iroh_quinn/endpoint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
use std::{
collections::VecDeque,
future::Future,
io,
io::IoSliceMut,
mem,
net::{SocketAddr, SocketAddrV6},
pin::Pin,
str,
sync::{Arc, Mutex},
task::{Context, Poll, Waker},
time::Instant,
};
#[cfg(feature = "ring")]
use crate::runtime::default_runtime;
use crate::{
runtime::{AsyncUdpSocket, Runtime},
udp_transmit,
};
use bytes::{Bytes, BytesMut};
use pin_project_lite::pin_project;
use proto::{
self as proto, ClientConfig, ConnectError, ConnectionError, ConnectionHandle, DatagramEvent,
EndpointEvent, ServerConfig,
};
use rustc_hash::FxHashMap;
#[cfg(feature = "ring")]
use socket2::{Domain, Protocol, Socket, Type};
use tokio::sync::{futures::Notified, mpsc, Notify};
use tracing::{Instrument, Span};
use udp::{RecvMeta, BATCH_SIZE};
use crate::{
connection::Connecting, incoming::Incoming, work_limiter::WorkLimiter, ConnectionEvent,
EndpointConfig, VarInt, IO_LOOP_BOUND, RECV_TIME_BOUND,
};
/// A QUIC endpoint.
///
/// An endpoint corresponds to a single UDP socket, may host many connections, and may act as both
/// client and server for different connections.
///
/// May be cloned to obtain another handle to the same endpoint.
#[derive(Debug, Clone)]
pub struct Endpoint {
pub(crate) inner: EndpointRef,
pub(crate) default_client_config: Option<ClientConfig>,
runtime: Arc<dyn Runtime>,
}
impl Endpoint {
/// Helper to construct an endpoint for use with outgoing connections only
///
/// Note that `addr` is the *local* address to bind to, which should usually be a wildcard
/// address like `0.0.0.0:0` or `[::]:0`, which allow communication with any reachable IPv4 or
/// IPv6 address respectively from an OS-assigned port.
///
/// If an IPv6 address is provided, attempts to make the socket dual-stack so as to allow
/// communication with both IPv4 and IPv6 addresses. As such, calling `Endpoint::client` with
/// the address `[::]:0` is a reasonable default to maximize the ability to connect to other
/// address. For example:
///
/// ```
/// iroh_quinn::Endpoint::client((std::net::Ipv6Addr::UNSPECIFIED, 0).into());
/// ```
///
/// Some environments may not allow creation of dual-stack sockets, in which case an IPv6
/// client will only be able to connect to IPv6 servers. An IPv4 client is never dual-stack.
#[cfg(feature = "ring")]
pub fn client(addr: SocketAddr) -> io::Result<Self> {
let socket = Socket::new(Domain::for_address(addr), Type::DGRAM, Some(Protocol::UDP))?;
if addr.is_ipv6() {
if let Err(e) = socket.set_only_v6(false) {
tracing::debug!(%e, "unable to make socket dual-stack");
}
}
socket.bind(&addr.into())?;
let runtime = default_runtime()
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "no async runtime found"))?;
Self::new_with_abstract_socket(
EndpointConfig::default(),
None,
runtime.wrap_udp_socket(socket.into())?,
runtime,
)
}
/// Returns relevant stats from this Endpoint
pub fn stats(&self) -> EndpointStats {
self.inner.state.lock().unwrap().stats
}
/// Helper to construct an endpoint for use with both incoming and outgoing connections
///
/// Platform defaults for dual-stack sockets vary. For example, any socket bound to a wildcard
/// IPv6 address on Windows will not by default be able to communicate with IPv4
/// addresses. Portable applications should bind an address that matches the family they wish to
/// communicate within.
