iroh_quinn/connection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
use std::{
any::Any,
fmt,
future::Future,
io,
net::{IpAddr, SocketAddr},
pin::Pin,
sync::{Arc, Weak},
task::{Context, Poll, Waker},
time::{Duration, Instant},
};
use bytes::Bytes;
use pin_project_lite::pin_project;
use rustc_hash::FxHashMap;
use thiserror::Error;
use tokio::sync::{futures::Notified, mpsc, oneshot, watch, Notify};
use tracing::{debug_span, Instrument, Span};
use crate::{
mutex::Mutex,
recv_stream::RecvStream,
runtime::{AsyncTimer, AsyncUdpSocket, Runtime, UdpPoller},
send_stream::SendStream,
udp_transmit, ConnectionEvent, VarInt,
};
use proto::{
congestion::Controller, ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent,
StreamEvent, StreamId,
};
/// In-progress connection attempt future
#[derive(Debug)]
#[must_use = "futures/streams/sinks do nothing unless you `.await` or poll them"]
pub struct Connecting {
conn: Option<ConnectionRef>,
connected: oneshot::Receiver<bool>,
handshake_data_ready: Option<oneshot::Receiver<()>>,
}
impl Connecting {
pub(crate) fn new(
handle: ConnectionHandle,
conn: proto::Connection,
endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
socket: Arc<dyn AsyncUdpSocket>,
runtime: Arc<dyn Runtime>,
) -> Self {
let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
let (on_connected_send, on_connected_recv) = oneshot::channel();
let conn = ConnectionRef::new(
handle,
conn,
endpoint_events,
conn_events,
on_handshake_data_send,
on_connected_send,
socket,
runtime.clone(),
);
let driver = ConnectionDriver(conn.clone());
runtime.spawn(Box::pin(
async {
if let Err(e) = driver.await {
tracing::error!("I/O error: {e}");
}
}
.instrument(Span::current()),
));
Self {
conn: Some(conn),
connected: on_connected_recv,
handshake_data_ready: Some(on_handshake_data_recv),
}
}
/// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
///
/// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
/// If so, the returned [`Connection`] can be used to send application data without waiting for
/// the rest of the handshake to complete, at the cost of weakened cryptographic security
/// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
/// complete, at which point subsequently opened streams and written data will have full
/// cryptographic protection.
///
/// ## Outgoing
///
/// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
/// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
/// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
/// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
/// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
/// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
/// If it was rejected, the existence of streams opened and other application data sent prior
/// to the handshake completing will not be conveyed to the remote application, and local
/// operations on them will return `ZeroRttRejected` errors.
///
/// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
/// relevant resumption state to be stored in the server, which servers may limit or lose for
/// various reasons including not persisting resumption state across server restarts.
///
/// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
/// implementation's docs for 0-RTT pitfalls.
///
/// ## Incoming
///
/// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
/// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
///
/// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
/// implementation's docs for 0-RTT pitfalls.
///
/// ## Security
///
/// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
/// replay attacks, and should therefore never invoke non-idempotent operations.
///
/// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
/// before TLS client authentication has occurred, and should therefore not be used to send
/// data for which client authentication is being used.
pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
// This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
// have to release it explicitly before returning `self` by value.
let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");
let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
drop(conn);
if is_ok {
let conn = self.conn.take().unwrap();
Ok((Connection(conn), ZeroRttAccepted(self.connected)))
} else {
Err(self)
}
}
/// Parameters negotiated during the handshake
///
/// The dynamic type returned is determined by the configured
/// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
/// be [`downcast`](Box::downcast) to a
/// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
// Taking &mut self allows us to use a single oneshot channel rather than dealing with
// potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
// simple.
if let Some(x) = self.handshake_data_ready.take() {
let _ = x.await;
}
let conn = self.conn.as_ref().unwrap();
let inner = conn.state.lock("handshake");
inner
.inner
.crypto_session()
.handshake_data()
.ok_or_else(|| {
inner
.error
.clone()
.expect("spurious handshake data ready notification")
})
}
/// The local IP address which was used when the peer established
/// the connection
///
/// This can be different from the address the endpoint is bound to, in case
/// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
///
/// This will return `None` for clients, or when the platform does not expose this
/// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
/// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
pub fn local_ip(&self) -> Option<IpAddr> {
let conn = self.conn.as_ref().unwrap();
let inner = conn.state.lock("local_ip");
inner.inner.local_ip()
}
/// The peer's UDP address.
