iroh_quinn/
endpoint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
use std::{
    collections::VecDeque,
    future::Future,
    io,
    io::IoSliceMut,
    mem,
    net::{SocketAddr, SocketAddrV6},
    pin::Pin,
    str,
    sync::{Arc, Mutex},
    task::{Context, Poll, Waker},
    time::Instant,
};

#[cfg(feature = "ring")]
use crate::runtime::default_runtime;
use crate::{
    runtime::{AsyncUdpSocket, Runtime},
    udp_transmit,
};
use bytes::{Bytes, BytesMut};
use pin_project_lite::pin_project;
use proto::{
    self as proto, ClientConfig, ConnectError, ConnectionError, ConnectionHandle, DatagramEvent,
    EndpointEvent, ServerConfig,
};
use rustc_hash::FxHashMap;
#[cfg(feature = "ring")]
use socket2::{Domain, Protocol, Socket, Type};
use tokio::sync::{futures::Notified, mpsc, Notify};
use tracing::{Instrument, Span};
use udp::{RecvMeta, BATCH_SIZE};

use crate::{
    connection::Connecting, incoming::Incoming, work_limiter::WorkLimiter, ConnectionEvent,
    EndpointConfig, VarInt, IO_LOOP_BOUND, RECV_TIME_BOUND,
};

/// A QUIC endpoint.
///
/// An endpoint corresponds to a single UDP socket, may host many connections, and may act as both
/// client and server for different connections.
///
/// May be cloned to obtain another handle to the same endpoint.
#[derive(Debug, Clone)]
pub struct Endpoint {
    pub(crate) inner: EndpointRef,
    pub(crate) default_client_config: Option<ClientConfig>,
    runtime: Arc<dyn Runtime>,
}

impl Endpoint {
    /// Helper to construct an endpoint for use with outgoing connections only
    ///
    /// Note that `addr` is the *local* address to bind to, which should usually be a wildcard
    /// address like `0.0.0.0:0` or `[::]:0`, which allow communication with any reachable IPv4 or
    /// IPv6 address respectively from an OS-assigned port.
    ///
    /// If an IPv6 address is provided, attempts to make the socket dual-stack so as to allow
    /// communication with both IPv4 and IPv6 addresses. As such, calling `Endpoint::client` with
    /// the address `[::]:0` is a reasonable default to maximize the ability to connect to other
    /// address. For example:
    ///
    /// ```
    /// iroh_quinn::Endpoint::client((std::net::Ipv6Addr::UNSPECIFIED, 0).into());
    /// ```
    ///
    /// Some environments may not allow creation of dual-stack sockets, in which case an IPv6
    /// client will only be able to connect to IPv6 servers. An IPv4 client is never dual-stack.
    #[cfg(feature = "ring")]
    pub fn client(addr: SocketAddr) -> io::Result<Self> {
        let socket = Socket::new(Domain::for_address(addr), Type::DGRAM, Some(Protocol::UDP))?;
        if addr.is_ipv6() {
            if let Err(e) = socket.set_only_v6(false) {
                tracing::debug!(%e, "unable to make socket dual-stack");
            }
        }
        socket.bind(&addr.into())?;
        let runtime = default_runtime()
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "no async runtime found"))?;
        Self::new_with_abstract_socket(
            EndpointConfig::default(),
            None,
            runtime.wrap_udp_socket(socket.into())?,
            runtime,
        )
    }

    /// Returns relevant stats from this Endpoint
    pub fn stats(&self) -> EndpointStats {
        self.inner.state.lock().unwrap().stats
    }

    /// Helper to construct an endpoint for use with both incoming and outgoing connections
    ///
    /// Platform defaults for dual-stack sockets vary. For example, any socket bound to a wildcard
    /// IPv6 address on Windows will not by default be able to communicate with IPv4
    /// addresses. Portable applications should bind an address that matches the family they wish to
    /// communicate within.
    #[cfg(feature = "ring")]
    pub fn server(config: ServerConfig, addr: SocketAddr) -> io::Result<Self> {
        let socket = std::net::UdpSocket::bind(addr)?;
        let runtime = default_runtime()
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "no async runtime found"))?;
        Self::new_with_abstract_socket(
            EndpointConfig::default(),
            Some(config),
            runtime.wrap_udp_socket(socket)?,
            runtime,
        )
    }