#[cfg(feature = "ring")]
pub fn server(config: ServerConfig, addr: SocketAddr) -> io::Result<Self> {
let socket = std::net::UdpSocket::bind(addr)?;
let runtime = default_runtime()
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "no async runtime found"))?;
Self::new_with_abstract_socket(
EndpointConfig::default(),
Some(config),
runtime.wrap_udp_socket(socket)?,
runtime,
)
}
/// Construct an endpoint with arbitrary configuration and socket
pub fn new(
config: EndpointConfig,
server_config: Option<ServerConfig>,
socket: std::net::UdpSocket,
runtime: Arc<dyn Runtime>,
) -> io::Result<Self> {
let socket = runtime.wrap_udp_socket(socket)?;
Self::new_with_abstract_socket(config, server_config, socket, runtime)
}
/// Construct an endpoint with arbitrary configuration and pre-constructed abstract socket
///
/// Useful when `socket` has additional state (e.g. sidechannels) attached for which shared
/// ownership is needed.
pub fn new_with_abstract_socket(
config: EndpointConfig,
server_config: Option<ServerConfig>,
socket: Arc<dyn AsyncUdpSocket>,
runtime: Arc<dyn Runtime>,
) -> io::Result<Self> {
let addr = socket.local_addr()?;
let allow_mtud = !socket.may_fragment();
let rc = EndpointRef::new(
socket,
proto::Endpoint::new(
Arc::new(config),
server_config.map(Arc::new),
allow_mtud,
None,
),
addr.is_ipv6(),
runtime.clone(),
);
let driver = EndpointDriver(rc.clone());
runtime.spawn(Box::pin(
async {
if let Err(e) = driver.await {
tracing::error!("I/O error: {}", e);
}
}
.instrument(Span::current()),
));
Ok(Self {
inner: rc,
default_client_config: None,
runtime,
})
}
/// Get the next incoming connection attempt from a client
///
/// Yields [`Incoming`]s, or `None` if the endpoint is [`close`](Self::close)d. [`Incoming`]
/// can be `await`ed to obtain the final [`Connection`](crate::Connection), or used to e.g.
/// filter connection attempts or force address validation, or converted into an intermediate
/// `Connecting` future which can be used to e.g. send 0.5-RTT data.
pub fn accept(&self) -> Accept<'_> {
Accept {
endpoint: self,
notify: self.inner.shared.incoming.notified(),
}
}
/// Set the client configuration used by `connect`
pub fn set_default_client_config(&mut self, config: ClientConfig) {
self.default_client_config = Some(config);
}
/// Connect to a remote endpoint
///
/// `server_name` must be covered by the certificate presented by the server. This prevents a
/// connection from being intercepted by an attacker with a valid certificate for some other
/// server.
///
/// May fail immediately due to configuration errors, or in the future if the connection could
/// not be established.
pub fn connect(&self, addr: SocketAddr, server_name: &str) -> Result<Connecting, ConnectError> {
let config = match &self.default_client_config {
Some(config) => config.clone(),
None => return Err(ConnectError::NoDefaultClientConfig),
};
self.connect_with(config, addr, server_name)
}
/// Connect to a remote endpoint using a custom configuration.
///
/// See [`connect()`] for details.
///
/// [`connect()`]: Endpoint::connect
pub fn connect_with(
&self,
config: ClientConfig,
addr: SocketAddr,
server_name: &str,
) -> Result<Connecting, ConnectError> {
let mut endpoint = self.inner.state.lock().unwrap();
if endpoint.driver_lost || endpoint.recv_state.connections.close.is_some() {
return Err(ConnectError::EndpointStopping);
}
if addr.is_ipv6() && !endpoint.ipv6 {
return Err(ConnectError::InvalidRemoteAddress(addr));
}
let addr = if endpoint.ipv6 {
SocketAddr::V6(ensure_ipv6(addr))
} else {
addr
};
let (ch, conn) = endpoint
.inner
.connect(self.runtime.now(), config, addr, server_name)?;
let socket = endpoint.socket.clone();
endpoint.stats.outgoing_handshakes += 1;
Ok(endpoint
.recv_state
.connections
.insert(ch, conn, socket, self.runtime.clone()))
}
/// Switch to a new UDP socket
///
/// See [`Endpoint::rebind_abstract()`] for details.
pub fn rebind(&self, socket: std::net::UdpSocket) -> io::Result<()> {
self.rebind_abstract(self.runtime.wrap_udp_socket(socket)?)
