1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
//! This crate provides [`Decoder`], an entropy decoder, implemented as specified in the JPEG XL
//! specification.
//!
//! This also provides [`read_permutation`] and [`read_clusters`], which are used in some parts of
//! the specification.

use std::sync::Arc;

use jxl_bitstream::{read_bits, Bitstream};

mod ans;
mod error;
mod permutation;
mod prefix;

pub use error::Error;
pub type Result<T> = std::result::Result<T, Error>;

pub use permutation::read_permutation;

/// An entropy decoder.
#[derive(Debug, Clone)]
pub struct Decoder {
    lz77: Lz77,
    inner: DecoderInner,
}

impl Decoder {
    /// Create a decoder by reading symbol distribution, integer configurations and LZ77
    /// configuration from the bitstream.
    pub fn parse(bitstream: &mut Bitstream, num_dist: u32) -> Result<Self> {
        let lz77 = Lz77::parse(bitstream)?;
        let num_dist = if let Lz77::Disabled = &lz77 {
            num_dist
        } else {
            num_dist + 1
        };
        let inner = DecoderInner::parse(bitstream, num_dist)?;
        Ok(Self { lz77, inner })
    }

    fn parse_assume_no_lz77(bitstream: &mut Bitstream, num_dist: u32) -> Result<Self> {
        let lz77_enabled = read_bits!(bitstream, Bool)?;
        if lz77_enabled {
            return Err(Error::Lz77NotAllowed);
        }
        let inner = DecoderInner::parse(bitstream, num_dist)?;
        Ok(Self {
            lz77: Lz77::Disabled,
            inner,
        })
    }

    /// Read an integer from the bitstream with the given context.
    #[inline]
    pub fn read_varint(&mut self, bitstream: &mut Bitstream, ctx: u32) -> Result<u32> {
        self.read_varint_with_multiplier(bitstream, ctx, 0)
    }

    /// Read an integer from the bitstream with the given context and LZ77 distance multiplier.
    #[inline]
    pub fn read_varint_with_multiplier(
        &mut self,
        bitstream: &mut Bitstream,
        ctx: u32,
        dist_multiplier: u32,
    ) -> Result<u32> {
        let cluster = self.inner.clusters[ctx as usize];
        self.read_varint_with_multiplier_clustered(bitstream, cluster, dist_multiplier)
    }

    /// Read an integer from the bitstream with the given *cluster* and LZ77 distance multiplier.
    ///
    /// Contexts can be converted to clusters using [the cluster map][Self::cluster_map].
    #[inline(always)]
    pub fn read_varint_with_multiplier_clustered(
        &mut self,
        bitstream: &mut Bitstream,
        cluster: u8,
        dist_multiplier: u32,
    ) -> Result<u32> {
        if let Lz77::Enabled {
            ref mut state,
            min_symbol,
            min_length,
        } = self.lz77
        {
            self.inner.read_varint_with_multiplier_clustered_lz77(
                bitstream,
                cluster,
                dist_multiplier,
                state,
                min_symbol,
                min_length,
            )
        } else {
            self.inner
                .read_varint_with_multiplier_clustered(bitstream, cluster)
        }
    }

    pub fn as_rle(&mut self) -> Option<DecoderRleMode<'_>> {
        let &Lz77::Enabled {
            ref state,
            min_symbol,
            min_length,
        } = &self.lz77
        else {
            return None;
        };
        let lz_cluster = self.inner.lz_dist_cluster();
        let lz_conf = &self.inner.configs[lz_cluster as usize];
        let sym = self.inner.code.single_symbol(lz_cluster)?;
        (sym == 1 && lz_conf.split_exponent == 0).then_some(DecoderRleMode {
            inner: &mut self.inner,
            min_symbol,
            min_length,
            len_config: state.lz_len_conf.clone(),
        })
    }

    pub fn as_with_lz77(&mut self) -> Option<DecoderWithLz77<'_>> {
        if let Lz77::Enabled {
            ref mut state,
            min_symbol,
            min_length,
        } = self.lz77
        {
            Some(DecoderWithLz77 {
                inner: &mut self.inner,
                state,
                min_symbol,
                min_length,
            })
        } else {
            None
        }
    }

    pub fn as_no_lz77(&mut self) -> Option<DecoderNoLz77<'_>> {
        if let Lz77::Disabled = self.lz77 {
            Some(DecoderNoLz77(&mut self.inner))
        } else {
            None
        }
    }

    #[inline]
    pub fn single_token(&self, cluster: u8) -> Option<u32> {
        self.inner.single_token(cluster)
    }