///
/// Will panic if called after `poll` has returned `Ready`.
pub fn remote_address(&self) -> SocketAddr {
let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
conn_ref.state.lock("remote_address").inner.remote_address()
}
}
impl Future for Connecting {
type Output = Result<Connection, ConnectionError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
Pin::new(&mut self.connected).poll(cx).map(|_| {
let conn = self.conn.take().unwrap();
let inner = conn.state.lock("connecting");
if inner.connected {
drop(inner);
Ok(Connection(conn))
} else {
Err(inner
.error
.clone()
.expect("connected signaled without connection success or error"))
}
})
}
}
/// Future that completes when a connection is fully established
///
/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
/// value is meaningless.
#[must_use = "futures/streams/sinks do nothing unless you `.await` or poll them"]
pub struct ZeroRttAccepted(oneshot::Receiver<bool>);
impl Future for ZeroRttAccepted {
type Output = bool;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
}
}
/// A future that drives protocol logic for a connection
///
/// This future handles the protocol logic for a single connection, routing events from the
/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
/// It also keeps track of outstanding timeouts for the `Connection`.
///
/// If the connection encounters an error condition, this future will yield an error. It will
/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
/// connection-related futures, this waits for the draining period to complete to ensure that
/// packets still in flight from the peer are handled gracefully.
#[must_use = "connection drivers must be spawned for their connections to function"]
#[derive(Debug)]
struct ConnectionDriver(ConnectionRef);
impl Future for ConnectionDriver {
type Output = Result<(), io::Error>;
#[allow(unused_mut)] // MSRV
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let conn = &mut *self.0.state.lock("poll");
let span = debug_span!("drive", id = conn.handle.0);
let _guard = span.enter();
if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
conn.terminate(e, &self.0.shared);
return Poll::Ready(Ok(()));
}
let mut keep_going = conn.drive_transmit(cx)?;
// If a timer expires, there might be more to transmit. When we transmit something, we
// might need to reset a timer. Hence, we must loop until neither happens.
keep_going |= conn.drive_timer(cx);
conn.forward_endpoint_events();
conn.forward_app_events(&self.0.shared);
if !conn.inner.is_drained() {
if keep_going {
// If the connection hasn't processed all tasks, schedule it again
cx.waker().wake_by_ref();
} else {
conn.driver = Some(cx.waker().clone());
}
return Poll::Pending;
}
if conn.error.is_none() {
unreachable!("drained connections always have an error");
}
Poll::Ready(Ok(()))
}
}
/// A QUIC connection.
///
/// If all references to a connection (including every clone of the `Connection` handle, streams of
/// incoming streams, and the various stream types) have been dropped, then the connection will be
/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
/// connection explicitly by calling [`Connection::close()`].
///
/// Closing the connection immediately abandons efforts to deliver data to the peer. Upon
/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
/// application. [`Connection::close()`] describes in more detail how to gracefully close a
/// connection without losing application data.
///
/// May be cloned to obtain another handle to the same connection.
///
/// [`Connection::close()`]: Connection::close
#[derive(Debug, Clone)]
pub struct Connection(ConnectionRef);
impl Connection {
/// Returns a weak reference to the inner connection struct.
pub fn weak_handle(&self) -> WeakConnectionHandle {
WeakConnectionHandle(Arc::downgrade(&self.0 .0))
}
/// Initiate a new outgoing unidirectional stream.
///
/// Streams are cheap and instantaneous to open unless blocked by flow control. As a
/// consequence, the peer won't be notified that a stream has been opened until the stream is
/// actually used.
pub fn open_uni(&self) -> OpenUni<'_> {
OpenUni {
conn: &self.0,
notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
}
}
/// Initiate a new outgoing bidirectional stream.
///
/// Streams are cheap and instantaneous to open unless blocked by flow control. As a
/// consequence, the peer won't be notified that a stream has been opened until the stream is
/// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
/// anything to [`SendStream`] will never succeed.
