option<ConnectionRef>,
    connected: oneshot::Receiver<bool>,
    handshake_data_ready: Option<oneshot::Receiver<()>>,
}

impl Connecting {
    pub(crate) fn new(
        handle: ConnectionHandle,
        conn: proto::Connection,
        endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
        conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
        socket: Arc<dyn AsyncUdpSocket>,
        runtime: Arc<dyn Runtime>,
    ) -> Self {
        let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
        let (on_connected_send, on_connected_recv) = oneshot::channel();
        let conn = ConnectionRef::new(
            handle,
            conn,
            endpoint_events,
            conn_events,
            on_handshake_data_send,
            on_connected_send,
            socket,
            runtime.clone(),
        );

        let driver = ConnectionDriver(conn.clone());
        runtime.spawn(Box::pin(
            async {
                if let Err(e) = driver.await {
                    tracing::error!("I/O error: {e}");
                }
            }
            .instrument(Span::current()),
        ));

        Self {
            conn: Some(conn),
            connected: on_connected_recv,
            handshake_data_ready: Some(on_handshake_data_recv),
        }
    }

    /// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
    ///
    /// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
    /// If so, the returned [`Connection`] can be used to send application data without waiting for
    /// the rest of the handshake to complete, at the cost of weakened cryptographic security
    /// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
    /// complete, at which point subsequently opened streams and written data will have full
    /// cryptographic protection.
    ///
    /// ## Outgoing
    ///
    /// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
    /// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
    /// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
    /// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
    /// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
    /// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
    /// If it was rejected, the existence of streams opened and other application data sent prior
    /// to the handshake completing will not be conveyed to the remote application, and local
    /// operations on them will return `ZeroRttRejected` errors.
    ///
    /// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
    /// relevant resumption state to be stored in the server, which servers may limit or lose for
    /// various reasons including not persisting resumption state across server restarts.
    ///
    /// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
    /// implementation's docs for 0-RTT pitfalls.
    ///
    /// ## Incoming
    ///
    /// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
    /// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
    ///
    /// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
    /// implementation's docs for 0-RTT pitfalls.
    ///
    /// ## Security
    ///
    /// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
    /// replay attacks, and should therefore never invoke non-idempotent operations.
    ///
    /// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
    /// before TLS client authentication has occurred, and should therefore not be used to send
    /// data for which client authentication is being used.
    pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
        // This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
        // have to release it explicitly before returning `self` by value.
        let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");

        let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
        drop(conn);

        if is_ok {
            let conn = self.conn.take().unwrap();
            Ok((Connection(conn), ZeroRttAccepted(self.connected)))
        } else {
            Err(self)
        }
    }

    /// Parameters negotiated during the handshake
    ///
    /// The dynamic type returned is determined by the configured
    /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
    /// be [`downcast`](Box::downcast) to a
    /// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
    pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
        // Taking &mut self allows us to use a single oneshot channel rather than dealing with
        // potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
        // simple.
        if let Some(x) = self.handshake_data_ready.take() {
            let _ = x.await;
        }
        let conn = self.conn.as_ref().unwrap();
        let inner = conn.state.lock("handshake");
        inner
            .inner
            .crypto_session()
            .handshake_data()
            .ok_or_else(|| {
                inner
                    .error
                    .clone()
                    .expect("spurious handshake data ready notification")
            })
    }

    /// The local IP address which was used when the peer established
    /// the connection
    ///
    /// This can be different from the address the endpoint is bound to, in case
    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
    ///
    /// This will return `None` for clients, or when the platform does not expose this
    /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
    /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
    pub fn local_ip(&self) -> Option<IpAddr> {
        let conn = self.conn.as_ref().unwrap();
        let inner = conn.state.lock("local_ip");

        inner.inner.local_ip()
    }

    /// The peer's UDP address.
    ///
    /// Will panic if called after `poll` has returned `Ready`.
    pub fn remote_address(&self) -> SocketAddr {
        let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
        conn_ref.state.lock("remote_address").inner.remote_address()
    }
}

impl Future for Connecting {
    type Output = Result<Connection, ConnectionError>;
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        Pin::new(&mut self.connected).poll(cx).map(|_| {
            let conn = self.conn.take().unwrap();
            let inner = conn.state.lock("connecting");
            if inner.connected {
                drop(inner);
                Ok(Connection(conn))
            } else {
                Err(inner
                    .error
                    .clone()
                    .expect("connected signaled without connection success or error"))
            }
        })
    }
}

/// Future that completes when a connection is fully established
///
/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
/// value is meaningless.
#[must_use = "futures/streams/sinks do nothing unless you `.await` or poll them"]
pub struct ZeroRttAccepted(oneshot::Receiver<bool>);

impl Future for ZeroRttAccepted {
    type Output = bool;
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
    }
}