    /// Explicitly start reading an entropy encoded stream.
    ///
    /// This involves reading an initial state for the ANS stream. It's okay to skip this method,
    /// as the state will be initialized on the first read.
    #[inline]
    pub fn begin(&mut self, bitstream: &mut Bitstream) -> Result<()> {
        self.inner.code.begin(bitstream)
    }

    /// Finalizes the stream, and check whether the stream was valid.
    ///
    /// For prefix code stream, this method will always succeed. For ANS streams, this method
    /// checks if the final state matches expected state, which is specified in the specification.
    #[inline]
    pub fn finalize(&self) -> Result<()> {
        self.inner.code.finalize()
    }

    /// Returns the cluster mapping of distributions.
    #[inline]
    pub fn cluster_map(&self) -> &[u8] {
        &self.inner.clusters
    }
}

/// An entropy decoder, in RLE mode.
#[derive(Debug)]
pub struct DecoderRleMode<'dec> {
    inner: &'dec mut DecoderInner,
    min_symbol: u32,
    min_length: u32,
    len_config: IntegerConfig,
}

#[derive(Debug, Copy, Clone)]
pub enum RleToken {
    Value(u32),
    Repeat(u32),
}

impl DecoderRleMode<'_> {
    #[inline]
    pub fn read_varint_clustered(
        &mut self,
        bitstream: &mut Bitstream,
        cluster: u8,
    ) -> Result<RleToken> {
        self.inner
            .code
            .read_symbol(bitstream, cluster)
            .map(|token| {
                if let Some(token) = token.checked_sub(self.min_symbol) {
                    RleToken::Repeat(
                        self.inner
                            .read_uint_prefilled(bitstream, &self.len_config, token)
                            + self.min_length,
                    )
                } else {
                    RleToken::Value(self.inner.read_uint_prefilled(
                        bitstream,
                        &self.inner.configs[cluster as usize],
                        token,
                    ))
                }
            })
    }
}

#[derive(Debug)]
pub struct DecoderWithLz77<'dec> {
    inner: &'dec mut DecoderInner,
    state: &'dec mut Lz77State,
    min_symbol: u32,
    min_length: u32,
}

impl DecoderWithLz77<'_> {
    #[inline]
    pub fn read_varint_with_multiplier_clustered(
        &mut self,
        bitstream: &mut Bitstream,
        cluster: u8,
        dist_multiplier: u32,
    ) -> Result<u32> {
        self.inner.read_varint_with_multiplier_clustered_lz77(
            bitstream,
            cluster,
            dist_multiplier,
            self.state,
            self.min_symbol,
            self.min_length,
        )
    }
}

#[derive(Debug)]
pub struct DecoderNoLz77<'dec>(&'dec mut DecoderInner);

impl DecoderNoLz77<'_> {
    #[inline]
    pub fn read_varint_clustered(&mut self, bitstream: &mut Bitstream, cluster: u8) -> Result<u32> {
        self.0
            .read_varint_with_multiplier_clustered(bitstream, cluster)
    }

    #[inline]
    pub fn single_token(&self, cluster: u8) -> Option<u32> {
        self.0.single_token(cluster)
    }
}

#[derive(Debug, Clone)]
enum Lz77 {
    Disabled,
    Enabled {
        min_symbol: u32,
        min_length: u32,
        state: Lz77State,
    },
}

impl Lz77 {
    fn parse(bitstream: &mut Bitstream) -> Result<Self> {
        Ok(if read_bits!(bitstream, Bool)? {
            // enabled
            let min_symbol = read_bits!(bitstream, U32(224, 512, 4096, 8 + u(15)))?;
            let min_length = read_bits!(bitstream, U32(3, 4, 5 + u(2), 9 + u(8)))?;
            let lz_len_conf = IntegerConfig::parse(bitstream, 8)?;
            Self::Enabled {
                min_symbol,
                min_length,
                state: Lz77State::new(lz_len_conf),
            }
        } else {
            Self::Disabled
        })
    }
}

#[derive(Clone)]
struct Lz77State {
    lz_len_conf: IntegerConfig,
    window: Vec<u32>,
    num_to_copy: u32,
    copy_pos: u32,
    num_decoded: u32,
}

impl std::fmt::Debug for Lz77State {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Lz77State")
            .field("lz_len_conf", &self.lz_len_conf)
            .field("num_to_copy", &self.num_to_copy)
            .field("copy_pos", &self.copy_pos)
            .field("num_decoded", &self.num_decoded)
            .finish_non_exhaustive()
    }
}

impl Lz77State {
    fn new(lz_len_conf: IntegerConfig) -> Self {
        Self {
            lz_len_conf,
            window: Vec::new(),
            num_to_copy: 0,
            copy_pos: 0,
            num_decoded: 0,
        }
    }
}