///
/// [`open_bi()`]: crate::Connection::open_bi
/// [`SendStream`]: crate::SendStream
/// [`RecvStream`]: crate::RecvStream
pub fn open_bi(&self) -> OpenBi<'_> {
OpenBi {
conn: &self.0,
notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
}
}
/// Accept the next incoming uni-directional stream
pub fn accept_uni(&self) -> AcceptUni<'_> {
AcceptUni {
conn: &self.0,
notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
}
}
/// Accept the next incoming bidirectional stream
///
/// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
/// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
/// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
///
/// [`accept_bi()`]: crate::Connection::accept_bi
/// [`open_bi()`]: crate::Connection::open_bi
/// [`SendStream`]: crate::SendStream
/// [`RecvStream`]: crate::RecvStream
pub fn accept_bi(&self) -> AcceptBi<'_> {
AcceptBi {
conn: &self.0,
notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
}
}
/// Receive an application datagram
pub fn read_datagram(&self) -> ReadDatagram<'_> {
ReadDatagram {
conn: &self.0,
notify: self.0.shared.datagram_received.notified(),
}
}
/// Wait for the connection to be closed for any reason
///
/// Despite the return type's name, closed connections are often not an error condition at the
/// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
/// and [`ConnectionError::ApplicationClosed`].
pub async fn closed(&self) -> ConnectionError {
{
let conn = self.0.state.lock("closed");
if let Some(error) = conn.error.as_ref() {
return error.clone();
}
// Construct the future while the lock is held to ensure we can't miss a wakeup if
// the `Notify` is signaled immediately after we release the lock. `await` it after
// the lock guard is out of scope.
self.0.shared.closed.notified()
}
.await;
self.0
.state
.lock("closed")
.error
.as_ref()
.expect("closed without an error")
.clone()
}
/// If the connection is closed, the reason why.
///
/// Returns `None` if the connection is still open.
pub fn close_reason(&self) -> Option<ConnectionError> {
self.0.state.lock("close_reason").error.clone()
}
/// Close the connection immediately.
///
/// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
/// more data is sent to the peer and the peer may drop buffered data upon receiving
/// the CONNECTION_CLOSE frame.
///
/// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
///
/// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
/// is preserved in full, it should be kept under 1KiB.
///
/// # Gracefully closing a connection
///
/// Only the peer last receiving application data can be certain that all data is
/// delivered. The only reliable action it can then take is to close the connection,
/// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
/// frame is very likely if both endpoints stay online long enough, and
/// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
/// remote peer will time out the connection, provided that the idle timeout is not
/// disabled.
///
/// The sending side can not guarantee all stream data is delivered to the remote
/// application. It only knows the data is delivered to the QUIC stack of the remote
/// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
/// [`close()`] the remote endpoint may drop any data it received but is as yet
/// undelivered to the application, including data that was acknowledged as received to
/// the local endpoint.
///
/// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
/// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
/// [`close()`]: Connection::close
pub fn close(&self, error_code: VarInt, reason: &[u8]) {
let conn = &mut *self.0.state.lock("close");
conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
}
/// Transmit `data` as an unreliable, unordered application datagram
///
/// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
/// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
/// dictated by the peer.
pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
let conn = &mut *self.0.state.lock("send_datagram");
if let Some(ref x) = conn.error {
return Err(SendDatagramError::ConnectionLost(x.clone()));
}
use proto::SendDatagramError::*;
match conn.inner.datagrams().send(data, true) {
Ok(()) => {
conn.wake();
Ok(())
}
Err(e) => Err(match e {
Blocked(..) => unreachable!(),
UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
Disabled => SendDatagramError::Disabled,
TooLarge => SendDatagramError::TooLarge,
}),
}
}
/// Transmit `data` as an unreliable, unordered application datagram
///
/// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
/// conditions, which effectively prioritizes old datagrams over new datagrams.
///
/// See [`send_datagram()`] for details.
///
/// [`send_datagram()`]: Connection::send_datagram
pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
SendDatagram {
conn: &self.0,
data: Some(data),
notify: self.0.shared.datagrams_unblocked.notified(),
}
}
/// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
///
/// Returns `None` if datagrams are unsupported by the peer or disabled locally.
///
/// This may change over the lifetime of a connection according to variation in the path MTU
/// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
/// limit is large this is guaranteed to be a little over a kilobyte at minimum.
///
/// Not necessarily the maximum size of received datagrams.