}
/// Switch to a new UDP socket
///
/// Allows the endpoint's address to be updated live, affecting all active connections. Incoming
/// connections and connections to servers unreachable from the new address will be lost.
///
/// On error, the old UDP socket is retained.
pub fn rebind_abstract(&self, socket: Arc<dyn AsyncUdpSocket>) -> io::Result<()> {
let addr = socket.local_addr()?;
let mut inner = self.inner.state.lock().unwrap();
inner.prev_socket = Some(mem::replace(&mut inner.socket, socket));
inner.ipv6 = addr.is_ipv6();
// Update connection socket references
for sender in inner.recv_state.connections.senders.values() {
// Ignoring errors from dropped connections
let _ = sender.send(ConnectionEvent::Rebind(inner.socket.clone()));
}
Ok(())
}
/// Replace the server configuration, affecting new incoming connections only
///
/// Useful for e.g. refreshing TLS certificates without disrupting existing connections.
pub fn set_server_config(&self, server_config: Option<ServerConfig>) {
self.inner
.state
.lock()
.unwrap()
.inner
.set_server_config(server_config.map(Arc::new))
}
/// Get the local `SocketAddr` the underlying socket is bound to
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.inner.state.lock().unwrap().socket.local_addr()
}
/// Get the number of connections that are currently open
pub fn open_connections(&self) -> usize {
self.inner.state.lock().unwrap().inner.open_connections()
}
/// Close all of this endpoint's connections immediately and cease accepting new connections.
///
/// See [`Connection::close()`] for details.
///
/// [`Connection::close()`]: crate::Connection::close
pub fn close(&self, error_code: VarInt, reason: &[u8]) {
let reason = Bytes::copy_from_slice(reason);
let mut endpoint = self.inner.state.lock().unwrap();
endpoint.recv_state.connections.close = Some((error_code, reason.clone()));
for sender in endpoint.recv_state.connections.senders.values() {
// Ignoring errors from dropped connections
let _ = sender.send(ConnectionEvent::Close {
error_code,
reason: reason.clone(),
});
}
self.inner.shared.incoming.notify_waiters();
}
/// Wait for all connections on the endpoint to be cleanly shut down
///
/// Waiting for this condition before exiting ensures that a good-faith effort is made to notify
/// peers of recent connection closes, whereas exiting immediately could force them to wait out
/// the idle timeout period.
///
/// Does not proactively close existing connections or cause incoming connections to be
/// rejected. Consider calling [`close()`] if that is desired.
///
/// [`close()`]: Endpoint::close
pub async fn wait_idle(&self) {
loop {
{
let endpoint = &mut *self.inner.state.lock().unwrap();
if endpoint.recv_state.connections.is_empty() {
break;
}
// Construct future while lock is held to avoid race
self.inner.shared.idle.notified()
}
.await;
}
}
}
/// Statistics on [Endpoint] activity
#[non_exhaustive]
#[derive(Debug, Default, Copy, Clone)]
pub struct EndpointStats {
/// Cummulative number of Quic handshakes accepted by this [Endpoint]
pub accepted_handshakes: u64,
/// Cummulative number of Quic handshakees sent from this [Endpoint]
pub outgoing_handshakes: u64,
/// Cummulative number of Quic handshakes refused on this [Endpoint]
pub refused_handshakes: u64,
/// Cummulative number of Quic handshakes ignored on this [Endpoint]
pub ignored_handshakes: u64,
}
/// A future that drives IO on an endpoint
///
/// This task functions as the switch point between the UDP socket object and the
/// `Endpoint` responsible for routing datagrams to their owning `Connection`.