/// A future that drives protocol logic for a connection
///
/// This future handles the protocol logic for a single connection, routing events from the
/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
/// It also keeps track of outstanding timeouts for the `Connection`.
///
/// If the connection encounters an error condition, this future will yield an error. It will
/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
/// connection-related futures, this waits for the draining period to complete to ensure that
/// packets still in flight from the peer are handled gracefully.
#[must_use = "connection drivers must be spawned for their connections to function"]
#[derive(Debug)]
struct ConnectionDriver(ConnectionRef);

impl Future for ConnectionDriver {
    type Output = Result<(), io::Error>;

    #[allow(unused_mut)] // MSRV
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let conn = &mut *self.0.state.lock("poll");

        let span = debug_span!("drive", id = conn.handle.0);
        let _guard = span.enter();

        if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
            conn.terminate(e, &self.0.shared);
            return Poll::Ready(Ok(()));
        }
        let mut keep_going = conn.drive_transmit(cx)?;
        // If a timer expires, there might be more to transmit. When we transmit something, we
        // might need to reset a timer. Hence, we must loop until neither happens.
        keep_going |= conn.drive_timer(cx);
        conn.forward_endpoint_events();
        conn.forward_app_events(&self.0.shared);

        if !conn.inner.is_drained() {
            if keep_going {
                // If the connection hasn't processed all tasks, schedule it again
                cx.waker().wake_by_ref();
            } else {
                conn.driver = Some(cx.waker().clone());
            }
            return Poll::Pending;
        }
        if conn.error.is_none() {
            unreachable!("drained connections always have an error");
        }
        Poll::Ready(Ok(()))
    }
}

/// A QUIC connection.
///
/// If all references to a connection (including every clone of the `Connection` handle, streams of
/// incoming streams, and the various stream types) have been dropped, then the connection will be
/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
/// connection explicitly by calling [`Connection::close()`].
///
/// Closing the connection immediately abandons efforts to deliver data to the peer.  Upon
/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
/// application. [`Connection::close()`] describes in more detail how to gracefully close a
/// connection without losing application data.
///
/// May be cloned to obtain another handle to the same connection.
///
/// [`Connection::close()`]: Connection::close
#[derive(Debug, Clone)]
pub struct Connection(ConnectionRef);

impl Connection {
    /// Returns a weak reference to the inner connection struct.
    pub fn weak_handle(&self) -> WeakConnectionHandle {
        WeakConnectionHandle(Arc::downgrade(&self.0 .0))
    }

    /// Initiate a new outgoing unidirectional stream.
    ///
    /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
    /// consequence, the peer won't be notified that a stream has been opened until the stream is
    /// actually used.
    pub fn open_uni(&self) -> OpenUni<'_> {
        OpenUni {
            conn: &self.0,
            notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
        }
    }

    /// Initiate a new outgoing bidirectional stream.
    ///
    /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
    /// consequence, the peer won't be notified that a stream has been opened until the stream is
    /// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
    /// anything to [`SendStream`] will never succeed.
    ///
    /// [`open_bi()`]: crate::Connection::open_bi
    /// [`SendStream`]: crate::SendStream
    /// [`RecvStream`]: crate::RecvStream
    pub fn open_bi(&self) -> OpenBi<'_> {
        OpenBi {
            conn: &self.0,
            notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
        }
    }

    /// Accept the next incoming uni-directional stream
    pub fn accept_uni(&self) -> AcceptUni<'_> {
        AcceptUni {
            conn: &self.0,
            notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
        }
    }

    /// Accept the next incoming bidirectional stream
    ///
    /// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
    /// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
    /// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
    ///
    /// [`accept_bi()`]: crate::Connection::accept_bi
    /// [`open_bi()`]: crate::Connection::open_bi
    /// [`SendStream`]: crate::SendStream
    /// [`RecvStream`]: crate::RecvStream
    pub fn accept_bi(&self) -> AcceptBi<'_> {
        AcceptBi {
            conn: &self.0,
            notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
        }
    }

    /// Receive an application datagram
    pub fn read_datagram(&self) -> ReadDatagram<'_> {
        ReadDatagram {
            conn: &self.0,
            notify: self.0.shared.datagram_received.notified(),
        }
    }