///
/// [`send_datagram()`]: Connection::send_datagram
pub fn max_datagram_size(&self) -> Option<usize> {
self.0
.state
.lock("max_datagram_size")
.inner
.datagrams()
.max_size()
}
/// Bytes available in the outgoing datagram buffer
///
/// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
/// at most this size is guaranteed not to cause older datagrams to be dropped.
pub fn datagram_send_buffer_space(&self) -> usize {
self.0
.state
.lock("datagram_send_buffer_space")
.inner
.datagrams()
.send_buffer_space()
}
/// The peer's UDP address
///
/// If `ServerConfig::migration` is `true`, clients may change addresses at will, e.g. when
/// switching to a cellular internet connection.
pub fn remote_address(&self) -> SocketAddr {
self.0.state.lock("remote_address").inner.remote_address()
}
/// The local IP address which was used when the peer established
/// the connection
///
/// This can be different from the address the endpoint is bound to, in case
/// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
///
/// This will return `None` for clients, or when the platform does not expose this
/// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
/// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
pub fn local_ip(&self) -> Option<IpAddr> {
self.0.state.lock("local_ip").inner.local_ip()
}
/// Current best estimate of this connection's latency (round-trip-time)
pub fn rtt(&self) -> Duration {
self.0.state.lock("rtt").inner.rtt()
}
/// Returns connection statistics
pub fn stats(&self) -> ConnectionStats {
self.0.state.lock("stats").inner.stats()
}
/// Current state of the congestion control algorithm, for debugging purposes
pub fn congestion_state(&self) -> Box<dyn Controller> {
self.0
.state
.lock("congestion_state")
.inner
.congestion_state()
.clone_box()
}
/// Parameters negotiated during the handshake
///
/// Guaranteed to return `Some` on fully established connections or after
/// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
/// the returned value.
///
/// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
self.0
.state
.lock("handshake_data")
.inner
.crypto_session()
.handshake_data()
}
/// Cryptographic identity of the peer
///
/// The dynamic type returned is determined by the configured
/// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
/// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
self.0
.state
.lock("peer_identity")
.inner
.crypto_session()
.peer_identity()
}
/// A stable identifier for this connection
///
/// Peer addresses and connection IDs can change, but this value will remain
/// fixed for the lifetime of the connection.
pub fn stable_id(&self) -> usize {
self.0.stable_id()
}
// Update traffic keys spontaneously for testing purposes.
#[doc(hidden)]
pub fn force_key_update(&self) {
self.0
.state
.lock("force_key_update")
.inner
.initiate_key_update()
}
/// Derive keying material from this connection's TLS session secrets.
///
/// When both peers call this method with the same `label` and `context`
/// arguments and `output` buffers of equal length, they will get the
/// same sequence of bytes in `output`. These bytes are cryptographically
/// strong and pseudorandom, and are suitable for use as keying material.
///
/// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
pub fn export_keying_material(
&self,
output: &mut [u8],
label: &[u8],
context: &[u8],
) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
self.0
.state
.lock("export_keying_material")
.inner
.crypto_session()
.export_keying_material(output, label, context)
}
/// Modify the number of remotely initiated unidirectional streams that may be concurrently open
///
/// No streams may be opened by the peer unless fewer than `count` are already open. Large
/// `count`s increase both minimum and worst-case memory consumption.
pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
conn.inner.set_max_concurrent_streams(Dir::Uni, count);
// May need to send MAX_STREAMS to make progress
conn.wake();
}
/// See [`proto::TransportConfig::receive_window()`]
pub fn set_receive_window(&self, receive_window: VarInt) {
let mut conn = self.0.state.lock("set_receive_window");
conn.inner.set_receive_window(receive_window);
conn.wake();
}
/// Modify the number of remotely initiated bidirectional streams that may be concurrently open
///
/// No streams may be opened by the peer unless fewer than `count` are already open. Large
/// `count`s increase both minimum and worst-case memory consumption.
pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
conn.inner.set_max_concurrent_streams(Dir::Bi, count);
// May need to send MAX_STREAMS to make progress
conn.wake();
}
/// Track changed on our external address as reported by the peer.