/// In order to do so, it also facilitates the exchange of different types of events
/// flowing between the `Endpoint` and the tasks managing `Connection`s. As such,
/// running this task is necessary to keep the endpoint's connections running.
///
/// `EndpointDriver` futures terminate when all clones of the `Endpoint` have been dropped, or when
/// an I/O error occurs.
#[must_use = "endpoint drivers must be spawned for I/O to occur"]
#[derive(Debug)]
pub(crate) struct EndpointDriver(pub(crate) EndpointRef);
impl Future for EndpointDriver {
type Output = Result<(), io::Error>;
#[allow(unused_mut)] // MSRV
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let mut endpoint = self.0.state.lock().unwrap();
if endpoint.driver.is_none() {
endpoint.driver = Some(cx.waker().clone());
}
let now = endpoint.runtime.now();
let mut keep_going = false;
keep_going |= endpoint.drive_recv(cx, now)?;
keep_going |= endpoint.handle_events(cx, &self.0.shared);
if !endpoint.recv_state.incoming.is_empty() {
self.0.shared.incoming.notify_waiters();
}
if endpoint.ref_count == 0 && endpoint.recv_state.connections.is_empty() {
Poll::Ready(Ok(()))
} else {
drop(endpoint);
// If there is more work to do schedule the endpoint task again.
// `wake_by_ref()` is called outside the lock to minimize
// lock contention on a multithreaded runtime.
if keep_going {
cx.waker().wake_by_ref();
}
Poll::Pending
}
}
}
impl Drop for EndpointDriver {
fn drop(&mut self) {
let mut endpoint = self.0.state.lock().unwrap();
endpoint.driver_lost = true;
self.0.shared.incoming.notify_waiters();
// Drop all outgoing channels, signaling the termination of the endpoint to the associated
// connections.
endpoint.recv_state.connections.senders.clear();
}
}
#[derive(Debug)]
pub(crate) struct EndpointInner {
pub(crate) state: Mutex<State>,
pub(crate) shared: Shared,
}
impl EndpointInner {
pub(crate) fn accept(
&self,
incoming: proto::Incoming,
server_config: Option<Arc<ServerConfig>>,
) -> Result<Connecting, ConnectionError> {
let mut state = self.state.lock().unwrap();
let mut response_buffer = Vec::new();
let now = state.runtime.now();
match state
.inner
.accept(incoming, now, &mut response_buffer, server_config)
{
Ok((handle, conn)) => {
state.stats.accepted_handshakes += 1;
let socket = state.socket.clone();
let runtime = state.runtime.clone();
Ok(state
.recv_state
.connections
.insert(handle, conn, socket, runtime))
}
Err(error) => {
if let Some(transmit) = error.response {
respond(transmit, &response_buffer, &*state.socket);
}
Err(error.cause)
}
}
}
pub(crate) fn refuse(&self, incoming: proto::Incoming) {
let mut state = self.state.lock().unwrap();
state.stats.refused_handshakes += 1;
let mut response_buffer = Vec::new();
let transmit = state.inner.refuse(incoming, &mut response_buffer);
respond(transmit, &response_buffer, &*state.socket);
}
pub(crate) fn retry(&self, incoming: proto::Incoming) -> Result<(), proto::RetryError> {
let mut state = self.state.lock().unwrap();
let mut response_buffer = Vec::new();
let transmit = state.inner.retry(incoming, &mut response_buffer)?;
respond(transmit, &response_buffer, &*state.socket);
Ok(())
}
pub(crate) fn ignore(&self, incoming: proto::Incoming) {
let mut state = self.state.lock().unwrap();
state.stats.ignored_handshakes += 1;
state.inner.ignore(incoming);
}
}
#[derive(Debug)]
pub(crate) struct State {
socket: Arc<dyn AsyncUdpSocket>,
/// During an active migration, abandoned_socket receives traffic
/// until the first packet arrives on the new socket.
