1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! Raw `unsafe` access to the `malloctl` API.

use crate::error::{cvt, Result};
use crate::{mem, ptr, slice};
use libc::c_char;

/// Translates `name` to a `mib` (Management Information Base)
///
/// `mib`s are used to avoid repeated name lookups for applications that
/// repeatedly query the same portion of `jemalloc`s `mallctl` namespace.
///
/// On success, `mib` contains an array of integers. It is possible to pass
/// `mib` with a length smaller than the number of period-separated name
/// components. This results in a partial MIB that can be used as the basis for
/// constructing a complete MIB.
///
/// For name components that are integers (e.g. the `2` in `arenas.bin.2.size`),
/// the corresponding MIB component will always be that integer. Therefore, it
/// is legitimate to construct code like the following:
///
/// ```
/// #[global_allocator]
/// static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
///
/// fn main() {
///     use jemalloc_ctl::raw;
///     use libc::{c_uint, c_char};
///     unsafe {
///         let mut mib = [0; 4];
///         let nbins: c_uint = raw::read(b"arenas.nbins\0").unwrap();
///         raw::name_to_mib(b"arenas.bin.0.size\0", &mut mib).unwrap();
///         for i in 0..4 {
///             mib[2] = i;
///             let bin_size: usize = raw::read_mib(&mut mib).unwrap();
///             println!("arena bin {} has size {}", i, bin_size);
///         }
///     }
/// }
/// ```
pub fn name_to_mib(name: &[u8], mib: &mut [usize]) -> Result<()> {
    unsafe {
        validate_name(name);

        let mut len = mib.len();
        cvt(jemalloc_sys::mallctlnametomib(
            name as *const _ as *const c_char,
            mib.as_mut_ptr(),
            &mut len,
        ))?;
        assert_eq!(mib.len(), len);
        Ok(())
    }
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and reads its value.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=bool` for a key returning `u8`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn read_mib<T: Copy>(mib: &[usize]) -> Result<T> {
    let mut value = MaybeUninit { init: () };
    let mut len = mem::size_of::<T>();
    cvt(jemalloc_sys::mallctlbymib(
        mib.as_ptr(),
        mib.len(),
        &mut value.init as *mut _ as *mut _,
        &mut len,
        ptr::null_mut(),
        0,
    ))?;
    assert_eq!(len, mem::size_of::<T>());
    Ok(value.maybe_uninit)
}

/// Uses the null-terminated string `name` as key to the _MALLCTL NAMESPACE_ and
/// reads its value.
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=bool` for a key returning `u8`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn read<T: Copy>(name: &[u8]) -> Result<T> {
    validate_name(name);

    let mut value = MaybeUninit { init: () };
    let mut len = mem::size_of::<T>();
    cvt(jemalloc_sys::mallctl(
        name as *const _ as *const c_char,
        &mut value.init as *mut _ as *mut _,
        &mut len,
        ptr::null_mut(),
        0,
    ))?;
    assert_eq!(len, mem::size_of::<T>());
    Ok(value.maybe_uninit)
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and writes its `value`.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=u8` for a key expecting `bool`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn write_mib<T>(mib: &[usize], mut value: T) -> Result<()> {
    cvt(jemalloc_sys::mallctlbymib(
        mib.as_ptr(),
        mib.len(),
        ptr::null_mut(),
        ptr::null_mut(),
        &mut value as *mut _ as *mut _,
        mem::size_of::<T>(),
    ))
}

/// Uses the null-terminated string `name` as the key to the _MALLCTL NAMESPACE_
/// and writes it `value`
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=u8` for a key expecting `bool`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn write<T>(name: &[u8], mut value: T) -> Result<()> {
    validate_name(name);

    cvt(jemalloc_sys::mallctl(
        name as *const _ as *const c_char,
        ptr::null_mut(),
        ptr::null_mut(),
        &mut value as *mut _ as *mut _,
        mem::size_of::<T>(),
    ))
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and writes its `value`
/// returning its previous value.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=u8` for a key expecting `bool`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn update_mib<T>(mib: &[usize], mut value: T) -> Result<T> {
    let mut len = mem::size_of::<T>();
    cvt(jemalloc_sys::mallctlbymib(
        mib.as_ptr(),
        mib.len(),
        &mut value as *mut _ as *mut _,
        &mut len,
        &mut value as *mut _ as *mut _,
        len,
    ))?;
    assert_eq!(len, mem::size_of::<T>());
    Ok(value)
}