pub fn observed_external_addr(&self) -> watch::Receiver<Option<SocketAddr>> {
let conn = self.0.state.lock("external_addr");
conn.observed_external_addr.subscribe()
}
}
pin_project! {
/// Future produced by [`Connection::open_uni`]
pub struct OpenUni<'a> {
conn: &'a ConnectionRef,
#[pin]
notify: Notified<'a>,
}
}
impl Future for OpenUni<'_> {
type Output = Result<SendStream, ConnectionError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
}
}
pin_project! {
/// Future produced by [`Connection::open_bi`]
pub struct OpenBi<'a> {
conn: &'a ConnectionRef,
#[pin]
notify: Notified<'a>,
}
}
impl Future for OpenBi<'_> {
type Output = Result<(SendStream, RecvStream), ConnectionError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;
Poll::Ready(Ok((
SendStream::new(conn.clone(), id, is_0rtt),
RecvStream::new(conn, id, is_0rtt),
)))
}
}
fn poll_open<'a>(
ctx: &mut Context<'_>,
conn: &'a ConnectionRef,
mut notify: Pin<&mut Notified<'a>>,
dir: Dir,
) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
let mut state = conn.state.lock("poll_open");
if let Some(ref e) = state.error {
return Poll::Ready(Err(e.clone()));
} else if let Some(id) = state.inner.streams().open(dir) {
let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
drop(state); // Release the lock so clone can take it
return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
}
loop {
match notify.as_mut().poll(ctx) {
// `state` lock ensures we didn't race with readiness
Poll::Pending => return Poll::Pending,
// Spurious wakeup, get a new future
Poll::Ready(()) => {
notify.set(conn.shared.stream_budget_available[dir as usize].notified())
}
}
}
}
pin_project! {
/// Future produced by [`Connection::accept_uni`]
pub struct AcceptUni<'a> {
conn: &'a ConnectionRef,
#[pin]
notify: Notified<'a>,
}
}
impl Future for AcceptUni<'_> {
type Output = Result<RecvStream, ConnectionError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
}
}
pin_project! {
/// Future produced by [`Connection::accept_bi`]
pub struct AcceptBi<'a> {
conn: &'a ConnectionRef,
#[pin]
notify: Notified<'a>,
}
}
impl Future for AcceptBi<'_> {
type Output = Result<(SendStream, RecvStream), ConnectionError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
Poll::Ready(Ok((
SendStream::new(conn.clone(), id, is_0rtt),
RecvStream::new(conn, id, is_0rtt),
)))
}
}
fn poll_accept<'a>(
ctx: &mut Context<'_>,
conn: &'a ConnectionRef,
mut notify: Pin<&mut Notified<'a>>,
dir: Dir,
) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
let mut state = conn.state.lock("poll_accept");
// Check for incoming streams before checking `state.error` so that already-received streams,
// which are necessarily finite, can be drained from a closed connection.
if let Some(id) = state.inner.streams().accept(dir) {
let is_0rtt = state.inner.is_handshaking();
state.wake(); // To send additional stream ID credit
drop(state); // Release the lock so clone can take it
return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
} else if let Some(ref e) = state.error {
return Poll::Ready(Err(e.clone()));
}
loop {
match notify.as_mut().poll(ctx) {
// `state` lock ensures we didn't race with readiness
Poll::Pending => return Poll::Pending,
// Spurious wakeup, get a new future
Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
}
}
}
pin_project! {
/// Future produced by [`Connection::read_datagram`]
pub struct ReadDatagram<'a> {
conn: &'a ConnectionRef,
#[pin]
notify: Notified<'a>,
}
}
impl Future for ReadDatagram<'_> {
type Output = Result<Bytes, ConnectionError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
let mut state = this.conn.state.lock("ReadDatagram::poll");
// Check for buffered datagrams before checking `state.error` so that already-received
// datagrams, which are necessarily finite, can be drained from a closed connection.
if let Some(x) = state.inner.datagrams().recv() {
return Poll::Ready(Ok(x));
} else if let Some(ref e) = state.error {
return Poll::Ready(Err(e.clone()));
}
loop {
match this.notify.as_mut().poll(ctx) {
// `state` lock ensures we didn't race with readiness
Poll::Pending => return Poll::Pending,
// Spurious wakeup, get a new future
Poll::Ready(()) => this
.notify
.set(this.conn.shared.datagram_received.notified()),
}
}
}
}
pin_project! {
/// Future produced by [`Connection::send_datagram_wait`]
pub struct SendDatagram<'a> {
conn: &'a ConnectionRef,
data: Option<Bytes>,
#[pin]
notify: Notified<'a>,
}
}
impl Future for SendDatagram<'_> {
type Output = Result<(), SendDatagramError>;
fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
let mut state = this.conn.state.lock("SendDatagram::poll");
if let Some(ref e) = state.error {
return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
}
use proto::SendDatagramError::*;
match state
.inner
.datagrams()