    /// Construct an endpoint with arbitrary configuration and socket
    pub fn new(
        config: EndpointConfig,
        server_config: Option<ServerConfig>,
        socket: std::net::UdpSocket,
        runtime: Arc<dyn Runtime>,
    ) -> io::Result<Self> {
        let socket = runtime.wrap_udp_socket(socket)?;
        Self::new_with_abstract_socket(config, server_config, socket, runtime)
    }

    /// Construct an endpoint with arbitrary configuration and pre-constructed abstract socket
    ///
    /// Useful when `socket` has additional state (e.g. sidechannels) attached for which shared
    /// ownership is needed.
    pub fn new_with_abstract_socket(
        config: EndpointConfig,
        server_config: Option<ServerConfig>,
        socket: Arc<dyn AsyncUdpSocket>,
        runtime: Arc<dyn Runtime>,
    ) -> io::Result<Self> {
        let addr = socket.local_addr()?;
        let allow_mtud = !socket.may_fragment();
        let rc = EndpointRef::new(
            socket,
            proto::Endpoint::new(
                Arc::new(config),
                server_config.map(Arc::new),
                allow_mtud,
                None,
            ),
            addr.is_ipv6(),
            runtime.clone(),
        );
        let driver = EndpointDriver(rc.clone());
        runtime.spawn(Box::pin(
            async {
                if let Err(e) = driver.await {
                    tracing::error!("I/O error: {}", e);
                }
            }
            .instrument(Span::current()),
        ));
        Ok(Self {
            inner: rc,
            default_client_config: None,
            runtime,
        })
    }

    /// Get the next incoming connection attempt from a client
    ///
    /// Yields [`Incoming`]s, or `None` if the endpoint is [`close`](Self::close)d. [`Incoming`]
    /// can be `await`ed to obtain the final [`Connection`](crate::Connection), or used to e.g.
    /// filter connection attempts or force address validation, or converted into an intermediate
    /// `Connecting` future which can be used to e.g. send 0.5-RTT data.
    pub fn accept(&self) -> Accept<'_> {
        Accept {
            endpoint: self,
            notify: self.inner.shared.incoming.notified(),
        }
    }

    /// Set the client configuration used by `connect`
    pub fn set_default_client_config(&mut self, config: ClientConfig) {
        self.default_client_config = Some(config);
    }

    /// Connect to a remote endpoint
    ///
    /// `server_name` must be covered by the certificate presented by the server. This prevents a
    /// connection from being intercepted by an attacker with a valid certificate for some other
    /// server.
    ///
    /// May fail immediately due to configuration errors, or in the future if the connection could
    /// not be established.
    pub fn connect(&self, addr: SocketAddr, server_name: &str) -> Result<Connecting, ConnectError> {
        let config = match &self.default_client_config {
            Some(config) => config.clone(),
            None => return Err(ConnectError::NoDefaultClientConfig),
        };

        self.connect_with(config, addr, server_name)
    }

    /// Connect to a remote endpoint using a custom configuration.
    ///
    /// See [`connect()`] for details.
    ///
    /// [`connect()`]: Endpoint::connect
    pub fn connect_with(
        &self,
        config: ClientConfig,
        addr: SocketAddr,
        server_name: &str,
    ) -> Result<Connecting, ConnectError> {
        let mut endpoint = self.inner.state.lock().unwrap();
        if endpoint.driver_lost || endpoint.recv_state.connections.close.is_some() {
            return Err(ConnectError::EndpointStopping);
        }
        if addr.is_ipv6() && !endpoint.ipv6 {
            return Err(ConnectError::InvalidRemoteAddress(addr));
        }
        let addr = if endpoint.ipv6 {
            SocketAddr::V6(ensure_ipv6(addr))
        } else {
            addr
        };

        let (ch, conn) = endpoint
            .inner
            .connect(self.runtime.now(), config, addr, server_name)?;

        let socket = endpoint.socket.clone();
        endpoint.stats.outgoing_handshakes += 1;
        Ok(endpoint
            .recv_state
            .connections
            .insert(ch, conn, socket, self.runtime.clone()))
    }

