jieba_rs/keywords/tfidf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
use std::cmp::Ordering;
use std::collections::{BTreeSet, BinaryHeap};
use std::io::{self, BufRead, BufReader};
use include_flate::flate;
use ordered_float::OrderedFloat;
use super::{Keyword, KeywordExtract, KeywordExtractConfig, KeywordExtractConfigBuilder};
use crate::FxHashMap as HashMap;
use crate::Jieba;
flate!(static DEFAULT_IDF: str from "src/data/idf.txt");
#[derive(Debug, Clone, Eq, PartialEq)]
struct HeapNode<'a> {
tfidf: OrderedFloat<f64>,
word: &'a str,
}
impl<'a> Ord for HeapNode<'a> {
fn cmp(&self, other: &HeapNode) -> Ordering {
other.tfidf.cmp(&self.tfidf).then_with(|| self.word.cmp(other.word))
}
}
impl<'a> PartialOrd for HeapNode<'a> {
fn partial_cmp(&self, other: &HeapNode) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// TF-IDF keywords extraction
///
/// Require `tfidf` feature to be enabled
#[derive(Debug)]
pub struct TfIdf {
idf_dict: HashMap<String, f64>,
median_idf: f64,
config: KeywordExtractConfig,
}
/// Implementation of JiebaKeywordExtract using a TF-IDF dictionary.
///
/// This takes the segments produced by Jieba and attempts to extract keywords.
/// Segments are filtered for stopwords and short terms. They are then matched
/// against a loaded dictionary to calculate TF-IDF scores.
impl TfIdf {
/// Creates an TfIdf.
///
/// # Examples
///
/// New instance with custom idf dictionary.
/// ```
/// use jieba_rs::{TfIdf, KeywordExtractConfig};
///
/// let mut sample_idf = "劳动防护 13.900677652\n\
/// 生化学 13.900677652\n";
/// TfIdf::new(
/// Some(&mut sample_idf.as_bytes()),
/// KeywordExtractConfig::default());
/// ```
///
/// New instance with module default stop words and no initial IDF
/// dictionary. Dictionary should be loaded later with `load_dict()` calls.
/// ```
/// use jieba_rs::{TfIdf, KeywordExtractConfig};
///
/// TfIdf::new(
/// None::<&mut std::io::Empty>,
/// KeywordExtractConfig::default());
/// ```
pub fn new(opt_dict: Option<&mut impl BufRead>, config: KeywordExtractConfig) -> Self {
let mut instance = TfIdf {
idf_dict: HashMap::default(),
median_idf: 0.0,
config,
};
if let Some(dict) = opt_dict {
instance.load_dict(dict).unwrap();
}
instance
}
/// Merges entires from `dict` into the `idf_dict`.
///
/// ```
/// use jieba_rs::{Jieba, KeywordExtract, Keyword, KeywordExtractConfig,
/// TfIdf};
///
/// let jieba = Jieba::default();
/// let mut init_idf = "生化学 13.900677652\n";
///
/// let mut tfidf = TfIdf::new(
/// Some(&mut init_idf.as_bytes()),
/// KeywordExtractConfig::default());
/// let top_k = tfidf.extract_keywords(&jieba, "生化学不是光化学的,", 3, vec![]);
/// assert_eq!(
/// top_k,
/// vec![
/// Keyword { keyword: "不是".to_string(), weight: 4.6335592173333335 },
/// Keyword { keyword: "光化学".to_string(), weight: 4.6335592173333335 },
/// Keyword { keyword: "生化学".to_string(), weight: 4.6335592173333335 }
/// ]
/// );
///
/// let mut init_idf = "光化学 99.123456789\n";
/// tfidf.load_dict(&mut init_idf.as_bytes());
/// let new_top_k = tfidf.extract_keywords(&jieba, "生化学不是光化学的,", 3, vec![]);
/// assert_eq!(
/// new_top_k,
/// vec![
/// Keyword { keyword: "不是".to_string(), weight: 33.041152263 },
/// Keyword { keyword: "光化学".to_string(), weight: 33.041152263 },
/// Keyword { keyword: "生化学".to_string(), weight: 4.6335592173333335 }
/// ]
/// );
/// ```
pub fn load_dict(&mut self, dict: &mut impl BufRead) -> io::Result<()> {
let mut buf = String::new();
let mut idf_heap = BinaryHeap::new();
while dict.read_line(&mut buf)? > 0 {
let parts: Vec<&str> = buf.split_whitespace().collect();
if parts.is_empty() {
continue;
}
let word = parts[0];
if let Some(idf) = parts.get(1).and_then(|x| x.parse::<f64>().ok()) {
self.idf_dict.insert(word.to_string(), idf);
idf_heap.push(OrderedFloat(idf));
}
buf.clear();
}
let m = idf_heap.len() / 2;
for _ in 0..m {
idf_heap.pop();
}
self.median_idf = idf_heap.pop().unwrap().into_inner();
Ok(())
}
pub fn config(&self) -> &KeywordExtractConfig {
&self.config
}
pub fn config_mut(&mut self) -> &mut KeywordExtractConfig {
&mut self.config
}
}
/// TF-IDF keywords extraction.