prev_socket: Option<Arc<dyn AsyncUdpSocket>>,
inner: proto::Endpoint,
recv_state: RecvState,
driver: Option<Waker>,
ipv6: bool,
events: mpsc::UnboundedReceiver<(ConnectionHandle, EndpointEvent)>,
/// Number of live handles that can be used to initiate or handle I/O; excludes the driver
ref_count: usize,
driver_lost: bool,
runtime: Arc<dyn Runtime>,
stats: EndpointStats,
}
#[derive(Debug)]
pub(crate) struct Shared {
incoming: Notify,
idle: Notify,
}
impl State {
fn drive_recv(&mut self, cx: &mut Context, now: Instant) -> Result<bool, io::Error> {
let get_time = || self.runtime.now();
self.recv_state.recv_limiter.start_cycle(get_time);
if let Some(socket) = &self.prev_socket {
// We don't care about the `PollProgress` from old sockets.
let poll_res =
self.recv_state
.poll_socket(cx, &mut self.inner, &**socket, &*self.runtime, now);
if poll_res.is_err() {
self.prev_socket = None;
}
};
let poll_res =
self.recv_state
.poll_socket(cx, &mut self.inner, &*self.socket, &*self.runtime, now);
self.recv_state.recv_limiter.finish_cycle(get_time);
let poll_res = poll_res?;
if poll_res.received_connection_packet {
// Traffic has arrived on self.socket, therefore there is no need for the abandoned
// one anymore. TODO: Account for multiple outgoing connections.
self.prev_socket = None;
}
Ok(poll_res.keep_going)
}
fn handle_events(&mut self, cx: &mut Context, shared: &Shared) -> bool {
for _ in 0..IO_LOOP_BOUND {
let (ch, event) = match self.events.poll_recv(cx) {
Poll::Ready(Some(x)) => x,
Poll::Ready(None) => unreachable!("EndpointInner owns one sender"),
Poll::Pending => {
return false;
}
};
if event.is_drained() {
self.recv_state.connections.senders.remove(&ch);
if self.recv_state.connections.is_empty() {
shared.idle.notify_waiters();
}
}
let Some(event) = self.inner.handle_event(ch, event) else {
continue;
};
// Ignoring errors from dropped connections that haven't yet been cleaned up
let _ = self
.recv_state
.connections
.senders
.get_mut(&ch)
.unwrap()
.send(ConnectionEvent::Proto(event));
}
true
}
}
impl Drop for State {
fn drop(&mut self) {
for incoming in self.recv_state.incoming.drain(..) {
self.inner.ignore(incoming);
}
}
}
fn respond(transmit: proto::Transmit, response_buffer: &[u8], socket: &dyn AsyncUdpSocket) {
// Send if there's kernel buffer space; otherwise, drop it
//
// As an endpoint-generated packet, we know this is an
// immediate, stateless response to an unconnected peer,
// one of:
//
// - A version negotiation response due to an unknown version
// - A `CLOSE` due to a malformed or unwanted connection attempt
// - A stateless reset due to an unrecognized connection
// - A `Retry` packet due to a connection attempt when
// `use_retry` is set
//
// In each case, a well-behaved peer can be trusted to retry a
// few times, which is guaranteed to produce the same response
// from us. Repeated failures might at worst cause a peer's new
// connection attempt to time out, which is acceptable if we're
// under such heavy load that there's never room for this code
// to transmit. This is morally equivalent to the packet getting
// lost due to congestion further along the link, which
// similarly relies on peer retries for recovery.