.send(this.data.take().unwrap(), false)
{
Ok(()) => {
state.wake();
Poll::Ready(Ok(()))
}
Err(e) => Poll::Ready(Err(match e {
Blocked(data) => {
this.data.replace(data);
loop {
match this.notify.as_mut().poll(ctx) {
Poll::Pending => return Poll::Pending,
// Spurious wakeup, get a new future
Poll::Ready(()) => this
.notify
.set(this.conn.shared.datagrams_unblocked.notified()),
}
}
}
UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
Disabled => SendDatagramError::Disabled,
TooLarge => SendDatagramError::TooLarge,
})),
}
}
}
#[derive(Debug)]
pub(crate) struct ConnectionRef(Arc<ConnectionInner>);
impl ConnectionRef {
#[allow(clippy::too_many_arguments)]
fn new(
handle: ConnectionHandle,
conn: proto::Connection,
endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
on_handshake_data: oneshot::Sender<()>,
on_connected: oneshot::Sender<bool>,
socket: Arc<dyn AsyncUdpSocket>,
runtime: Arc<dyn Runtime>,
) -> Self {
Self(Arc::new(ConnectionInner {
state: Mutex::new(State {
inner: conn,
driver: None,
handle,
on_handshake_data: Some(on_handshake_data),
on_connected: Some(on_connected),
connected: false,
timer: None,
timer_deadline: None,
conn_events,
endpoint_events,
blocked_writers: FxHashMap::default(),
blocked_readers: FxHashMap::default(),
stopped: FxHashMap::default(),
error: None,
ref_count: 0,
io_poller: socket.clone().create_io_poller(),
socket,
runtime,
send_buffer: Vec::new(),
buffered_transmit: None,
observed_external_addr: watch::Sender::new(None),
}),
shared: Shared::default(),
}))
}
fn stable_id(&self) -> usize {
&*self.0 as *const _ as usize
}
}
impl Clone for ConnectionRef {
fn clone(&self) -> Self {
self.state.lock("clone").ref_count += 1;
Self(self.0.clone())
}
}
impl Drop for ConnectionRef {
fn drop(&mut self) {
let conn = &mut *self.state.lock("drop");
if let Some(x) = conn.ref_count.checked_sub(1) {
conn.ref_count = x;
if x == 0 && !conn.inner.is_closed() {
// If the driver is alive, it's just it and us, so we'd better shut it down. If it's
// not, we can't do any harm. If there were any streams being opened, then either
// the connection will be closed for an unrelated reason or a fresh reference will
// be constructed for the newly opened stream.
conn.implicit_close(&self.shared);
}
}
}
}
impl std::ops::Deref for ConnectionRef {
type Target = ConnectionInner;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug)]
pub(crate) struct ConnectionInner {
pub(crate) state: Mutex<State>,
pub(crate) shared: Shared,
}
/// A handle to some connection internals, use with care.
///
/// This contains a weak reference to the connection so will not itself keep the connection
/// alive.
#[derive(Debug)]
pub struct WeakConnectionHandle(Weak<ConnectionInner>);
impl WeakConnectionHandle {
/// Returns `true` if the [`Connection`] associated with this handle is still alive.
pub fn is_alive(&self) -> bool {
self.0.upgrade().is_some()
}
/// Resets path-specific state.
///
/// This resets several subsystems keeping state for a specific network path. It is
/// useful if it is known that the underlying network path changed substantially.
///
/// Currently resets:
/// - RTT Estimator
/// - Congestion Controller
/// - MTU Discovery
///
/// # Returns
///
/// `true` if the connection still existed and the congestion controller state was
/// reset. `false` otherwise.
pub fn network_path_changed(&self) -> bool {
if let Some(inner) = self.0.upgrade() {
let mut inner_state = inner.state.lock("reset-congestion-state");
inner_state.inner.network_path_changed();
true
} else {
false
}
}
}
#[derive(Debug, Default)]
pub(crate) struct Shared {
/// Notified when new streams may be locally initiated due to an increase in stream ID flow
/// control budget
stream_budget_available: [Notify; 2],
/// Notified when the peer has initiated a new stream
stream_incoming: [Notify; 2],
datagram_received: Notify,
datagrams_unblocked: Notify,
closed: Notify,
}
pub(crate) struct State {
pub(crate) inner: proto::Connection,
driver: Option<Waker>,
handle: ConnectionHandle,
on_handshake_data: Option<oneshot::Sender<()>>,
on_connected: Option<oneshot::Sender<bool>>,
connected: bool,
timer: Option<Pin<Box<dyn AsyncTimer>>>,
timer_deadline: Option<Instant>,
conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
pub(crate) stopped: FxHashMap<StreamId, Waker>,
/// Always set to Some before the connection becomes drained
pub(crate) error: Option<ConnectionError>,
/// Number of live handles that can be used to initiate or handle I/O; excludes the driver
ref_count: usize,
socket: Arc<dyn AsyncUdpSocket>,
io_poller: Pin<Box<dyn UdpPoller>>,
runtime: Arc<dyn Runtime>,
send_buffer: Vec<u8>,
/// We buffer a transmit when the underlying I/O would block
buffered_transmit: Option<proto::Transmit>,
/// Our last external address reported by the peer.