///
/// Require `tfidf` feature to be enabled.
impl Default for TfIdf {
/// Creates TfIdf with DEFAULT_STOP_WORDS, the default TfIdf dictionary,
/// 2 Unicode Scalar Value minimum for keywords, and no hmm in segmentation.
fn default() -> Self {
let mut default_dict = BufReader::new(DEFAULT_IDF.as_bytes());
TfIdf::new(
Some(&mut default_dict),
KeywordExtractConfigBuilder::default().build().unwrap(),
)
}
}
impl KeywordExtract for TfIdf {
/// Uses TF-IDF algorithm to extract the `top_k` keywords from `sentence`.
///
/// If `allowed_pos` is not empty, then only terms matching those parts if
/// speech are considered.
///
/// # Examples
/// ```
/// use jieba_rs::{Jieba, KeywordExtract, TfIdf};
///
/// let jieba = Jieba::new();
/// let keyword_extractor = TfIdf::default();
/// let mut top_k = keyword_extractor.extract_keywords(
/// &jieba,
/// "今天纽约的天气真好啊,京华大酒店的张尧经理吃了一只北京烤鸭。后天纽约的天气不好,昨天纽约的天气也不好,北京烤鸭真好吃",
/// 3,
/// vec![],
/// );
/// assert_eq!(
/// top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
/// vec!["北京烤鸭", "纽约", "天气"]
/// );
///
/// top_k = keyword_extractor.extract_keywords(
/// &jieba,
/// "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。",
/// 5,
/// vec![],
/// );
/// assert_eq!(
/// top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
/// vec!["欧亚", "吉林", "置业", "万元", "增资"]
/// );
///
/// top_k = keyword_extractor.extract_keywords(
/// &jieba,
/// "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。",
/// 5,
/// vec![String::from("ns"), String::from("n"), String::from("vn"), String::from("v")],
/// );
/// assert_eq!(
/// top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
/// vec!["欧亚", "吉林", "置业", "增资", "实现"]
/// );
/// ```
fn extract_keywords(&self, jieba: &Jieba, sentence: &str, top_k: usize, allowed_pos: Vec<String>) -> Vec<Keyword> {
let tags = jieba.tag(sentence, self.config.use_hmm());
let mut allowed_pos_set = BTreeSet::new();
for s in allowed_pos {
allowed_pos_set.insert(s);
}
let mut term_freq: HashMap<String, u64> = HashMap::default();
for t in &tags {
if !allowed_pos_set.is_empty() && !allowed_pos_set.contains(t.tag) {
continue;
}
if !self.config.filter(t.word) {
continue;
}
let entry = term_freq.entry(String::from(t.word)).or_insert(0);
*entry += 1;
}
let total: u64 = term_freq.values().sum();
let mut heap = BinaryHeap::new();
for (cnt, (k, tf)) in term_freq.iter().enumerate() {
let idf = self.idf_dict.get(k).unwrap_or(&self.median_idf);
let node = HeapNode {
tfidf: OrderedFloat(*tf as f64 * idf / total as f64),
word: k,
};
heap.push(node);
if cnt >= top_k {
heap.pop();
}
}
let mut res = Vec::new();
for _ in 0..top_k {
if let Some(w) = heap.pop() {
res.push(Keyword {
keyword: String::from(w.word),
weight: w.tfidf.into_inner(),
});
}
}
res.reverse();
res
}
}