#[derive(Debug, Clone)]
struct IntegerConfig {
    split_exponent: u32,
    split: u32,
    msb_in_token: u32,
    lsb_in_token: u32,
}

impl IntegerConfig {
    fn parse(bitstream: &mut Bitstream, log_alphabet_size: u32) -> Result<Self> {
        let split_exponent_bits = add_log2_ceil(log_alphabet_size);
        let split_exponent = bitstream.read_bits(split_exponent_bits as usize)?;
        let (msb_in_token, lsb_in_token) = if split_exponent != log_alphabet_size {
            let msb_bits = add_log2_ceil(split_exponent) as usize;
            let msb_in_token = bitstream.read_bits(msb_bits)?;
            if msb_in_token > split_exponent {
                return Err(Error::InvalidIntegerConfig);
            }
            let lsb_bits = add_log2_ceil(split_exponent - msb_in_token) as usize;
            let lsb_in_token = bitstream.read_bits(lsb_bits)?;
            (msb_in_token, lsb_in_token)
        } else {
            (0u32, 0u32)
        };
        if lsb_in_token + msb_in_token > split_exponent {
            return Err(Error::InvalidIntegerConfig);
        }
        Ok(Self {
            split_exponent,
            split: 1 << split_exponent,
            msb_in_token,
            lsb_in_token,
        })
    }
}

#[derive(Debug, Clone)]
struct DecoderInner {
    clusters: Vec<u8>,           // num_dist, [0, num_clusters)
    configs: Vec<IntegerConfig>, // num_clusters
    code: Coder,
}

impl DecoderInner {
    fn parse(bitstream: &mut Bitstream, num_dist: u32) -> Result<Self> {
        let (num_clusters, clusters) = read_clusters(bitstream, num_dist)?;
        let use_prefix_code = read_bits!(bitstream, Bool)?;
        let log_alphabet_size = if use_prefix_code {
            15
        } else {
            bitstream.read_bits(2)? + 5
        };
        let configs = (0..num_clusters)
            .map(|_| IntegerConfig::parse(bitstream, log_alphabet_size))
            .collect::<Result<Vec<_>>>()?;
        let code = if use_prefix_code {
            let counts = (0..num_clusters)
                .map(|_| -> Result<_> {
                    let count = if read_bits!(bitstream, Bool)? {
                        let n = bitstream.read_bits(4)? as usize;
                        1 + (1 << n) + bitstream.read_bits(n)?
                    } else {
                        1
                    };
                    if count > 1 << 15 {
                        return Err(Error::InvalidPrefixHistogram);
                    }
                    Ok(count)
                })
                .collect::<Result<Vec<_>>>()?;
            let dist = counts
                .into_iter()
                .map(|count| prefix::Histogram::parse(bitstream, count))
                .collect::<Result<Vec<_>>>()?;
            Coder::PrefixCode(Arc::new(dist))
        } else {
            let dist = (0..num_clusters)
                .map(|_| ans::Histogram::parse(bitstream, log_alphabet_size))
                .collect::<Result<Vec<_>>>()?;
            Coder::Ans {
                dist: Arc::new(dist),
                state: 0,
                initial: true,
            }
        };
        Ok(Self {
            clusters,
            configs,
            code,
        })
    }

    #[inline]
    fn single_token(&self, cluster: u8) -> Option<u32> {
        let single_symbol = self.code.single_symbol(cluster)?;
        let IntegerConfig { split, .. } = self.configs[cluster as usize];
        (single_symbol < split).then_some(single_symbol)
    }

    #[inline]
    pub fn read_varint_with_multiplier_clustered(
        &mut self,
        bitstream: &mut Bitstream,
        cluster: u8,
    ) -> Result<u32> {
        let token = self.code.read_symbol(bitstream, cluster)?;
        Ok(self.read_uint_prefilled(bitstream, &self.configs[cluster as usize], token))
    }