    /// Wait for the connection to be closed for any reason
    ///
    /// Despite the return type's name, closed connections are often not an error condition at the
    /// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
    /// and [`ConnectionError::ApplicationClosed`].
    pub async fn closed(&self) -> ConnectionError {
        {
            let conn = self.0.state.lock("closed");
            if let Some(error) = conn.error.as_ref() {
                return error.clone();
            }
            // Construct the future while the lock is held to ensure we can't miss a wakeup if
            // the `Notify` is signaled immediately after we release the lock. `await` it after
            // the lock guard is out of scope.
            self.0.shared.closed.notified()
        }
        .await;
        self.0
            .state
            .lock("closed")
            .error
            .as_ref()
            .expect("closed without an error")
            .clone()
    }

    /// If the connection is closed, the reason why.
    ///
    /// Returns `None` if the connection is still open.
    pub fn close_reason(&self) -> Option<ConnectionError> {
        self.0.state.lock("close_reason").error.clone()
    }

    /// Close the connection immediately.
    ///
    /// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
    /// more data is sent to the peer and the peer may drop buffered data upon receiving
    /// the CONNECTION_CLOSE frame.
    ///
    /// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
    ///
    /// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
    /// is preserved in full, it should be kept under 1KiB.
    ///
    /// # Gracefully closing a connection
    ///
    /// Only the peer last receiving application data can be certain that all data is
    /// delivered. The only reliable action it can then take is to close the connection,
    /// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
    /// frame is very likely if both endpoints stay online long enough, and
    /// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
    /// remote peer will time out the connection, provided that the idle timeout is not
    /// disabled.
    ///
    /// The sending side can not guarantee all stream data is delivered to the remote
    /// application. It only knows the data is delivered to the QUIC stack of the remote
    /// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
    /// [`close()`] the remote endpoint may drop any data it received but is as yet
    /// undelivered to the application, including data that was acknowledged as received to
    /// the local endpoint.
    ///
    /// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
    /// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
    /// [`close()`]: Connection::close
    pub fn close(&self, error_code: VarInt, reason: &[u8]) {
        let conn = &mut *self.0.state.lock("close");
        conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
    }

    /// Transmit `data` as an unreliable, unordered application datagram
    ///
    /// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
    /// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
    /// dictated by the peer.
    pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
        let conn = &mut *self.0.state.lock("send_datagram");
        if let Some(ref x) = conn.error {
            return Err(SendDatagramError::ConnectionLost(x.clone()));
        }
        use proto::SendDatagramError::*;
        match conn.inner.datagrams().send(data, true) {
            Ok(()) => {
                conn.wake();
                Ok(())
            }
            Err(e) => Err(match e {
                Blocked(..) => unreachable!(),
                UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
                Disabled => SendDatagramError::Disabled,
                TooLarge => SendDatagramError::TooLarge,
            }),
        }
    }

    /// Transmit `data` as an unreliable, unordered application datagram
    ///
    /// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
    /// conditions, which effectively prioritizes old datagrams over new datagrams.
    ///
    /// See [`send_datagram()`] for details.
    ///
    /// [`send_datagram()`]: Connection::send_datagram
    pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
        SendDatagram {
            conn: &self.0,
            data: Some(data),
            notify: self.0.shared.datagrams_unblocked.notified(),
        }
    }

    /// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
    ///
    /// Returns `None` if datagrams are unsupported by the peer or disabled locally.
    ///
    /// This may change over the lifetime of a connection according to variation in the path MTU
    /// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
    /// limit is large this is guaranteed to be a little over a kilobyte at minimum.
    ///
    /// Not necessarily the maximum size of received datagrams.
    ///
    /// [`send_datagram()`]: Connection::send_datagram
    pub fn max_datagram_size(&self) -> Option<usize> {
        self.0
            .state
            .lock("max_datagram_size")
            .inner
            .datagrams()
            .max_size()
    }

    /// Bytes available in the outgoing datagram buffer
    ///
    /// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
    /// at most this size is guaranteed not to cause older datagrams to be dropped.
    pub fn datagram_send_buffer_space(&self) -> usize {
        self.0
            .state
            .lock("datagram_send_buffer_space")
            .inner
            .datagrams()
            .send_buffer_space()
    }

    /// The peer's UDP address
    ///
    /// If `ServerConfig::migration` is `true`, clients may change addresses at will, e.g. when
    /// switching to a cellular internet connection.
    pub fn remote_address(&self) -> SocketAddr {
        self.0.state.lock("remote_address").inner.remote_address()
    }

    /// The local IP address which was used when the peer established
    /// the connection
    ///
    /// This can be different from the address the endpoint is bound to, in case
    /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
    ///
    /// This will return `None` for clients, or when the platform does not expose this
    /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
    /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
    pub fn local_ip(&self) -> Option<IpAddr> {
        self.0.state.lock("local_ip").inner.local_ip()
    }