    /// Switch to a new UDP socket
    ///
    /// See [`Endpoint::rebind_abstract()`] for details.
    pub fn rebind(&self, socket: std::net::UdpSocket) -> io::Result<()> {
        self.rebind_abstract(self.runtime.wrap_udp_socket(socket)?)
    }

    /// Switch to a new UDP socket
    ///
    /// Allows the endpoint's address to be updated live, affecting all active connections. Incoming
    /// connections and connections to servers unreachable from the new address will be lost.
    ///
    /// On error, the old UDP socket is retained.
    pub fn rebind_abstract(&self, socket: Arc<dyn AsyncUdpSocket>) -> io::Result<()> {
        let addr = socket.local_addr()?;
        let mut inner = self.inner.state.lock().unwrap();
        inner.prev_socket = Some(mem::replace(&mut inner.socket, socket));
        inner.ipv6 = addr.is_ipv6();

        // Update connection socket references
        for sender in inner.recv_state.connections.senders.values() {
            // Ignoring errors from dropped connections
            let _ = sender.send(ConnectionEvent::Rebind(inner.socket.clone()));
        }

        Ok(())
    }

    /// Replace the server configuration, affecting new incoming connections only
    ///
    /// Useful for e.g. refreshing TLS certificates without disrupting existing connections.
    pub fn set_server_config(&self, server_config: Option<ServerConfig>) {
        self.inner
            .state
            .lock()
            .unwrap()
            .inner
            .set_server_config(server_config.map(Arc::new))
    }

    /// Get the local `SocketAddr` the underlying socket is bound to
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner.state.lock().unwrap().socket.local_addr()
    }

    /// Get the number of connections that are currently open
    pub fn open_connections(&self) -> usize {
        self.inner.state.lock().unwrap().inner.open_connections()
    }

    /// Close all of this endpoint's connections immediately and cease accepting new connections.
    ///
    /// See [`Connection::close()`] for details.
    ///
    /// [`Connection::close()`]: crate::Connection::close
    pub fn close(&self, error_code: VarInt, reason: &[u8]) {
        let reason = Bytes::copy_from_slice(reason);
        let mut endpoint = self.inner.state.lock().unwrap();
        endpoint.recv_state.connections.close = Some((error_code, reason.clone()));
        for sender in endpoint.recv_state.connections.senders.values() {
            // Ignoring errors from dropped connections
            let _ = sender.send(ConnectionEvent::Close {
                error_code,
                reason: reason.clone(),
            });
        }
        self.inner.shared.incoming.notify_waiters();
    }

    /// Wait for all connections on the endpoint to be cleanly shut down
    ///
    /// Waiting for this condition before exiting ensures that a good-faith effort is made to notify
    /// peers of recent connection closes, whereas exiting immediately could force them to wait out
    /// the idle timeout period.
    ///
    /// Does not proactively close existing connections or cause incoming connections to be
    /// rejected. Consider calling [`close()`] if that is desired.
    ///
    /// [`close()`]: Endpoint::close
    pub async fn wait_idle(&self) {
        loop {
            {
                let endpoint = &mut *self.inner.state.lock().unwrap();
                if endpoint.recv_state.connections.is_empty() {
                    break;
                }
                // Construct future while lock is held to avoid race
                self.inner.shared.idle.notified()
            }
            .await;
        }
    }
}

/// Statistics on [Endpoint] activity
#[non_exhaustive]
#[derive(Debug, Default, Copy, Clone)]
pub struct EndpointStats {
    /// Cummulative number of Quic handshakes accepted by this [Endpoint]
    pub accepted_handshakes: u64,
    /// Cummulative number of Quic handshakees sent from this [Endpoint]
    pub outgoing_handshakes: u64,
    /// Cummulative number of Quic handshakes refused on this [Endpoint]
    pub refused_handshakes: u64,
    /// Cummulative number of Quic handshakes ignored on this [Endpoint]
    pub ignored_handshakes: u64,
}

