1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
extern crate proc_macro;
use proc_macro::TokenStream;
use quote::quote;
use rpc_macro::RpcDescription;
mod attributes;
mod helpers;
mod render_client;
mod render_server;
mod rpc_macro;
pub(crate) mod visitor;
/// Main RPC macro.
///
/// ## Description
///
/// This macro is capable of generating both server and client implementations on demand.
/// Based on the attributes provided to the `rpc` macro, either one or both of implementations
/// will be generated.
///
/// For clients, it will be an extension trait that adds all the required methods to a
/// type that implements `Client` or `SubscriptionClient` (depending on whether trait has
/// subscriptions methods or not), namely `HttpClient` and `WsClient`.
///
/// For servers, it will generate a trait mostly equivalent to the input, with two main
/// differences:
///
/// - The trait will have one additional (already implemented) method, `into_rpc`, which turns any object that
/// implements the server trait into an `RpcModule`.
/// - For subscription methods, there will be one additional argument inserted right after `&self`: `subscription_sink:
/// SubscriptionSink`. It should be used to actually maintain the subscription.
///
/// Since this macro can generate up to two traits, both server and client traits will have
/// a new name. For the `Foo` trait, server trait will be named `FooServer`, and client,
/// correspondingly, `FooClient`.
///
/// To use the `FooClient`, just import it in the context. To use the server, the `FooServer` trait must be implemented
/// on your type first.
///
/// Note: you need to import the `jsonrpsee` façade crate in your code for the macro to work properly.
///
/// ## Prerequisites
///
/// - Implementors of the server trait must be `Sync`, `Send`, `Sized` and `'static`. If you want to implement this
/// trait on some type that is not thread-safe, consider using `Arc<RwLock<..>>`.
///
/// ## Examples
///
/// Below you can find examples of the macro usage along with the code
/// that generated for it by the macro.
///
/// ```ignore
/// #[rpc(client, server, namespace = "foo")]
/// pub trait Rpc {
/// #[method(name = "foo")]
/// async fn async_method(&self, param_a: u8, param_b: String) -> u16;
/// #[method(name = "bar")]
/// fn sync_method(&self) -> String;
///
/// #[subscription(name = "sub", unsub = "unsub", item = "String")]
/// fn sub(&self);
/// }
/// ```
///
/// Server code that will be generated:
///
/// ```ignore
/// #[async_trait]
/// pub trait RpcServer {
/// // RPC methods are normal methods and can be either sync or async.
/// async fn async_method(&self, param_a: u8, param_b: String) -> u16;
/// fn sync_method(&self) -> String;
///
/// // Note that `subscription_sink` was added automatically.
/// fn sub(&self, subscription_sink: SubscriptionSink);
///
/// fn into_rpc(self) -> Result<Self, jsonrpsee::types::Error> {
/// // Actual implementation stripped, but inside we will create
/// // a module with one method and one subscription
/// }
/// }
/// ```
///
/// Client code that will be generated:
///
/// ```ignore
/// #[async_trait]
/// pub trait RpcClient: SubscriptionClient {
/// // In client implementation all the methods are (obviously) async.
/// async fn async_method(&self, param_a: u8, param_b: String) -> Result<u16, Error> {
/// // Actual implementations are stripped, but inside a corresponding `Client` or
/// // `SubscriptionClient` method is called.
/// }
/// async fn sync_method(&self) -> Result<String, Error> {
/// // ...
/// }
///
/// // Subscription method returns `Subscription` object in case of success.
/// async fn sub(&self) -> Result<Subscription<String>, Error> {
/// // ...
/// }
/// }
///
/// impl<T> RpcClient for T where T: SubscriptionClient {}
/// ```
///
/// ## Attributes
///
/// ### `rpc` attribute
///
/// `rpc` attribute is applied to a trait in order to turn it into an RPC implementation.
///
/// **Arguments:**
///
/// - `server`: generate `<Trait>Server` trait for the server implementation.
/// - `client`: generate `<Trait>Client` extension trait that builds RPC clients to invoke a concrete RPC
/// implementation's methods conveniently.
/// - `namespace`: add a prefix to all the methods and subscriptions in this RPC. For example, with namespace `foo` and
/// method `spam`, the resulting method name will be `foo_spam`.
///
/// **Trait requirements:**
///
/// A trait wrapped with the `rpc` attribute **must not**:
///
/// - have associated types or constants;
/// - have Rust methods not marked with either the `method` or `subscription` attribute;
/// - be empty.
///
/// At least one of the `server` or `client` flags must be provided, otherwise the compilation will err.
///
/// ### `method` attribute
///
/// `method` attribute is used to define an RPC method.
///
/// **Arguments:**
///
/// - `name` (mandatory): name of the RPC method. Does not have to be the same as the Rust method name.
/// - `aliases`: list of name aliases for the RPC method as a comma separated string.
/// - `blocking`: when set method execution will always spawn on a dedicated thread. Only usable with non-`async` methods.
/// - `param_kind`: kind of structure to use for parameter passing. Can be "array" or "map", defaults to "array".
///
/// **Method requirements:**
///
/// A Rust method marked with the `method` attribute, **may**:
///
/// - be either `async` or not;
/// - have input parameters or not;
/// - have a return value or not (in the latter case, it will be considered a notification method).
///
/// ### `subscription` attribute
///
/// **Arguments:**
///
/// - `name` (mandatory): name of the RPC method. Does not have to be the same as the Rust method name.