/// Uses the null-terminated string `name` as key to the _MALLCTL NAMESPACE_ and
/// writes its `value` returning its previous value.
///
/// # Safety
///
/// This function is `unsafe` because it is possible to use it to construct an
/// invalid `T`, for example, by passing `T=u8` for a key expecting `bool`. The
/// sizes of `bool` and `u8` match, but `bool` cannot represent all values that
/// `u8` can.
pub unsafe fn update<T>(name: &[u8], mut value: T) -> Result<T> {
    validate_name(name);

    let mut len = mem::size_of::<T>();
    cvt(jemalloc_sys::mallctl(
        name as *const _ as *const c_char,
        &mut value as *mut _ as *mut _,
        &mut len,
        &mut value as *mut _ as *mut _,
        len,
    ))?;
    assert_eq!(len, mem::size_of::<T>());
    Ok(value)
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and reads its value.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Safety
///
/// This function is unsafe because if the key does not return a pointer to a
/// null-terminated string the behavior is undefined.
///
/// For example, a key for a `u64` value can be used to read a pointer on 64-bit
/// platform, where this pointer will point to the address denoted by the `u64`s
/// representation. Also, a key to a `*mut extent_hooks_t` will return a pointer
/// that will not point to a null-terminated string.
///
/// This function needs to compute the length of the string by looking for the
/// null-terminator: `\0`. This requires reading the memory behind the pointer.
///
/// If the pointer is invalid (e.g. because it was converted from a `u64` that
/// does not represent a valid address), reading the string to look for `\0`
/// will dereference a non-dereferenceable pointer, which is undefined behavior.
///
/// If the pointer is valid but it does not point to a null-terminated string,
/// looking for `\0` will read garbage and might end up reading out-of-bounds,
/// which is undefined behavior.
pub unsafe fn read_str_mib(mib: &[usize]) -> Result<&'static [u8]> {
    let ptr: *const c_char = read_mib(mib)?;
    Ok(ptr2str(ptr))
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and writes its `value`.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Panics
///
/// If `value` is not a non-empty null-terminated string.
pub fn write_str_mib(mib: &[usize], value: &'static [u8]) -> Result<()> {
    assert!(!value.is_empty(), "value cannot be empty");
    assert_eq!(*value.last().unwrap(), b'\0');
    // This is safe because `value` will always point to a null-terminated
    // string, which makes it safe for all key value types: pointers to
    // null-terminated strings, pointers, pointer-sized integers, etc.
    unsafe { write_mib(mib, value.as_ptr() as *const c_char) }
}

/// Uses the MIB `mib` as key to the _MALLCTL NAMESPACE_ and writes its `value`
/// returning its previous value.
///
/// The [`name_to_mib`] API translates a string of the key (e.g. `arenas.nbins`)
/// to a `mib` (Management Information Base).
///
/// # Safety
///
/// This function is unsafe because if the key does not return a pointer to a
/// null-terminated string the behavior is undefined.
///
/// For example, a key for a `u64` value can be used to read a pointer on 64-bit
/// platform, where this pointer will point to the address denoted by the `u64`s
/// representation. Also, a key to a `*mut extent_hooks_t` will return a pointer
/// that will not point to a null-terminated string.
///
/// This function needs to compute the length of the string by looking for the
/// null-terminator: `\0`. This requires reading the memory behind the pointer.
///
/// If the pointer is invalid (e.g. because it was converted from a `u64` that
/// does not represent a valid address), reading the string to look for `\0`
/// will dereference a non-dereferenceable pointer, which is undefined behavior.
///
/// If the pointer is valid but it does not point to a null-terminated string,
/// looking for `\0` will read garbage and might end up reading out-of-bounds,
/// which is undefined behavior.
pub unsafe fn update_str_mib(
    mib: &[usize],
    value: &'static [u8],
) -> Result<&'static [u8]> {
    let ptr: *const c_char = update_mib(mib, value.as_ptr() as *const c_char)?;
    Ok(ptr2str(ptr))
}