/// A future that drives IO on an endpoint
///
/// This task functions as the switch point between the UDP socket object and the
/// `Endpoint` responsible for routing datagrams to their owning `Connection`.
/// In order to do so, it also facilitates the exchange of different types of events
/// flowing between the `Endpoint` and the tasks managing `Connection`s. As such,
/// running this task is necessary to keep the endpoint's connections running.
///
/// `EndpointDriver` futures terminate when all clones of the `Endpoint` have been dropped, or when
/// an I/O error occurs.
#[must_use = "endpoint drivers must be spawned for I/O to occur"]
#[derive(Debug)]
pub(crate) struct EndpointDriver(pub(crate) EndpointRef);

impl Future for EndpointDriver {
    type Output = Result<(), io::Error>;

    #[allow(unused_mut)] // MSRV
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
        let mut endpoint = self.0.state.lock().unwrap();
        if endpoint.driver.is_none() {
            endpoint.driver = Some(cx.waker().clone());
        }

        let now = endpoint.runtime.now();
        let mut keep_going = false;
        keep_going |= endpoint.drive_recv(cx, now)?;
        keep_going |= endpoint.handle_events(cx, &self.0.shared);

        if !endpoint.recv_state.incoming.is_empty() {
            self.0.shared.incoming.notify_waiters();
        }

        if endpoint.ref_count == 0 && endpoint.recv_state.connections.is_empty() {
            Poll::Ready(Ok(()))
        } else {
            drop(endpoint);
            // If there is more work to do schedule the endpoint task again.
            // `wake_by_ref()` is called outside the lock to minimize
            // lock contention on a multithreaded runtime.
            if keep_going {
                cx.waker().wake_by_ref();
            }
            Poll::Pending
        }
    }
}

impl Drop for EndpointDriver {
    fn drop(&mut self) {
        let mut endpoint = self.0.state.lock().unwrap();
        endpoint.driver_lost = true;
        self.0.shared.incoming.notify_waiters();
        // Drop all outgoing channels, signaling the termination of the endpoint to the associated
        // connections.
        endpoint.recv_state.connections.senders.clear();
    }
}

#[derive(Debug)]
pub(crate) struct EndpointInner {
    pub(crate) state: Mutex<State>,
    pub(crate) shared: Shared,
}

impl EndpointInner {
    pub(crate) fn accept(
        &self,
        incoming: proto::Incoming,
        server_config: Option<Arc<ServerConfig>>,
    ) -> Result<Connecting, ConnectionError> {
        let mut state = self.state.lock().unwrap();
        let mut response_buffer = Vec::new();
        let now = state.runtime.now();
        match state
            .inner
            .accept(incoming, now, &mut response_buffer, server_config)
        {
            Ok((handle, conn)) => {
                state.stats.accepted_handshakes += 1;
                let socket = state.socket.clone();
                let runtime = state.runtime.clone();
                Ok(state
                    .recv_state
                    .connections
                    .insert(handle, conn, socket, runtime))
            }
            Err(error) => {
                if let Some(transmit) = error.response {
                    respond(transmit, &response_buffer, &*state.socket);
                }
                Err(error.cause)
            }
        }
    }

    pub(crate) fn refuse(&self, incoming: proto::Incoming) {
        let mut state = self.state.lock().unwrap();
        state.stats.refused_handshakes += 1;
        let mut response_buffer = Vec::new();
        let transmit = state.inner.refuse(incoming, &mut response_buffer);
        respond(transmit, &response_buffer, &*state.socket);
    }

    pub(crate) fn retry(&self, incoming: proto::Incoming) -> Result<(), proto::RetryError> {
        let mut state = self.state.lock().unwrap();
        let mut response_buffer = Vec::new();
        let transmit = state.inner.retry(incoming, &mut response_buffer)?;
        respond(transmit, &response_buffer, &*state.socket);
        Ok(())
    }

    pub(crate) fn ignore(&self, incoming: proto::Incoming) {
        let mut state = self.state.lock().unwrap();
        state.stats.ignored_handshakes += 1;
        state.inner.ignore(incoming);
    }
}

#[derive(Debug)]
pub(crate) struct State {
    socket: Arc<dyn AsyncUdpSocket>,
    /// During an active migration, abandoned_socket receives traffic
    /// until the first packet arrives on the new socket.
    prev_socket: Option<Arc<dyn AsyncUdpSocket>>,
    inner: proto::Endpoint,
    recv_state: RecvState,
    driver: Option<Waker>,
    ipv6: bool,
    events: mpsc::UnboundedReceiver<(ConnectionHandle, EndpointEvent)>,
    /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
    ref_count: usize,
    driver_lost: bool,
    runtime: Arc<dyn Runtime>,
    stats: EndpointStats,
}

