jieba_rs/keywords/
tfidf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use std::cmp::Ordering;
use std::collections::{BTreeSet, BinaryHeap};
use std::io::{self, BufRead, BufReader};

use include_flate::flate;
use ordered_float::OrderedFloat;

use super::{Keyword, KeywordExtract, KeywordExtractConfig, KeywordExtractConfigBuilder};
use crate::FxHashMap as HashMap;
use crate::Jieba;

flate!(static DEFAULT_IDF: str from "src/data/idf.txt");

#[derive(Debug, Clone, Eq, PartialEq)]
struct HeapNode<'a> {
    tfidf: OrderedFloat<f64>,
    word: &'a str,
}

impl<'a> Ord for HeapNode<'a> {
    fn cmp(&self, other: &HeapNode) -> Ordering {
        other.tfidf.cmp(&self.tfidf).then_with(|| self.word.cmp(other.word))
    }
}

impl<'a> PartialOrd for HeapNode<'a> {
    fn partial_cmp(&self, other: &HeapNode) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// TF-IDF keywords extraction
///
/// Require `tfidf` feature to be enabled
#[derive(Debug)]
pub struct TfIdf {
    idf_dict: HashMap<String, f64>,
    median_idf: f64,
    config: KeywordExtractConfig,
}

/// Implementation of JiebaKeywordExtract using a TF-IDF dictionary.
///
/// This takes the segments produced by Jieba and attempts to extract keywords.
/// Segments are filtered for stopwords and short terms. They are then matched
/// against a loaded dictionary to calculate TF-IDF scores.
impl TfIdf {
    /// Creates an TfIdf.
    ///
    /// # Examples
    ///
    /// New instance with custom idf dictionary.
    /// ```
    ///    use jieba_rs::{TfIdf, KeywordExtractConfig};
    ///
    ///    let mut sample_idf = "劳动防护 13.900677652\n\
    ///        生化学 13.900677652\n";
    ///    TfIdf::new(
    ///        Some(&mut sample_idf.as_bytes()),
    ///        KeywordExtractConfig::default());
    /// ```
    ///
    /// New instance with module default stop words and no initial IDF
    /// dictionary. Dictionary should be loaded later with `load_dict()` calls.
    /// ```
    ///    use jieba_rs::{TfIdf, KeywordExtractConfig};
    ///
    ///    TfIdf::new(
    ///        None::<&mut std::io::Empty>,
    ///        KeywordExtractConfig::default());
    /// ```
    pub fn new(opt_dict: Option<&mut impl BufRead>, config: KeywordExtractConfig) -> Self {
        let mut instance = TfIdf {
            idf_dict: HashMap::default(),
            median_idf: 0.0,
            config,
        };
        if let Some(dict) = opt_dict {
            instance.load_dict(dict).unwrap();
        }
        instance
    }

    /// Merges entires from `dict` into the `idf_dict`.
    ///
    /// ```
    ///    use jieba_rs::{Jieba, KeywordExtract, Keyword, KeywordExtractConfig,
    ///        TfIdf};
    ///
    ///    let jieba = Jieba::default();
    ///    let mut init_idf = "生化学 13.900677652\n";
    ///
    ///    let mut tfidf = TfIdf::new(
    ///        Some(&mut init_idf.as_bytes()),
    ///        KeywordExtractConfig::default());
    ///    let top_k = tfidf.extract_keywords(&jieba, "生化学不是光化学的,", 3, vec![]);
    ///    assert_eq!(
    ///        top_k,
    ///        vec![
    ///            Keyword { keyword: "不是".to_string(), weight: 4.6335592173333335 },
    ///            Keyword { keyword: "光化学".to_string(), weight: 4.6335592173333335 },
    ///            Keyword { keyword: "生化学".to_string(), weight: 4.6335592173333335 }
    ///        ]
    ///    );
    ///
    ///    let mut init_idf = "光化学 99.123456789\n";
    ///    tfidf.load_dict(&mut init_idf.as_bytes());
    ///    let new_top_k = tfidf.extract_keywords(&jieba, "生化学不是光化学的,", 3, vec![]);
    ///    assert_eq!(
    ///        new_top_k,
    ///        vec![
    ///            Keyword { keyword: "不是".to_string(), weight: 33.041152263 },
    ///            Keyword { keyword: "光化学".to_string(), weight: 33.041152263 },
    ///            Keyword { keyword: "生化学".to_string(), weight: 4.6335592173333335 }
    ///        ]
    ///    );
    /// ```
    pub fn load_dict(&mut self, dict: &mut impl BufRead) -> io::Result<()> {
        let mut buf = String::new();
        let mut idf_heap = BinaryHeap::new();
        while dict.read_line(&mut buf)? > 0 {
            let parts: Vec<&str> = buf.split_whitespace().collect();
            if parts.is_empty() {
                continue;
            }

            let word = parts[0];
            if let Some(idf) = parts.get(1).and_then(|x| x.parse::<f64>().ok()) {
                self.idf_dict.insert(word.to_string(), idf);
                idf_heap.push(OrderedFloat(idf));
            }

            buf.clear();
        }

        let m = idf_heap.len() / 2;
        for _ in 0..m {
            idf_heap.pop();
        }

        self.median_idf = idf_heap.pop().unwrap().into_inner();