/// - `unsub` (mandatory): name of the RPC method to unsubscribe from the subscription. Must not be the same as `name`.
/// - `item` (mandatory): type of items yielded by the subscription. Note that it must be the type, not string.
/// - `param_kind`: kind of structure to use for parameter passing. Can be "array" or "map", defaults to "array".
///
/// **Method requirements:**
///
/// Rust method marked with the `subscription` attribute **must**:
///
/// - be synchronous;
/// - not have return value.
///
/// Rust method marked with `subscription` attribute **may**:
///
/// - have input parameters or not.
///
/// ## Full workflow example
///
/// ```rust
/// //! Example of using proc macro to generate working client and server.
///
/// use std::net::SocketAddr;
///
/// use futures_channel::oneshot;
/// use jsonrpsee::{ws_client::*, ws_server::WsServerBuilder};
///
/// // RPC is put into a separate module to clearly show names of generated entities.
/// mod rpc_impl {
/// use jsonrpsee::{proc_macros::rpc, types::{async_trait, RpcResult}, ws_server::SubscriptionSink};
///
/// // Generate both server and client implementations, prepend all the methods with `foo_` prefix.
/// #[rpc(client, server, namespace = "foo")]
/// pub trait MyRpc {
/// #[method(name = "foo")]
/// async fn async_method(&self, param_a: u8, param_b: String) -> RpcResult<u16>;
///
/// #[method(name = "bar")]
/// fn sync_method(&self) -> RpcResult<u16>;
///
/// #[method(name = "baz", blocking)]
/// fn blocking_method(&self) -> RpcResult<u16>;
///
/// #[subscription(name = "sub", item = String)]
/// fn sub(&self) -> RpcResult<()>;
/// }
///
/// // Structure that will implement the `MyRpcServer` trait.
/// // It can have fields, if required, as long as it's still `Send + Sync + 'static`.
/// pub struct RpcServerImpl;
///
/// // Note that the trait name we use is `MyRpcServer`, not `MyRpc`!
/// #[async_trait]
/// impl MyRpcServer for RpcServerImpl {
/// async fn async_method(&self, _param_a: u8, _param_b: String) -> RpcResult<u16> {
/// Ok(42)
/// }
///
/// fn sync_method(&self) -> RpcResult<u16> {
/// Ok(10)
/// }
///
/// fn blocking_method(&self) -> RpcResult<u16> {
/// // This will block current thread for 1 second, which is fine since we marked
/// // this method as `blocking` above.
/// std::thread::sleep(std::time::Duration::from_millis(1000));
/// Ok(11)
/// }
///
/// // We could've spawned a `tokio` future that yields values while our program works,
/// // but for simplicity of the example we will only send two values and then close
/// // the subscription.
/// fn sub(&self, mut sink: SubscriptionSink) -> RpcResult<()> {
/// sink.send(&"Response_A")?;
/// sink.send(&"Response_B")
/// }
/// }
/// }
///
/// // Use the generated implementations of server and client.
/// use rpc_impl::{MyRpcClient, MyRpcServer, RpcServerImpl};
///
/// pub async fn websocket_server() -> SocketAddr {
/// let server = WsServerBuilder::default().build("127.0.0.1:0").await.unwrap();
/// let addr = server.local_addr().unwrap();
///
/// // `into_rpc()` method was generated inside of the `RpcServer` trait under the hood.
/// server.start(RpcServerImpl.into_rpc()).unwrap();
///
/// addr
/// }
///
/// // In the main function, we start the server, create a client connected to this server,
/// // and call the available methods.
/// #[tokio::main]
/// async fn main() {
/// let server_addr = websocket_server().await;
/// let server_url = format!("ws://{}", server_addr);
/// // Note that we create the client as usual, but thanks to the `use rpc_impl::MyRpcClient`,
/// // the client object will have all the methods to interact with the server.
/// let client = WsClientBuilder::default().build(&server_url).await.unwrap();
///
/// // Invoke RPC methods.
/// assert_eq!(client.async_method(10, "a".into()).await.unwrap(), 42);
/// assert_eq!(client.sync_method().await.unwrap(), 10);
///
/// // Subscribe and receive messages from the subscription.
/// let mut sub = client.sub().await.unwrap();
/// let first_recv = sub.next().await.unwrap();
/// assert_eq!(first_recv, Some("Response_A".to_string()));
/// let second_recv = sub.next().await.unwrap();
/// assert_eq!(second_recv, Some("Response_B".to_string()));
/// }
/// ```
#[proc_macro_attribute]
pub fn rpc(attr: TokenStream, item: TokenStream) -> TokenStream {
let attr = proc_macro2::TokenStream::from(attr);
let rebuilt_rpc_attribute = syn::Attribute {
pound_token: syn::token::Pound::default(),
style: syn::AttrStyle::Outer,
bracket_token: syn::token::Bracket::default(),
path: syn::Ident::new("rpc", proc_macro2::Span::call_site()).into(),
tokens: quote! { (#attr) },
};
match rpc_impl(rebuilt_rpc_attribute, item) {
Ok(tokens) => tokens,
Err(err) => err.to_compile_error(),
}
.into()
}
/// Convenience form of `rpc` that may use `?` for error handling to avoid boilerplate.
fn rpc_impl(attr: syn::Attribute, item: TokenStream) -> Result<proc_macro2::TokenStream, syn::Error> {
let trait_data: syn::ItemTrait = syn::parse(item)?;
let rpc = RpcDescription::from_item(attr, trait_data)?;
rpc.render()
}