    /// Current best estimate of this connection's latency (round-trip-time)
    pub fn rtt(&self) -> Duration {
        self.0.state.lock("rtt").inner.rtt()
    }

    /// Returns connection statistics
    pub fn stats(&self) -> ConnectionStats {
        self.0.state.lock("stats").inner.stats()
    }

    /// Current state of the congestion control algorithm, for debugging purposes
    pub fn congestion_state(&self) -> Box<dyn Controller> {
        self.0
            .state
            .lock("congestion_state")
            .inner
            .congestion_state()
            .clone_box()
    }

    /// Parameters negotiated during the handshake
    ///
    /// Guaranteed to return `Some` on fully established connections or after
    /// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
    /// the returned value.
    ///
    /// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
    pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
        self.0
            .state
            .lock("handshake_data")
            .inner
            .crypto_session()
            .handshake_data()
    }

    /// Cryptographic identity of the peer
    ///
    /// The dynamic type returned is determined by the configured
    /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
    /// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
    pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
        self.0
            .state
            .lock("peer_identity")
            .inner
            .crypto_session()
            .peer_identity()
    }

    /// A stable identifier for this connection
    ///
    /// Peer addresses and connection IDs can change, but this value will remain
    /// fixed for the lifetime of the connection.
    pub fn stable_id(&self) -> usize {
        self.0.stable_id()
    }

    // Update traffic keys spontaneously for testing purposes.
    #[doc(hidden)]
    pub fn force_key_update(&self) {
        self.0
            .state
            .lock("force_key_update")
            .inner
            .initiate_key_update()
    }

    /// Derive keying material from this connection's TLS session secrets.
    ///
    /// When both peers call this method with the same `label` and `context`
    /// arguments and `output` buffers of equal length, they will get the
    /// same sequence of bytes in `output`. These bytes are cryptographically
    /// strong and pseudorandom, and are suitable for use as keying material.
    ///
    /// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
    pub fn export_keying_material(
        &self,
        output: &mut [u8],
        label: &[u8],
        context: &[u8],
    ) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
        self.0
            .state
            .lock("export_keying_material")
            .inner
            .crypto_session()
            .export_keying_material(output, label, context)
    }

    /// Modify the number of remotely initiated unidirectional streams that may be concurrently open
    ///
    /// No streams may be opened by the peer unless fewer than `count` are already open. Large
    /// `count`s increase both minimum and worst-case memory consumption.
    pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
        let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
        conn.inner.set_max_concurrent_streams(Dir::Uni, count);
        // May need to send MAX_STREAMS to make progress
        conn.wake();
    }

    /// See [`proto::TransportConfig::receive_window()`]
    pub fn set_receive_window(&self, receive_window: VarInt) {
        let mut conn = self.0.state.lock("set_receive_window");
        conn.inner.set_receive_window(receive_window);
        conn.wake();
    }

    /// Modify the number of remotely initiated bidirectional streams that may be concurrently open
    ///
    /// No streams may be opened by the peer unless fewer than `count` are already open. Large
    /// `count`s increase both minimum and worst-case memory consumption.
    pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
        let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
        conn.inner.set_max_concurrent_streams(Dir::Bi, count);
        // May need to send MAX_STREAMS to make progress
        conn.wake();
    }

    /// Track changed on our external address as reported by the peer.
    pub fn observed_external_addr(&self) -> watch::Receiver<Option<SocketAddr>> {
        let conn = self.0.state.lock("external_addr");
        conn.observed_external_addr.subscribe()
    }
}

pin_project! {
    /// Future produced by [`Connection::open_uni`]
    pub struct OpenUni<'a> {
        conn: &'a ConnectionRef,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for OpenUni<'_> {
    type Output = Result<SendStream, ConnectionError>;
    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
        Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
    }
}

pin_project! {
    /// Future produced by [`Connection::open_bi`]
    pub struct OpenBi<'a> {
        conn: &'a ConnectionRef,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for OpenBi<'_> {
    type Output = Result<(SendStream, RecvStream), ConnectionError>;
    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;