#[derive(Debug)]
pub(crate) struct Shared {
    incoming: Notify,
    idle: Notify,
}

impl State {
    fn drive_recv(&mut self, cx: &mut Context, now: Instant) -> Result<bool, io::Error> {
        let get_time = || self.runtime.now();
        self.recv_state.recv_limiter.start_cycle(get_time);
        if let Some(socket) = &self.prev_socket {
            // We don't care about the `PollProgress` from old sockets.
            let poll_res =
                self.recv_state
                    .poll_socket(cx, &mut self.inner, &**socket, &*self.runtime, now);
            if poll_res.is_err() {
                self.prev_socket = None;
            }
        };
        let poll_res =
            self.recv_state
                .poll_socket(cx, &mut self.inner, &*self.socket, &*self.runtime, now);
        self.recv_state.recv_limiter.finish_cycle(get_time);
        let poll_res = poll_res?;
        if poll_res.received_connection_packet {
            // Traffic has arrived on self.socket, therefore there is no need for the abandoned
            // one anymore. TODO: Account for multiple outgoing connections.
            self.prev_socket = None;
        }
        Ok(poll_res.keep_going)
    }

    fn handle_events(&mut self, cx: &mut Context, shared: &Shared) -> bool {
        for _ in 0..IO_LOOP_BOUND {
            let (ch, event) = match self.events.poll_recv(cx) {
                Poll::Ready(Some(x)) => x,
                Poll::Ready(None) => unreachable!("EndpointInner owns one sender"),
                Poll::Pending => {
                    return false;
                }
            };

            if event.is_drained() {
                self.recv_state.connections.senders.remove(&ch);
                if self.recv_state.connections.is_empty() {
                    shared.idle.notify_waiters();
                }
            }
            let Some(event) = self.inner.handle_event(ch, event) else {
                continue;
            };
            // Ignoring errors from dropped connections that haven't yet been cleaned up
            let _ = self
                .recv_state
                .connections
                .senders
                .get_mut(&ch)
                .unwrap()
                .send(ConnectionEvent::Proto(event));
        }

        true
    }
}

impl Drop for State {
    fn drop(&mut self) {
        for incoming in self.recv_state.incoming.drain(..) {
            self.inner.ignore(incoming);
        }
    }
}

fn respond(transmit: proto::Transmit, response_buffer: &[u8], socket: &dyn AsyncUdpSocket) {
    // Send if there's kernel buffer space; otherwise, drop it
    //
    // As an endpoint-generated packet, we know this is an
    // immediate, stateless response to an unconnected peer,
    // one of:
    //
    // - A version negotiation response due to an unknown version
    // - A `CLOSE` due to a malformed or unwanted connection attempt
    // - A stateless reset due to an unrecognized connection
    // - A `Retry` packet due to a connection attempt when
    //   `use_retry` is set
    //
    // In each case, a well-behaved peer can be trusted to retry a
    // few times, which is guaranteed to produce the same response
    // from us. Repeated failures might at worst cause a peer's new
    // connection attempt to time out, which is acceptable if we're
    // under such heavy load that there's never room for this code
    // to transmit. This is morally equivalent to the packet getting
    // lost due to congestion further along the link, which
    // similarly relies on peer retries for recovery.
    _ = socket.try_send(&udp_transmit(&transmit, &response_buffer[..transmit.size]));
}

#[inline]
fn proto_ecn(ecn: udp::EcnCodepoint) -> proto::EcnCodepoint {
    match ecn {
        udp::EcnCodepoint::Ect0 => proto::EcnCodepoint::Ect0,
        udp::EcnCodepoint::Ect1 => proto::EcnCodepoint::Ect1,
        udp::EcnCodepoint::Ce => proto::EcnCodepoint::Ce,
    }
}

