irox_csv/
reader.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use std::collections::BTreeMap;
use std::io::Read;

use crate::{BasicTokenReader, CSVError, CSVErrorType, Dialect, Token, TokenReader};

///
/// Incredibly basic CSV reader.
///
/// Has some equivalent functionality as `String.split(",")`, except it handles quoted entries.
pub struct CSVReader<T>
where
    T: Read + Sized,
{
    tokenizer: BasicTokenReader<T>,
}

impl<T: Read + Sized> CSVReader<T> {
    ///
    /// Create a new CSV Reader from the input.  Accepts anything that implements [`Read`]
    pub fn new(reader: T) -> CSVReader<T> {
        CSVReader {
            tokenizer: BasicTokenReader::new(reader),
        }
    }

    ///
    /// Creates a new CSV reader based on the specified dialect.  Accepts any
    /// [`Read`]er and consumes it.
    pub fn dialect(reader: T, dialect: Dialect) -> CSVReader<T> {
        CSVReader {
            tokenizer: BasicTokenReader::dialect(reader, dialect),
        }
    }

    ///
    /// Read and parse a single line from the CSV file.
    ///
    /// Will return [`Result::Ok(None)`] upon EOF.
    /// Will return [`Result::Err(CSVError)`] upon any I/O error.
    /// Will return [`Result::Ok(Option::Some(Vec<String>))`] upon success, with each element within
    /// the line separated inside of the innermost [`Vec<String>`]
    pub fn read_line(&mut self) -> Result<Option<Vec<String>>, CSVError> {
        let mut out: Vec<String> = Vec::new();

        let mut in_a_comment = false;
        loop {
            if let Some(toks) = self.tokenizer.next_tokens()? {
                for tok in toks {
                    match tok {
                        Token::Field(f) => {
                            if !in_a_comment {
                                out.push(f);
                            }
                        }
                        Token::EndRow => {
                            if in_a_comment {
                                in_a_comment = false;
                            } else {
                                return Ok(Some(out));
                            }
                        }
                        Token::Comment(f) => {
                            // only a comment if it's the first token of a line
                            in_a_comment = out.is_empty() && f.is_empty();
                            if !in_a_comment {
                                out.push(f);
                            }
                        }
                    }
                }
            } else {
                if !out.is_empty() {
                    return Ok(Some(out));
                }
                return Ok(None);
            }
        }
    }
}

///
/// Returns each row as a Key => Value Mapping, rather than a simple list of values.
///
/// CSVMapReader has more validation than [`CSVReader`], as it REQUIRES that each line in the
/// csv file have the same number of elements as the header.
pub struct CSVMapReader<T>
where
    T: Read + Sized,
{
    reader: CSVReader<T>,
    keys: Vec<String>,
}

impl<T: Read + Sized> CSVMapReader<T> {
    ///
    /// Creates a new [`CSVMapReader`]
    ///
    /// Will return [`Result::Ok(CSVMapReader)`] if it can read the CSV's header.
    /// Will return [`Result::Err(CSVError)`] if any I/O Error, or no header.
    pub fn new(read: T) -> Result<CSVMapReader<T>, CSVError> {
        Self::dialect(read, Dialect::default())
    }

    ///
    /// Creates a new [`CSVMapReader`] using the specified dialect
    ///
    /// Will return [`Result::Ok(CSVMapReader)`] if it can read the CSV's header.
    /// Will return [`Result::Err(CSVError)`] if any I/O Error, or no header.
    pub fn dialect(read: T, dialect: Dialect) -> Result<Self, CSVError> {
        let mut reader = CSVReader::dialect(read, dialect);
        let keys = reader.read_line()?;
        match keys {
            Some(keys) => Ok(CSVMapReader { reader, keys }),
            None => CSVError::err(
                CSVErrorType::MissingHeaderError,
                "Missing header or empty file".to_string(),
            ),
        }
    }

    ///
    /// Maybe return a single row from the CSV file.
    ///
    /// Will return [`std::result::Result::Ok(None)`] upon EOF
    /// Will return [`std::result::Result::Err(CSVError)`] upon underlying I/O error, or if the
    /// particular row doesn't have enough elements to match up against the header.
    pub fn next_row(&mut self) -> Result<Option<Row>, CSVError> {
        let data = self.reader.read_line()?;
        let Some(data) = data else {
            return Ok(None);
        };
        let hdrlen = self.keys.len();
        let datalen = data.len();
        if hdrlen != datalen {
            return CSVError::err(
                CSVErrorType::HeaderDataMismatchError,
                format!("Headers length ({hdrlen}) != data length ({datalen})"),
            );
        }

        Ok(Some(Row {
            keys: self.keys.clone(),
            data,
        }))
    }

    ///
    /// Apply the specified function on each element of the read CSV file.  This WILL iteratively
    /// consume the underlying reader, and will continue until the reader exhausts.
    pub fn for_each<F: FnMut(Row)>(mut self, mut func: F) -> Result<(), CSVError> {
        while let Some(row) = self.next_row()? {
            func(row);
        }
        Ok(())
    }
}

///
/// A row represents a single Map line from a CSV table
#[derive(Debug, Clone, PartialEq, Default)]
pub struct Row {
    /// A list of the Map Keys (may be repeats!)
    keys: Vec<String>,

    /// A list of the row values (may be repeats!)
    data: Vec<String>,
}

impl Row {
    ///
    /// Converts this row into a BTreeMap<String, String>.
    ///
    /// This WILL return a [`Err`] if there are duplicate keys
    pub fn into_map(self) -> Result<BTreeMap<String, String>, CSVError> {
        let mut out: BTreeMap<String, String> = BTreeMap::new();
        for (k, v) in self.into_items() {
            if let Some(_elem) = out.insert(k.clone(), v) {
                return CSVError::err(
                    CSVErrorType::DuplicateKeyInHeaderError,
                    format!("Duplicate key in header detected: {k}"),
                );
            }
        }
        Ok(out)
    }

    ///
    /// Convert into a [`BTreeMap<String, String>`].
    ///
    /// Unlike [`Self::into_map`], this function will overwrite any previous keys with those found later in
    /// the row.
    #[must_use]
    pub fn into_map_lossy(self) -> BTreeMap<String, String> {
        BTreeMap::from_iter(self.into_items())
    }

    ///
    /// Converts into a [`std::vec::Vec<(String, String)>`], pairing each key with it's associated value
    #[must_use]
    pub fn into_items(self) -> Vec<(String, String)> {
        self.keys.into_iter().zip(self.data).collect()
    }
}