        Poll::Ready(Ok((
            SendStream::new(conn.clone(), id, is_0rtt),
            RecvStream::new(conn, id, is_0rtt),
        )))
    }
}

fn poll_open<'a>(
    ctx: &mut Context<'_>,
    conn: &'a ConnectionRef,
    mut notify: Pin<&mut Notified<'a>>,
    dir: Dir,
) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
    let mut state = conn.state.lock("poll_open");
    if let Some(ref e) = state.error {
        return Poll::Ready(Err(e.clone()));
    } else if let Some(id) = state.inner.streams().open(dir) {
        let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
        drop(state); // Release the lock so clone can take it
        return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
    }
    loop {
        match notify.as_mut().poll(ctx) {
            // `state` lock ensures we didn't race with readiness
            Poll::Pending => return Poll::Pending,
            // Spurious wakeup, get a new future
            Poll::Ready(()) => {
                notify.set(conn.shared.stream_budget_available[dir as usize].notified())
            }
        }
    }
}

pin_project! {
    /// Future produced by [`Connection::accept_uni`]
    pub struct AcceptUni<'a> {
        conn: &'a ConnectionRef,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for AcceptUni<'_> {
    type Output = Result<RecvStream, ConnectionError>;

    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
        Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
    }
}

pin_project! {
    /// Future produced by [`Connection::accept_bi`]
    pub struct AcceptBi<'a> {
        conn: &'a ConnectionRef,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for AcceptBi<'_> {
    type Output = Result<(SendStream, RecvStream), ConnectionError>;

    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
        Poll::Ready(Ok((
            SendStream::new(conn.clone(), id, is_0rtt),
            RecvStream::new(conn, id, is_0rtt),
        )))
    }
}

fn poll_accept<'a>(
    ctx: &mut Context<'_>,
    conn: &'a ConnectionRef,
    mut notify: Pin<&mut Notified<'a>>,
    dir: Dir,
) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
    let mut state = conn.state.lock("poll_accept");
    // Check for incoming streams before checking `state.error` so that already-received streams,
    // which are necessarily finite, can be drained from a closed connection.
    if let Some(id) = state.inner.streams().accept(dir) {
        let is_0rtt = state.inner.is_handshaking();
        state.wake(); // To send additional stream ID credit
        drop(state); // Release the lock so clone can take it
        return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
    } else if let Some(ref e) = state.error {
        return Poll::Ready(Err(e.clone()));
    }
    loop {
        match notify.as_mut().poll(ctx) {
            // `state` lock ensures we didn't race with readiness
            Poll::Pending => return Poll::Pending,
            // Spurious wakeup, get a new future
            Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
        }
    }
}

pin_project! {
    /// Future produced by [`Connection::read_datagram`]
    pub struct ReadDatagram<'a> {
        conn: &'a ConnectionRef,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for ReadDatagram<'_> {
    type Output = Result<Bytes, ConnectionError>;
    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut this = self.project();
        let mut state = this.conn.state.lock("ReadDatagram::poll");
        // Check for buffered datagrams before checking `state.error` so that already-received
        // datagrams, which are necessarily finite, can be drained from a closed connection.
        if let Some(x) = state.inner.datagrams().recv() {
            return Poll::Ready(Ok(x));
        } else if let Some(ref e) = state.error {
            return Poll::Ready(Err(e.clone()));
        }
        loop {
            match this.notify.as_mut().poll(ctx) {
                // `state` lock ensures we didn't race with readiness
                Poll::Pending => return Poll::Pending,
                // Spurious wakeup, get a new future
                Poll::Ready(()) => this
                    .notify
                    .set(this.conn.shared.datagram_received.notified()),
            }
        }
    }
}

pin_project! {
    /// Future produced by [`Connection::send_datagram_wait`]
    pub struct SendDatagram<'a> {
        conn: &'a ConnectionRef,
        data: Option<Bytes>,
        #[pin]
        notify: Notified<'a>,
    }
}

impl Future for SendDatagram<'_> {
    type Output = Result<(), SendDatagramError>;
    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut this = self.project();
        let mut state = this.conn.state.lock("SendDatagram::poll");
        if let Some(ref e) = state.error {
            return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
        }
        use proto::SendDatagramError::*;
        match state
            .inner
            .datagrams()
            .send(this.data.take().unwrap(), false)
        {
            Ok(()) => {
                state.wake();
                Poll::Ready(Ok(()))
            }
            Err(e) => Poll::Ready(Err(match e {
                Blocked(data) => {
                    this.data.replace(data);
                    loop {
                        match this.notify.as_mut().poll(ctx) {
                            Poll::Pending => return Poll::Pending,
                            // Spurious wakeup, get a new future
                            Poll::Ready(()) => this
                                .notify
                                .set(this.conn.shared.datagrams_unblocked.notified()),
                        }
                    }
                }
                UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
                Disabled => SendDatagramError::Disabled,
                TooLarge => SendDatagramError::TooLarge,
            })),
        }
    }
}