#[derive(Debug)]
struct ConnectionSet {
    /// Senders for communicating with the endpoint's connections
    senders: FxHashMap<ConnectionHandle, mpsc::UnboundedSender<ConnectionEvent>>,
    /// Stored to give out clones to new ConnectionInners
    sender: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
    /// Set if the endpoint has been manually closed
    close: Option<(VarInt, Bytes)>,
}

impl ConnectionSet {
    fn insert(
        &mut self,
        handle: ConnectionHandle,
        conn: proto::Connection,
        socket: Arc<dyn AsyncUdpSocket>,
        runtime: Arc<dyn Runtime>,
    ) -> Connecting {
        let (send, recv) = mpsc::unbounded_channel();
        if let Some((error_code, ref reason)) = self.close {
            send.send(ConnectionEvent::Close {
                error_code,
                reason: reason.clone(),
            })
            .unwrap();
        }
        self.senders.insert(handle, send);
        Connecting::new(handle, conn, self.sender.clone(), recv, socket, runtime)
    }

    fn is_empty(&self) -> bool {
        self.senders.is_empty()
    }
}

fn ensure_ipv6(x: SocketAddr) -> SocketAddrV6 {
    match x {
        SocketAddr::V6(x) => x,
        SocketAddr::V4(x) => SocketAddrV6::new(x.ip().to_ipv6_mapped(), x.port(), 0, 0),
    }
}

pin_project! {
    /// Future produced by [`Endpoint::accept`]
    pub struct Accept<'a> {
        endpoint: &'a Endpoint,
        #[pin]
        notify: Notified<'a>,
    }
}

impl<'a> Future for Accept<'a> {
    type Output = Option<Incoming>;
    fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut this = self.project();
        let mut endpoint = this.endpoint.inner.state.lock().unwrap();
        if endpoint.driver_lost {
            return Poll::Ready(None);
        }
        if let Some(incoming) = endpoint.recv_state.incoming.pop_front() {
            // Release the mutex lock on endpoint so cloning it doesn't deadlock
            drop(endpoint);
            let incoming = Incoming::new(incoming, this.endpoint.inner.clone());
            return Poll::Ready(Some(incoming));
        }
        if endpoint.recv_state.connections.close.is_some() {
            return Poll::Ready(None);
        }
        loop {
            match this.notify.as_mut().poll(ctx) {
                // `state` lock ensures we didn't race with readiness
                Poll::Pending => return Poll::Pending,
                // Spurious wakeup, get a new future
                Poll::Ready(()) => this
                    .notify
                    .set(this.endpoint.inner.shared.incoming.notified()),
            }
        }
    }
}

#[derive(Debug)]
pub(crate) struct EndpointRef(Arc<EndpointInner>);

impl EndpointRef {
    pub(crate) fn new(
        socket: Arc<dyn AsyncUdpSocket>,
        inner: proto::Endpoint,
        ipv6: bool,
        runtime: Arc<dyn Runtime>,
    ) -> Self {
        let (sender, events) = mpsc::unbounded_channel();
        let recv_state = RecvState::new(sender, socket.max_receive_segments(), &inner);
        Self(Arc::new(EndpointInner {
            shared: Shared {
                incoming: Notify::new(),
                idle: Notify::new(),
            },
            state: Mutex::new(State {
                socket,
                prev_socket: None,
                inner,
                ipv6,
                events,
                driver: None,
                ref_count: 0,
                driver_lost: false,
                recv_state,
                runtime,
                stats: EndpointStats::default(),
            }),
        }))
    }
}

impl Clone for EndpointRef {
    fn clone(&self) -> Self {
        self.0.state.lock().unwrap().ref_count += 1;
        Self(self.0.clone())
    }
}

impl Drop for EndpointRef {
    fn drop(&mut self) {
        let endpoint = &mut *self.0.state.lock().unwrap();
        if let Some(x) = endpoint.ref_count.checked_sub(1) {
            endpoint.ref_count = x;
            if x == 0 {
                // If the driver is about to be on its own, ensure it can shut down if the last
                // connection is gone.
                if let Some(task) = endpoint.driver.take() {
                    task.wake();
                }
            }
        }
    }
}