        Ok(())
    }

    pub fn config(&self) -> &KeywordExtractConfig {
        &self.config
    }

    pub fn config_mut(&mut self) -> &mut KeywordExtractConfig {
        &mut self.config
    }
}

/// TF-IDF keywords extraction.
///
/// Require `tfidf` feature to be enabled.
impl Default for TfIdf {
    /// Creates TfIdf with DEFAULT_STOP_WORDS, the default TfIdf dictionary,
    /// 2 Unicode Scalar Value minimum for keywords, and no hmm in segmentation.
    fn default() -> Self {
        let mut default_dict = BufReader::new(DEFAULT_IDF.as_bytes());
        TfIdf::new(
            Some(&mut default_dict),
            KeywordExtractConfigBuilder::default().build().unwrap(),
        )
    }
}

impl KeywordExtract for TfIdf {
    /// Uses TF-IDF algorithm to extract the `top_k` keywords from `sentence`.
    ///
    /// If `allowed_pos` is not empty, then only terms matching those parts if
    /// speech are considered.
    ///
    /// # Examples
    /// ```
    ///    use jieba_rs::{Jieba, KeywordExtract, TfIdf};
    ///
    ///    let jieba = Jieba::new();
    ///    let keyword_extractor = TfIdf::default();
    ///    let mut top_k = keyword_extractor.extract_keywords(
    ///        &jieba,
    ///        "今天纽约的天气真好啊,京华大酒店的张尧经理吃了一只北京烤鸭。后天纽约的天气不好,昨天纽约的天气也不好,北京烤鸭真好吃",
    ///        3,
    ///        vec![],
    ///    );
    ///    assert_eq!(
    ///        top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
    ///        vec!["北京烤鸭", "纽约", "天气"]
    ///    );
    ///
    ///    top_k = keyword_extractor.extract_keywords(
    ///        &jieba,
    ///        "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。",
    ///        5,
    ///        vec![],
    ///    );
    ///    assert_eq!(
    ///        top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
    ///        vec!["欧亚", "吉林", "置业", "万元", "增资"]
    ///    );
    ///
    ///    top_k = keyword_extractor.extract_keywords(
    ///        &jieba,
    ///        "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。",
    ///        5,
    ///        vec![String::from("ns"), String::from("n"), String::from("vn"), String::from("v")],
    ///    );
    ///    assert_eq!(
    ///        top_k.iter().map(|x| &x.keyword).collect::<Vec<&String>>(),
    ///        vec!["欧亚", "吉林", "置业", "增资", "实现"]
    ///    );
    /// ```
    fn extract_keywords(&self, jieba: &Jieba, sentence: &str, top_k: usize, allowed_pos: Vec<String>) -> Vec<Keyword> {
        let tags = jieba.tag(sentence, self.config.use_hmm());
        let mut allowed_pos_set = BTreeSet::new();

        for s in allowed_pos {
            allowed_pos_set.insert(s);
        }

        let mut term_freq: HashMap<String, u64> = HashMap::default();
        for t in &tags {
            if !allowed_pos_set.is_empty() && !allowed_pos_set.contains(t.tag) {
                continue;
            }

            if !self.config.filter(t.word) {
                continue;
            }

            let entry = term_freq.entry(String::from(t.word)).or_insert(0);
            *entry += 1;
        }

        let total: u64 = term_freq.values().sum();
        let mut heap = BinaryHeap::new();
        for (cnt, (k, tf)) in term_freq.iter().enumerate() {
            let idf = self.idf_dict.get(k).unwrap_or(&self.median_idf);
            let node = HeapNode {
                tfidf: OrderedFloat(*tf as f64 * idf / total as f64),
                word: k,
            };
            heap.push(node);
            if cnt >= top_k {
                heap.pop();
            }
        }

        let mut res = Vec::new();
        for _ in 0..top_k {
            if let Some(w) = heap.pop() {
                res.push(Keyword {
                    keyword: String::from(w.word),
                    weight: w.tfidf.into_inner(),
                });
            }
        }

        res.reverse();
        res
    }
}