#[derive(Debug)]
pub(crate) struct ConnectionRef(Arc<ConnectionInner>);

impl ConnectionRef {
    #[allow(clippy::too_many_arguments)]
    fn new(
        handle: ConnectionHandle,
        conn: proto::Connection,
        endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
        conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
        on_handshake_data: oneshot::Sender<()>,
        on_connected: oneshot::Sender<bool>,
        socket: Arc<dyn AsyncUdpSocket>,
        runtime: Arc<dyn Runtime>,
    ) -> Self {
        Self(Arc::new(ConnectionInner {
            state: Mutex::new(State {
                inner: conn,
                driver: None,
                handle,
                on_handshake_data: Some(on_handshake_data),
                on_connected: Some(on_connected),
                connected: false,
                timer: None,
                timer_deadline: None,
                conn_events,
                endpoint_events,
                blocked_writers: FxHashMap::default(),
                blocked_readers: FxHashMap::default(),
                stopped: FxHashMap::default(),
                error: None,
                ref_count: 0,
                io_poller: socket.clone().create_io_poller(),
                socket,
                runtime,
                send_buffer: Vec::new(),
                buffered_transmit: None,
                observed_external_addr: watch::Sender::new(None),
            }),
            shared: Shared::default(),
        }))
    }

    fn stable_id(&self) -> usize {
        &*self.0 as *const _ as usize
    }
}

impl Clone for ConnectionRef {
    fn clone(&self) -> Self {
        self.state.lock("clone").ref_count += 1;
        Self(self.0.clone())
    }
}

impl Drop for ConnectionRef {
    fn drop(&mut self) {
        let conn = &mut *self.state.lock("drop");
        if let Some(x) = conn.ref_count.checked_sub(1) {
            conn.ref_count = x;
            if x == 0 && !conn.inner.is_closed() {
                // If the driver is alive, it's just it and us, so we'd better shut it down. If it's
                // not, we can't do any harm. If there were any streams being opened, then either
                // the connection will be closed for an unrelated reason or a fresh reference will
                // be constructed for the newly opened stream.
                conn.implicit_close(&self.shared);
            }
        }
    }
}

impl std::ops::Deref for ConnectionRef {
    type Target = ConnectionInner;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

#[derive(Debug)]
pub(crate) struct ConnectionInner {
    pub(crate) state: Mutex<State>,
    pub(crate) shared: Shared,
}

/// A handle to some connection internals, use with care.
///
/// This contains a weak reference to the connection so will not itself keep the connection
/// alive.
#[derive(Debug)]
pub struct WeakConnectionHandle(Weak<ConnectionInner>);

impl WeakConnectionHandle {
    /// Returns `true` if the [`Connection`] associated with this handle is still alive.
    pub fn is_alive(&self) -> bool {
        self.0.upgrade().is_some()
    }

    /// Resets path-specific state.
    ///
    /// This resets several subsystems keeping state for a specific network path.  It is
    /// useful if it is known that the underlying network path changed substantially.
    ///
    /// Currently resets:
    /// - RTT Estimator
    /// - Congestion Controller
    /// - MTU Discovery
    ///
    /// # Returns
    ///
    /// `true` if the connection still existed and the congestion controller state was
    /// reset.  `false` otherwise.
    pub fn network_path_changed(&self) -> bool {
        if let Some(inner) = self.0.upgrade() {
            let mut inner_state = inner.state.lock("reset-congestion-state");
            inner_state.inner.network_path_changed();
            true
        } else {
            false
        }
    }
}

#[derive(Debug, Default)]
pub(crate) struct Shared {
    /// Notified when new streams may be locally initiated due to an increase in stream ID flow
    /// control budget
    stream_budget_available: [Notify; 2],
    /// Notified when the peer has initiated a new stream
    stream_incoming: [Notify; 2],
    datagram_received: Notify,
    datagrams_unblocked: Notify,
    closed: Notify,
}

pub(crate) struct State {
    pub(crate) inner: proto::Connection,
    driver: Option<Waker>,
    handle: ConnectionHandle,
    on_handshake_data: Option<oneshot::Sender<()>>,
    on_connected: Option<oneshot::Sender<bool>>,
    connected: bool,
    timer: Option<Pin<Box<dyn AsyncTimer>>>,
    timer_deadline: Option<Instant>,
    conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
    endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
    pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
    pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
    pub(crate) stopped: FxHashMap<StreamId, Waker>,
    /// Always set to Some before the connection becomes drained
    pub(crate) error: Option<ConnectionError>,
    /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
    ref_count: usize,
    socket: Arc<dyn AsyncUdpSocket>,
    io_poller: Pin<Box<dyn UdpPoller>>,
    runtime: Arc<dyn Runtime>,
    send_buffer: Vec<u8>,
    /// We buffer a transmit when the underlying I/O would block
    buffered_transmit: Option<proto::Transmit>,
    /// Our last external address reported by the peer.
    pub(crate) observed_external_addr: watch::Sender<Option<SocketAddr>>,
}