impl std::ops::Deref for EndpointRef {
    type Target = EndpointInner;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// State directly involved in handling incoming packets
#[derive(Debug)]
struct RecvState {
    incoming: VecDeque<proto::Incoming>,
    connections: ConnectionSet,
    recv_buf: Box<[u8]>,
    recv_limiter: WorkLimiter,
}

impl RecvState {
    fn new(
        sender: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
        max_receive_segments: usize,
        endpoint: &proto::Endpoint,
    ) -> Self {
        let recv_buf = vec![
            0;
            endpoint.config().get_max_udp_payload_size().min(64 * 1024) as usize
                * max_receive_segments
                * BATCH_SIZE
        ];
        Self {
            connections: ConnectionSet {
                senders: FxHashMap::default(),
                sender,
                close: None,
            },
            incoming: VecDeque::new(),
            recv_buf: recv_buf.into(),
            recv_limiter: WorkLimiter::new(RECV_TIME_BOUND),
        }
    }

    fn poll_socket(
        &mut self,
        cx: &mut Context,
        endpoint: &mut proto::Endpoint,
        socket: &dyn AsyncUdpSocket,
        runtime: &dyn Runtime,
        now: Instant,
    ) -> Result<PollProgress, io::Error> {
        let mut received_connection_packet = false;
        let mut metas = [RecvMeta::default(); BATCH_SIZE];
        let mut iovs: [IoSliceMut; BATCH_SIZE] = {
            let mut bufs = self
                .recv_buf
                .chunks_mut(self.recv_buf.len() / BATCH_SIZE)
                .map(IoSliceMut::new);

            // expect() safe as self.recv_buf is chunked into BATCH_SIZE items
            // and iovs will be of size BATCH_SIZE, thus from_fn is called
            // exactly BATCH_SIZE times.
            std::array::from_fn(|_| bufs.next().expect("BATCH_SIZE elements"))
        };
        loop {
            match socket.poll_recv(cx, &mut iovs, &mut metas) {
                Poll::Ready(Ok(msgs)) => {
                    self.recv_limiter.record_work(msgs);
                    for (meta, buf) in metas.iter().zip(iovs.iter()).take(msgs) {
                        let mut data: BytesMut = buf[0..meta.len].into();
                        while !data.is_empty() {
                            let buf = data.split_to(meta.stride.min(data.len()));
                            let mut response_buffer = Vec::new();
                            match endpoint.handle(
                                now,
                                meta.addr,
                                meta.dst_ip,
                                meta.ecn.map(proto_ecn),
                                buf,
                                &mut response_buffer,
                            ) {
                                Some(DatagramEvent::NewConnection(incoming)) => {
                                    if self.connections.close.is_none() {
                                        self.incoming.push_back(incoming);
                                    } else {
                                        let transmit =
                                            endpoint.refuse(incoming, &mut response_buffer);
                                        respond(transmit, &response_buffer, socket);
                                    }
                                }
                                Some(DatagramEvent::ConnectionEvent(handle, event)) => {
                                    // Ignoring errors from dropped connections that haven't yet been cleaned up
                                    received_connection_packet = true;
                                    let _ = self
                                        .connections
                                        .senders
                                        .get_mut(&handle)
                                        .unwrap()
                                        .send(ConnectionEvent::Proto(event));
                                }
                                Some(DatagramEvent::Response(transmit)) => {
                                    respond(transmit, &response_buffer, socket);
                                }
                                None => {}
                            }
                        }
                    }
                }
                Poll::Pending => {
                    return Ok(PollProgress {
                        received_connection_packet,
                        keep_going: false,
                    });
                }
                // Ignore ECONNRESET as it's undefined in QUIC and may be injected by an
                // attacker
                Poll::Ready(Err(ref e)) if e.kind() == io::ErrorKind::ConnectionReset => {
                    continue;
                }
                Poll::Ready(Err(e)) => {
                    return Err(e);
                }
            }
            if !self.recv_limiter.allow_work(|| runtime.now()) {
                return Ok(PollProgress {
                    received_connection_packet,
                    keep_going: true,
                });
            }
        }
    }
}

#[derive(Default)]
struct PollProgress {
    /// Whether a datagram was routed to an existing connection
    received_connection_packet: bool,
    /// Whether datagram handling was interrupted early by the work limiter for fairness
    keep_going: bool,
}