    fn read_varint_with_multiplier_clustered_lz77(
        &mut self,
        bitstream: &mut Bitstream,
        cluster: u8,
        dist_multiplier: u32,
        state: &mut Lz77State,
        min_symbol: u32,
        min_length: u32,
    ) -> Result<u32> {
        #[rustfmt::skip]
        const SPECIAL_DISTANCES: [[i8; 2]; 120] = [
            [0, 1], [1, 0], [1, 1], [-1, 1], [0, 2], [2, 0], [1, 2], [-1, 2], [2, 1], [-2, 1],
            [2, 2], [-2, 2], [0, 3], [3, 0], [1, 3], [-1, 3], [3, 1], [-3, 1], [2, 3], [-2, 3],
            [3, 2], [-3, 2], [0, 4], [4, 0], [1, 4], [-1, 4], [4, 1], [-4, 1], [3, 3], [-3, 3],
            [2, 4], [-2, 4], [4, 2], [-4, 2], [0, 5], [3, 4], [-3, 4], [4, 3], [-4, 3], [5, 0],
            [1, 5], [-1, 5], [5, 1], [-5, 1], [2, 5], [-2, 5], [5, 2], [-5, 2], [4, 4], [-4, 4],
            [3, 5], [-3, 5], [5, 3], [-5, 3], [0, 6], [6, 0], [1, 6], [-1, 6], [6, 1], [-6, 1],
            [2, 6], [-2, 6], [6, 2], [-6, 2], [4, 5], [-4, 5], [5, 4], [-5, 4], [3, 6], [-3, 6],
            [6, 3], [-6, 3], [0, 7], [7, 0], [1, 7], [-1, 7], [5, 5], [-5, 5], [7, 1], [-7, 1],
            [4, 6], [-4, 6], [6, 4], [-6, 4], [2, 7], [-2, 7], [7, 2], [-7, 2], [3, 7], [-3, 7],
            [7, 3], [-7, 3], [5, 6], [-5, 6], [6, 5], [-6, 5], [8, 0], [4, 7], [-4, 7], [7, 4],
            [-7, 4], [8, 1], [8, 2], [6, 6], [-6, 6], [8, 3], [5, 7], [-5, 7], [7, 5], [-7, 5],
            [8, 4], [6, 7], [-6, 7], [7, 6], [-7, 6], [8, 5], [7, 7], [-7, 7], [8, 6], [8, 7],
        ];

        let r;
        if state.num_to_copy > 0 {
            r = state.window[(state.copy_pos & 0xfffff) as usize];
            state.copy_pos += 1;
            state.num_to_copy -= 1;
        } else {
            let token = self.code.read_symbol(bitstream, cluster)?;
            if token >= min_symbol {
                if state.num_decoded == 0 {
                    tracing::error!("LZ77 repeat symbol encountered without decoding any symbols");
                    return Err(Error::UnexpectedLz77Repeat);
                }

                let lz_dist_cluster = self.lz_dist_cluster();

                let num_to_copy =
                    self.read_uint_prefilled(bitstream, &state.lz_len_conf, token - min_symbol);
                let Some(num_to_copy) = num_to_copy.checked_add(min_length) else {
                    tracing::error!(num_to_copy, min_length, "LZ77 num_to_copy overflow");
                    return Err(Error::InvalidLz77Symbol);
                };
                state.num_to_copy = num_to_copy;

                let token = self.code.read_symbol(bitstream, lz_dist_cluster)?;
                let distance = self.read_uint_prefilled(
                    bitstream,
                    &self.configs[lz_dist_cluster as usize],
                    token,
                );
                let distance = if dist_multiplier == 0 {
                    distance
                } else if distance < 120 {
                    let [offset, dist] = SPECIAL_DISTANCES[distance as usize];
                    let dist = offset as i32 + dist_multiplier as i32 * dist as i32;
                    (dist - 1).max(0) as u32
                } else {
                    distance - 120
                };

                let distance = (((1 << 20) - 1).min(distance) + 1).min(state.num_decoded);
                state.copy_pos = state.num_decoded - distance;

                r = state.window[(state.copy_pos & 0xfffff) as usize];
                state.copy_pos += 1;
                state.num_to_copy -= 1;
            } else {
                r = self.read_uint_prefilled(bitstream, &self.configs[cluster as usize], token);
            }
        }
        let offset = (state.num_decoded & 0xfffff) as usize;
        if state.window.len() <= offset {
            state.window.push(r);
        } else {
            state.window[offset] = r;
        }
        state.num_decoded += 1;
        Ok(r)
    }