impl State {
    fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
        let now = self.runtime.now();
        let mut transmits = 0;

        let max_datagrams = self.socket.max_transmit_segments();

        loop {
            // Retry the last transmit, or get a new one.
            let t = match self.buffered_transmit.take() {
                Some(t) => t,
                None => {
                    self.send_buffer.clear();
                    self.send_buffer.reserve(self.inner.current_mtu() as usize);
                    match self
                        .inner
                        .poll_transmit(now, max_datagrams, &mut self.send_buffer)
                    {
                        Some(t) => {
                            transmits += match t.segment_size {
                                None => 1,
                                Some(s) => (t.size + s - 1) / s, // round up
                            };
                            t
                        }
                        None => break,
                    }
                }
            };

            if self.io_poller.as_mut().poll_writable(cx)?.is_pending() {
                // Retry after a future wakeup
                self.buffered_transmit = Some(t);
                return Ok(false);
            }

            let len = t.size;
            let retry = match self
                .socket
                .try_send(&udp_transmit(&t, &self.send_buffer[..len]))
            {
                Ok(()) => false,
                Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => true,
                Err(e) => return Err(e),
            };
            if retry {
                // We thought the socket was writable, but it wasn't. Retry so that either another
                // `poll_writable` call determines that the socket is indeed not writable and
                // registers us for a wakeup, or the send succeeds if this really was just a
                // transient failure.
                self.buffered_transmit = Some(t);
                continue;
            }

            if transmits >= MAX_TRANSMIT_DATAGRAMS {
                // TODO: What isn't ideal here yet is that if we don't poll all
                // datagrams that could be sent we don't go into the `app_limited`
                // state and CWND continues to grow until we get here the next time.
                // See https://github.com/quinn-rs/quinn/issues/1126
                return Ok(true);
            }
        }

        Ok(false)
    }

    fn forward_endpoint_events(&mut self) {
        while let Some(event) = self.inner.poll_endpoint_events() {
            // If the endpoint driver is gone, noop.
            let _ = self.endpoint_events.send((self.handle, event));
        }
    }

    /// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
    fn process_conn_events(
        &mut self,
        shared: &Shared,
        cx: &mut Context,
    ) -> Result<(), ConnectionError> {
        loop {
            match self.conn_events.poll_recv(cx) {
                Poll::Ready(Some(ConnectionEvent::Rebind(socket))) => {
                    self.socket = socket;
                    self.io_poller = self.socket.clone().create_io_poller();
                    self.inner.local_address_changed();
                }
                Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
                    self.inner.handle_event(event);
                }
                Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
                    self.close(error_code, reason, shared);
                }
                Poll::Ready(None) => {
                    return Err(ConnectionError::TransportError(proto::TransportError {
                        code: proto::TransportErrorCode::INTERNAL_ERROR,
                        frame: None,
                        reason: "endpoint driver future was dropped".to_string(),
                    }));
                }
                Poll::Pending => {
                    return Ok(());
                }
            }
        }
    }

    fn forward_app_events(&mut self, shared: &Shared) {
        while let Some(event) = self.inner.poll() {
            use proto::Event::*;
            match event {
                HandshakeDataReady => {
                    if let Some(x) = self.on_handshake_data.take() {
                        let _ = x.send(());
                    }
                }
                Connected => {
                    self.connected = true;
                    if let Some(x) = self.on_connected.take() {
                        // We don't care if the on-connected future was dropped
                        let _ = x.send(self.inner.accepted_0rtt());
                    }
                    if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
                        // Wake up rejected 0-RTT streams so they can fail immediately with
                        // `ZeroRttRejected` errors.
                        wake_all(&mut self.blocked_writers);
                        wake_all(&mut self.blocked_readers);
                        wake_all(&mut self.stopped);
                    }
                }
                ConnectionLost { reason } => {
                    self.terminate(reason, shared);
                }
                Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
                Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
                    shared.stream_incoming[Dir::Uni as usize].notify_waiters();
                }
                Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
                    shared.stream_incoming[Dir::Bi as usize].notify_waiters();
                }
                DatagramReceived => {
                    shared.datagram_received.notify_waiters();
                }
                DatagramsUnblocked => {
                    shared.datagrams_unblocked.notify_waiters();
                }
                Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
                Stream(StreamEvent::Available { dir }) => {
                    // Might mean any number of streams are ready, so we wake up everyone
                    shared.stream_budget_available[dir as usize].notify_waiters();
                }
                Stream(StreamEvent::Finished { id }) => wake_stream(id, &mut self.stopped),
                Stream(StreamEvent::Stopped { id, .. }) => {
                    wake_stream(id, &mut self.stopped);
                    wake_stream(id, &mut self.blocked_writers);
                }
                ObservedAddr(observed) => {
                    self.observed_external_addr.send_if_modified(|addr| {
                        let old = addr.replace(observed);
                        old != *addr
                    });
                }
            }
        }
    }