/// Uses the null-terminated string `name` as key to the _MALLCTL NAMESPACE_ and
/// reads its value.
///
/// # Safety
///
/// This function is unsafe because if the key does not return a pointer to a
/// null-terminated string the behavior is undefined.
///
/// For example, a key for a `u64` value can be used to read a pointer on 64-bit
/// platform, where this pointer will point to the address denoted by the `u64`s
/// representation. Also, a key to a `*mut extent_hooks_t` will return a pointer
/// that will not point to a null-terminated string.
///
/// This function needs to compute the length of the string by looking for the
/// null-terminator: `\0`. This requires reading the memory behind the pointer.
///
/// If the pointer is invalid (e.g. because it was converted from a `u64` that
/// does not represent a valid address), reading the string to look for `\0`
/// will dereference a non-dereferenceable pointer, which is undefined behavior.
///
/// If the pointer is valid but it does not point to a null-terminated string,
/// looking for `\0` will read garbage and might end up reading out-of-bounds,
/// which is undefined behavior.
pub unsafe fn read_str(name: &[u8]) -> Result<&'static [u8]> {
    let ptr: *const c_char = read(name)?;
    Ok(ptr2str(ptr))
}

/// Uses the null-terminated string `name` as key to the _MALLCTL NAMESPACE_ and
/// writes its `value`.
pub fn write_str(name: &[u8], value: &'static [u8]) -> Result<()> {
    assert!(!value.is_empty(), "value cannot be empty");
    assert_eq!(*value.last().unwrap(), b'\0');
    // This is safe because `value` will always point to a null-terminated
    // string, which makes it safe for all key value types: pointers to
    // null-terminated strings, pointers, pointer-sized integers, etc.
    unsafe { write(name, value.as_ptr() as *const c_char) }
}

/// Uses the null-terminated string `name` as key to the _MALLCTL NAMESPACE_ and
/// writes its `value` returning its previous value.
///
/// # Safety
///
/// This function is unsafe because if the key does not return a pointer to a
/// null-terminated string the behavior is undefined.
///
/// For example, a key for a `u64` value can be used to read a pointer on 64-bit
/// platform, where this pointer will point to the address denoted by the `u64`s
/// representation. Also, a key to a `*mut extent_hooks_t` will return a pointer
/// that will not point to a null-terminated string.
///
/// This function needs to compute the length of the string by looking for the
/// null-terminator: `\0`. This requires reading the memory behind the pointer.
///
/// If the pointer is invalid (e.g. because it was converted from a `u64` that
/// does not represent a valid address), reading the string to look for `\0`
/// will dereference a non-dereferenceable pointer, which is undefined behavior.
///
/// If the pointer is valid but it does not point to a null-terminated string,
/// looking for `\0` will read garbage and might end up reading out-of-bounds,
/// which is undefined behavior.
pub unsafe fn update_str(
    name: &[u8],
    value: &'static [u8],
) -> Result<&'static [u8]> {
    let ptr: *const c_char = update(name, value.as_ptr() as *const c_char)?;
    Ok(ptr2str(ptr))
}

/// Converts a non-empty null-terminated character string at `ptr` into a valid
/// null-terminated UTF-8 string.
///
/// # Panics
///
/// If `ptr.is_null()`.
///
/// # Safety
///
/// If `ptr` does not point to a null-terminated character string the behavior
/// is undefined.
unsafe fn ptr2str(ptr: *const c_char) -> &'static [u8] {
    assert!(
        !ptr.is_null(),
        "attempt to convert a null-ptr to a UTF-8 string"
    );
    let len = libc::strlen(ptr);
    slice::from_raw_parts(ptr as *const u8, len + 1)
}

fn validate_name(name: &[u8]) {
    assert!(!name.is_empty(), "empty byte string");
    assert_eq!(
        *name.last().unwrap(),
        b'\0',
        "non-null terminated byte string"
    );
}

union MaybeUninit<T: Copy> {
    init: (),
    maybe_uninit: T,
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    #[cfg(not(target_arch = "mips64el"))] // FIXME: SIGFPE
    fn test_ptr2str() {
        unsafe {
            //{ // This is undefined behavior:
            //    let cstr = b"";
            //    let rstr = ptr2str(cstr as *const _ as *const c_char);
            //    assert!(rstr.is_err());
            // }
            {
                let cstr = b"\0";
                let rstr = ptr2str(cstr as *const _ as *const c_char);
                assert_eq!(rstr.len(), 1);
                assert_eq!(rstr, b"\0");
            }
            {
                let cstr = b"foo  baaar\0";
                let rstr = ptr2str(cstr as *const _ as *const c_char);
                assert_eq!(rstr.len(), b"foo  baaar\0".len());
                assert_eq!(rstr, b"foo  baaar\0");
            }
        }
    }
}