_ = socket.try_send(&udp_transmit(&transmit, &response_buffer[..transmit.size]));
}
#[inline]
fn proto_ecn(ecn: udp::EcnCodepoint) -> proto::EcnCodepoint {
match ecn {
udp::EcnCodepoint::Ect0 => proto::EcnCodepoint::Ect0,
udp::EcnCodepoint::Ect1 => proto::EcnCodepoint::Ect1,
udp::EcnCodepoint::Ce => proto::EcnCodepoint::Ce,
}
}
#[derive(Debug)]
struct ConnectionSet {
/// Senders for communicating with the endpoint's connections
senders: FxHashMap<ConnectionHandle, mpsc::UnboundedSender<ConnectionEvent>>,
/// Stored to give out clones to new ConnectionInners
sender: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
/// Set if the endpoint has been manually closed
close: Option<(VarInt, Bytes)>,
}
impl ConnectionSet {
fn insert(
&mut self,
handle: ConnectionHandle,
conn: proto::Connection,
socket: Arc<dyn AsyncUdpSocket>,
runtime: Arc<dyn Runtime>,
) -> Connecting {
let (send, recv) = mpsc::unbounded_channel();
if let Some((error_code, ref reason)) = self.close {
send.send(ConnectionEvent::Close {
error_code,
reason: reason.clone(),
})
.unwrap();
}
self.senders.insert(handle, send);
Connecting::new(handle, conn, self.sender.clone(), recv, socket, runtime)
}
fn is_empty(&self) -> bool {
self.senders.is_empty()
}
}
fn ensure_ipv6(x: SocketAddr) -> SocketAddrV6 {
match x {
SocketAddr::V6(x) => x,
SocketAddr::V4(x) => SocketAddrV6::new(x.ip().to_ipv6_mapped(), x.port(), 0, 0),
}
}
pin_project! {
/// Future produced by [`Endpoint::accept`]
pub struct Accept<'a> {
endpoint: &'a Endpoint,
#[pin]
notify: Notified<'a>,
}
}
impl<'a> Future for Accept<'a> {
type Output = Option<Incoming>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
let mut endpoint = this.endpoint.inner.state.lock().unwrap();
if endpoint.driver_lost {
return Poll::Ready(None);
}
if let Some(incoming) = endpoint.recv_state.incoming.pop_front() {
// Release the mutex lock on endpoint so cloning it doesn't deadlock
drop(endpoint);
let incoming = Incoming::new(incoming, this.endpoint.inner.clone());
return Poll::Ready(Some(incoming));
}
if endpoint.recv_state.connections.close.is_some() {
return Poll::Ready(None);
}
loop {
match this.notify.as_mut().poll(ctx) {
// `state` lock ensures we didn't race with readiness
Poll::Pending => return Poll::Pending,
// Spurious wakeup, get a new future
Poll::Ready(()) => this
.notify
.set(this.endpoint.inner.shared.incoming.notified()),
}
}
}
}
#[derive(Debug)]
pub(crate) struct EndpointRef(Arc<EndpointInner>);
impl EndpointRef {
pub(crate) fn new(
socket: Arc<dyn AsyncUdpSocket>,
inner: proto::Endpoint,
ipv6: bool,
runtime: Arc<dyn Runtime>,
) -> Self {
let (sender, events) = mpsc::unbounded_channel();
let recv_state = RecvState::new(sender, socket.max_receive_segments(), &inner);
Self(Arc::new(EndpointInner {
shared: Shared {
incoming: Notify::new(),
idle: Notify::new(),
},
state: Mutex::new(State {
socket,
prev_socket: None,
inner,
ipv6,
events,
driver: None,
ref_count: 0,
driver_lost: false,
recv_state,
runtime,
stats: EndpointStats::default(),
}),
}))
}
}
impl Clone for EndpointRef {
fn clone(&self) -> Self {
self.0.state.lock().unwrap().ref_count += 1;
Self(self.0.clone())
}
}
impl Drop for EndpointRef {
fn drop(&mut self) {
let endpoint = &mut *self.0.state.lock().unwrap();
if let Some(x) = endpoint.ref_count.checked_sub(1) {
endpoint.ref_count = x;
if x == 0 {
// If the driver is about to be on its own, ensure it can shut down if the last
// connection is gone.