    #[inline]
    fn read_uint_prefilled(
        &self,
        bitstream: &mut Bitstream,
        config: &IntegerConfig,
        token: u32,
    ) -> u32 {
        let &IntegerConfig {
            split_exponent,
            split,
            msb_in_token,
            lsb_in_token,
            ..
        } = config;
        if token < split {
            return token;
        }

        let n = split_exponent - (msb_in_token + lsb_in_token)
            + ((token - split) >> (msb_in_token + lsb_in_token));
        // n < 32.
        let n = n & 31;
        let rest_bits = bitstream.peek_bits_prefilled(n as usize) as u64;
        bitstream.consume_bits(n as usize).ok();

        let low_bits = token & ((1 << lsb_in_token) - 1);
        let low_bits = low_bits as u64;
        let token = token >> lsb_in_token;
        let token = token & ((1 << msb_in_token) - 1);
        let token = token | (1 << msb_in_token);
        let token = token as u64;
        let result = (((token << n) | rest_bits) << lsb_in_token) | low_bits;
        // result fits in u32.
        result as u32
    }

    #[inline]
    fn lz_dist_cluster(&self) -> u8 {
        *self.clusters.last().unwrap()
    }
}

#[derive(Debug, Clone)]
enum Coder {
    PrefixCode(Arc<Vec<prefix::Histogram>>),
    Ans {
        dist: Arc<Vec<ans::Histogram>>,
        state: u32,
        initial: bool,
    },
}

impl Coder {
    #[inline(always)]
    fn read_symbol(&mut self, bitstream: &mut Bitstream, cluster: u8) -> Result<u32> {
        match self {
            Self::PrefixCode(dist) => {
                let dist = &dist[cluster as usize];
                dist.read_symbol(bitstream)
            }
            Self::Ans {
                dist,
                state,
                initial,
            } => {
                if *initial {
                    *state = bitstream.read_bits(32)?;
                    *initial = false;
                }
                let dist = &dist[cluster as usize];
                dist.read_symbol(bitstream, state)
            }
        }
    }

    #[inline]
    fn single_symbol(&self, cluster: u8) -> Option<u32> {
        match self {
            Self::PrefixCode(dist) => dist[cluster as usize].single_symbol(),
            Self::Ans { dist, .. } => dist[cluster as usize].single_symbol(),
        }
    }

    fn begin(&mut self, bitstream: &mut Bitstream) -> Result<()> {
        match self {
            Self::PrefixCode(_) => Ok(()),
            Self::Ans { state, initial, .. } => {
                *state = bitstream.read_bits(32)?;
                *initial = false;
                Ok(())
            }
        }
    }

    fn finalize(&self) -> Result<()> {
        match *self {
            Self::PrefixCode(_) => Ok(()),
            Self::Ans { state, .. } => {
                if state == 0x130000 {
                    Ok(())
                } else {
                    Err(Error::InvalidAnsStream)
                }
            }
        }
    }
}

fn add_log2_ceil(x: u32) -> u32 {
    if x >= 0x80000000 {
        32
    } else {
        (x + 1).next_power_of_two().trailing_zeros()
    }
}

/// Read a clustering information of distributions from the bitstream.
pub fn read_clusters(bitstream: &mut Bitstream, num_dist: u32) -> Result<(u32, Vec<u8>)> {
    if num_dist == 1 {
        return Ok((1, vec![0u8]));
    }

    let cluster = if bitstream.read_bool()? {
        // simple dist
        let nbits = bitstream.read_bits(2)? as usize;
        (0..num_dist)
            .map(|_| bitstream.read_bits(nbits).map(|b| b as u8))
            .collect::<std::result::Result<Vec<_>, _>>()?
    } else {
        let use_mtf = read_bits!(bitstream, Bool)?;
        let mut decoder = if num_dist <= 2 {
            Decoder::parse_assume_no_lz77(bitstream, 1)?
        } else {
            Decoder::parse(bitstream, 1)?
        };
        decoder.begin(bitstream)?;
        let mut ret = (0..num_dist)
            .map(|_| -> Result<_> {
                let b = decoder.read_varint(bitstream, 0)?;
                u8::try_from(b).map_err(|_| Error::InvalidCluster)
            })
            .collect::<Result<Vec<_>>>()?;
        decoder.finalize()?;
        if use_mtf {
            let mut mtfmap = [0u8; 256];
            for (idx, mtf) in mtfmap.iter_mut().enumerate() {
                *mtf = idx as u8;
            }
            for cluster in &mut ret {
                let idx = *cluster as usize;
                *cluster = mtfmap[idx];
                mtfmap.copy_within(0..idx, 1);
                mtfmap[0] = *cluster;
            }
        }
        ret
    };

    let num_clusters = *cluster.iter().max().unwrap() as u32 + 1;
    let set = cluster
        .iter()
        .copied()
        .collect::<std::collections::HashSet<_>>();
    if set.len() != num_clusters as usize {
        tracing::error!("distribution cluster has a hole");
        Err(Error::InvalidCluster)
    } else {
        Ok((num_clusters, cluster))
    }
}