pub(crate) observed_external_addr: watch::Sender<Option<SocketAddr>>,
}
impl State {
fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
let now = self.runtime.now();
let mut transmits = 0;
let max_datagrams = self.socket.max_transmit_segments();
loop {
// Retry the last transmit, or get a new one.
let t = match self.buffered_transmit.take() {
Some(t) => t,
None => {
self.send_buffer.clear();
self.send_buffer.reserve(self.inner.current_mtu() as usize);
match self
.inner
.poll_transmit(now, max_datagrams, &mut self.send_buffer)
{
Some(t) => {
transmits += match t.segment_size {
None => 1,
Some(s) => (t.size + s - 1) / s, // round up
};
t
}
None => break,
}
}
};
if self.io_poller.as_mut().poll_writable(cx)?.is_pending() {
// Retry after a future wakeup
self.buffered_transmit = Some(t);
return Ok(false);
}
let len = t.size;
let retry = match self
.socket
.try_send(&udp_transmit(&t, &self.send_buffer[..len]))
{
Ok(()) => false,
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => true,
Err(e) => return Err(e),
};
if retry {
// We thought the socket was writable, but it wasn't. Retry so that either another
// `poll_writable` call determines that the socket is indeed not writable and
// registers us for a wakeup, or the send succeeds if this really was just a
// transient failure.
self.buffered_transmit = Some(t);
continue;
}
if transmits >= MAX_TRANSMIT_DATAGRAMS {
// TODO: What isn't ideal here yet is that if we don't poll all
// datagrams that could be sent we don't go into the `app_limited`
// state and CWND continues to grow until we get here the next time.
// See https://github.com/quinn-rs/quinn/issues/1126
return Ok(true);
}
}
Ok(false)
}
fn forward_endpoint_events(&mut self) {
while let Some(event) = self.inner.poll_endpoint_events() {
// If the endpoint driver is gone, noop.
let _ = self.endpoint_events.send((self.handle, event));
}
}
/// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
fn process_conn_events(
&mut self,
shared: &Shared,
cx: &mut Context,
) -> Result<(), ConnectionError> {
loop {
match self.conn_events.poll_recv(cx) {
Poll::Ready(Some(ConnectionEvent::Rebind(socket))) => {
self.socket = socket;
self.io_poller = self.socket.clone().create_io_poller();
self.inner.local_address_changed();
}
Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
self.inner.handle_event(event);
}
Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
self.close(error_code, reason, shared);
}
Poll::Ready(None) => {
return Err(ConnectionError::TransportError(proto::TransportError {
code: proto::TransportErrorCode::INTERNAL_ERROR,
frame: None,
reason: "endpoint driver future was dropped".to_string(),
}));
}
Poll::Pending => {
return Ok(());
}
}
}
}
fn forward_app_events(&mut self, shared: &Shared) {
while let Some(event) = self.inner.poll() {
use proto::Event::*;
match event {
HandshakeDataReady => {
if let Some(x) = self.on_handshake_data.take() {
let _ = x.send(());
}
}
Connected => {
self.connected = true;
if let Some(x) = self.on_connected.take() {
// We don't care if the on-connected future was dropped
let _ = x.send(self.inner.accepted_0rtt());
}
if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
// Wake up rejected 0-RTT streams so they can fail immediately with
// `ZeroRttRejected` errors.