if let Some(task) = endpoint.driver.take() {
task.wake();
}
}
}
}
}
impl std::ops::Deref for EndpointRef {
type Target = EndpointInner;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// State directly involved in handling incoming packets
#[derive(Debug)]
struct RecvState {
incoming: VecDeque<proto::Incoming>,
connections: ConnectionSet,
recv_buf: Box<[u8]>,
recv_limiter: WorkLimiter,
}
impl RecvState {
fn new(
sender: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
max_receive_segments: usize,
endpoint: &proto::Endpoint,
) -> Self {
let recv_buf = vec![
0;
endpoint.config().get_max_udp_payload_size().min(64 * 1024) as usize
* max_receive_segments
* BATCH_SIZE
];
Self {
connections: ConnectionSet {
senders: FxHashMap::default(),
sender,
close: None,
},
incoming: VecDeque::new(),
recv_buf: recv_buf.into(),
recv_limiter: WorkLimiter::new(RECV_TIME_BOUND),
}
}
fn poll_socket(
&mut self,
cx: &mut Context,
endpoint: &mut proto::Endpoint,
socket: &dyn AsyncUdpSocket,
runtime: &dyn Runtime,
now: Instant,
) -> Result<PollProgress, io::Error> {
let mut received_connection_packet = false;
let mut metas = [RecvMeta::default(); BATCH_SIZE];
let mut iovs: [IoSliceMut; BATCH_SIZE] = {
let mut bufs = self
.recv_buf
.chunks_mut(self.recv_buf.len() / BATCH_SIZE)
.map(IoSliceMut::new);
// expect() safe as self.recv_buf is chunked into BATCH_SIZE items
// and iovs will be of size BATCH_SIZE, thus from_fn is called
// exactly BATCH_SIZE times.
std::array::from_fn(|_| bufs.next().expect("BATCH_SIZE elements"))
};
loop {
match socket.poll_recv(cx, &mut iovs, &mut metas) {
Poll::Ready(Ok(msgs)) => {
self.recv_limiter.record_work(msgs);
for (meta, buf) in metas.iter().zip(iovs.iter()).take(msgs) {
let mut data: BytesMut = buf[0..meta.len].into();
while !data.is_empty() {
let buf = data.split_to(meta.stride.min(data.len()));
let mut response_buffer = Vec::new();
match endpoint.handle(
now,
meta.addr,
meta.dst_ip,
meta.ecn.map(proto_ecn),
buf,
&mut response_buffer,
) {
Some(DatagramEvent::NewConnection(incoming)) => {
if self.connections.close.is_none() {
self.incoming.push_back(incoming);
} else {
let transmit =
endpoint.refuse(incoming, &mut response_buffer);
respond(transmit, &response_buffer, socket);
}
}
Some(DatagramEvent::ConnectionEvent(handle, event)) => {
// Ignoring errors from dropped connections that haven't yet been cleaned up
received_connection_packet = true;
let _ = self
.connections
.senders
.get_mut(&handle)
.unwrap()
.send(ConnectionEvent::Proto(event));
}
Some(DatagramEvent::Response(transmit)) => {
respond(transmit, &response_buffer, socket);
}
None => {}
}
}
}
}
Poll::Pending => {
return Ok(PollProgress {
received_connection_packet,
keep_going: false,
});
}
// Ignore ECONNRESET as it's undefined in QUIC and may be injected by an
// attacker
Poll::Ready(Err(ref e)) if e.kind() == io::ErrorKind::ConnectionReset => {
continue;
}
Poll::Ready(Err(e)) => {
return Err(e);
}
}
if !self.recv_limiter.allow_work(|| runtime.now()) {
return Ok(PollProgress {
received_connection_packet,
keep_going: true,
});
}
}
}
}
#[derive(Default)]
struct PollProgress {
/// Whether a datagram was routed to an existing connection
received_connection_packet: bool,
/// Whether datagram handling was interrupted early by the work limiter for fairness
keep_going: bool,
}