    fn drive_timer(&mut self, cx: &mut Context) -> bool {
        // Check whether we need to (re)set the timer. If so, we must poll again to ensure the
        // timer is registered with the runtime (and check whether it's already
        // expired).
        match self.inner.poll_timeout() {
            Some(deadline) => {
                if let Some(delay) = &mut self.timer {
                    // There is no need to reset the tokio timer if the deadline
                    // did not change
                    if self
                        .timer_deadline
                        .map(|current_deadline| current_deadline != deadline)
                        .unwrap_or(true)
                    {
                        delay.as_mut().reset(deadline);
                    }
                } else {
                    self.timer = Some(self.runtime.new_timer(deadline));
                }
                // Store the actual expiration time of the timer
                self.timer_deadline = Some(deadline);
            }
            None => {
                self.timer_deadline = None;
                return false;
            }
        }

        if self.timer_deadline.is_none() {
            return false;
        }

        let delay = self
            .timer
            .as_mut()
            .expect("timer must exist in this state")
            .as_mut();
        if delay.poll(cx).is_pending() {
            // Since there wasn't a timeout event, there is nothing new
            // for the connection to do
            return false;
        }

        // A timer expired, so the caller needs to check for
        // new transmits, which might cause new timers to be set.
        self.inner.handle_timeout(self.runtime.now());
        self.timer_deadline = None;
        true
    }

    /// Wake up a blocked `Driver` task to process I/O
    pub(crate) fn wake(&mut self) {
        if let Some(x) = self.driver.take() {
            x.wake();
        }
    }

    /// Used to wake up all blocked futures when the connection becomes closed for any reason
    fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
        self.error = Some(reason.clone());
        if let Some(x) = self.on_handshake_data.take() {
            let _ = x.send(());
        }
        wake_all(&mut self.blocked_writers);
        wake_all(&mut self.blocked_readers);
        shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
        shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
        shared.stream_incoming[Dir::Uni as usize].notify_waiters();
        shared.stream_incoming[Dir::Bi as usize].notify_waiters();
        shared.datagram_received.notify_waiters();
        shared.datagrams_unblocked.notify_waiters();
        if let Some(x) = self.on_connected.take() {
            let _ = x.send(false);
        }
        wake_all(&mut self.stopped);
        shared.closed.notify_waiters();
    }

    fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
        self.inner.close(self.runtime.now(), error_code, reason);
        self.terminate(ConnectionError::LocallyClosed, shared);
        self.wake();
    }

    /// Close for a reason other than the application's explicit request
    pub(crate) fn implicit_close(&mut self, shared: &Shared) {
        self.close(0u32.into(), Bytes::new(), shared);
    }

    pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
        if self.inner.is_handshaking()
            || self.inner.accepted_0rtt()
            || self.inner.side().is_server()
        {
            Ok(())
        } else {
            Err(())
        }
    }
}

impl Drop for State {
    fn drop(&mut self) {
        if !self.inner.is_drained() {
            // Ensure the endpoint can tidy up
            let _ = self
                .endpoint_events
                .send((self.handle, proto::EndpointEvent::drained()));
        }
    }
}

impl fmt::Debug for State {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("State").field("inner", &self.inner).finish()
    }
}

fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
    if let Some(waker) = wakers.remove(&stream_id) {
        waker.wake();
    }
}

fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
    wakers.drain().for_each(|(_, waker)| waker.wake())
}

/// Errors that can arise when sending a datagram
#[derive(Debug, Error, Clone, Eq, PartialEq)]
pub enum SendDatagramError {
    /// The peer does not support receiving datagram frames
    #[error("datagrams not supported by peer")]
    UnsupportedByPeer,
    /// Datagram support is disabled locally
    #[error("datagram support disabled")]
    Disabled,
    /// The datagram is larger than the connection can currently accommodate
    ///
    /// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
    /// exceeded.
    #[error("datagram too large")]
    TooLarge,
    /// The connection was lost
    #[error("connection lost")]
    ConnectionLost(#[from] ConnectionError),
}

/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
///
/// This limits the amount of CPU resources consumed by datagram generation,
/// and allows other tasks (like receiving ACKs) to run in between.
const MAX_TRANSMIT_DATAGRAMS: usize = 20;