wake_all(&mut self.blocked_writers);
wake_all(&mut self.blocked_readers);
wake_all(&mut self.stopped);
}
}
ConnectionLost { reason } => {
self.terminate(reason, shared);
}
Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
shared.stream_incoming[Dir::Uni as usize].notify_waiters();
}
Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
shared.stream_incoming[Dir::Bi as usize].notify_waiters();
}
DatagramReceived => {
shared.datagram_received.notify_waiters();
}
DatagramsUnblocked => {
shared.datagrams_unblocked.notify_waiters();
}
Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
Stream(StreamEvent::Available { dir }) => {
// Might mean any number of streams are ready, so we wake up everyone
shared.stream_budget_available[dir as usize].notify_waiters();
}
Stream(StreamEvent::Finished { id }) => wake_stream(id, &mut self.stopped),
Stream(StreamEvent::Stopped { id, .. }) => {
wake_stream(id, &mut self.stopped);
wake_stream(id, &mut self.blocked_writers);
}
ObservedAddr(observed) => {
self.observed_external_addr.send_if_modified(|addr| {
let old = addr.replace(observed);
old != *addr
});
}
}
}
}
fn drive_timer(&mut self, cx: &mut Context) -> bool {
// Check whether we need to (re)set the timer. If so, we must poll again to ensure the
// timer is registered with the runtime (and check whether it's already
// expired).
match self.inner.poll_timeout() {
Some(deadline) => {
if let Some(delay) = &mut self.timer {
// There is no need to reset the tokio timer if the deadline
// did not change
if self
.timer_deadline
.map(|current_deadline| current_deadline != deadline)
.unwrap_or(true)
{
delay.as_mut().reset(deadline);
}
} else {
self.timer = Some(self.runtime.new_timer(deadline));
}
// Store the actual expiration time of the timer
self.timer_deadline = Some(deadline);
}
None => {
self.timer_deadline = None;
return false;
}
}
if self.timer_deadline.is_none() {
return false;
}
let delay = self
.timer
.as_mut()
.expect("timer must exist in this state")
.as_mut();
if delay.poll(cx).is_pending() {
// Since there wasn't a timeout event, there is nothing new
// for the connection to do
return false;
}
// A timer expired, so the caller needs to check for
// new transmits, which might cause new timers to be set.
self.inner.handle_timeout(self.runtime.now());
self.timer_deadline = None;
true
}
/// Wake up a blocked `Driver` task to process I/O
pub(crate) fn wake(&mut self) {
if let Some(x) = self.driver.take() {
x.wake();
}
}
/// Used to wake up all blocked futures when the connection becomes closed for any reason
fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
self.error = Some(reason.clone());
if let Some(x) = self.on_handshake_data.take() {
let _ = x.send(());
}
wake_all(&mut self.blocked_writers);
wake_all(&mut self.blocked_readers);
shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
shared.stream_incoming[Dir::Uni as usize].notify_waiters();
shared.stream_incoming[Dir::Bi as usize].notify_waiters();
shared.datagram_received.notify_waiters();
shared.datagrams_unblocked.notify_waiters();
if let Some(x) = self.on_connected.take() {
let _ = x.send(false);
}
wake_all(&mut self.stopped);
shared.closed.notify_waiters();
}
fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
self.inner.close(self.runtime.now(), error_code, reason);
self.terminate(ConnectionError::LocallyClosed, shared);
self.wake();
}
/// Close for a reason other than the application's explicit request
pub(crate) fn implicit_close(&mut self, shared: &Shared) {
self.close(0u32.into(), Bytes::new(), shared);
}
pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
if self.inner.is_handshaking()
|| self.inner.accepted_0rtt()
|| self.inner.side().is_server()
{
Ok(())
} else {
Err(())
}
}
}
impl Drop for State {
fn drop(&mut self) {
if !self.inner.is_drained() {
// Ensure the endpoint can tidy up
let _ = self
.endpoint_events
.send((self.handle, proto::EndpointEvent::drained()));
}
}
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("State").field("inner", &self.inner).finish()
}
}
fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
if let Some(waker) = wakers.remove(&stream_id) {
waker.wake();
}
}
fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
wakers.drain().for_each(|(_, waker)| waker.wake())
}
/// Errors that can arise when sending a datagram
#[derive(Debug, Error, Clone, Eq, PartialEq)]
pub enum SendDatagramError {
/// The peer does not support receiving datagram frames
#[error("datagrams not supported by peer")]
UnsupportedByPeer,
/// Datagram support is disabled locally
#[error("datagram support disabled")]
Disabled,
/// The datagram is larger than the connection can currently accommodate
///
/// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
/// exceeded.
#[error("datagram too large")]
TooLarge,
/// The connection was lost
#[error("connection lost")]
ConnectionLost(#[from] ConnectionError),
}
/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
///
/// This limits the amount of CPU resources consumed by datagram generation,
/// and allows other tasks (like receiving ACKs) to run in between.
const MAX_TRANSMIT_DATAGRAMS: usize = 20;