jxl_modular/
ma.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
use std::collections::VecDeque;
use std::sync::Arc;

use jxl_bitstream::{unpack_signed, Bitstream};
use jxl_coding::Decoder;
use jxl_grid::{AllocHandle, AllocTracker};
use jxl_oxide_common::Bundle;

use super::predictor::{Predictor, Properties};
use crate::{sample::Sealed, Result, Sample};

/// Meta-adaptive tree configuration.
///
/// Meta-adaptive (MA) tree is a decision tree that controls how the sample is decoded in the given
/// context. The configuration consists of two components: the MA tree itself, and the distribution
/// information of an entropy decoder. These components are read from the bitstream.
#[derive(Debug, Clone)]
pub struct MaConfig {
    num_tree_nodes: usize,
    tree_depth: usize,
    tree: Arc<(MaTreeNode, Option<AllocHandle>)>,
    decoder: Decoder,
}

impl MaConfig {
    /// Returns the entropy decoder.
    ///
    /// The decoder should be cloned to be used for decoding.
    pub fn decoder(&self) -> &Decoder {
        &self.decoder
    }

    /// Creates a simplified MA tree with given channel index and stream index, which then can be
    /// used to decode samples.
    ///
    /// The method will evaluate the tree with the given information and prune branches which are
    /// always not taken.
    pub fn make_flat_tree(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> FlatMaTree {
        let nodes = self.tree.0.flatten(channel, stream_idx, prev_channels);
        FlatMaTree::new(nodes)
    }
}

impl MaConfig {
    /// Returns the number of MA tree nodes.
    #[inline]
    pub fn num_tree_nodes(&self) -> usize {
        self.num_tree_nodes
    }

    /// Returns the maximum distance from root to any leaf node.
    #[inline]
    pub fn tree_depth(&self) -> usize {
        self.tree_depth
    }
}

/// Parameters for decoding [`MaConfig`].
#[derive(Debug, Copy, Clone)]
pub struct MaConfigParams<'a> {
    /// Allocation tracker.
    pub tracker: Option<&'a AllocTracker>,
    /// Maximum number of meta-adaptive tree nodes.
    pub node_limit: usize,
    pub depth_limit: usize,
}

impl Bundle<MaConfigParams<'_>> for MaConfig {
    type Error = crate::Error;

    fn parse(bitstream: &mut Bitstream, params: MaConfigParams) -> crate::Result<Self> {
        struct FoldingTreeLeaf {
            ctx: u32,
            predictor: super::predictor::Predictor,
            offset: i32,
            multiplier: u32,
        }

        enum FoldingTree {
            Decision(u32, i32),
            Leaf(FoldingTreeLeaf),
        }

        let MaConfigParams {
            tracker,
            node_limit,
            depth_limit,
        } = params;

        let mut tree_decoder = Decoder::parse(bitstream, 6)?;
        if is_infinite_tree_dist(&tree_decoder) {
            tracing::error!("Infinite MA tree");
            return Err(crate::Error::InvalidMaTree);
        }

        let mut ctx = 0u32;
        let mut nodes_left = 1usize;
        let mut tmp_alloc_handle = tracker
            .map(|tracker| tracker.alloc::<FoldingTree>(16))
            .transpose()?;
        let mut nodes = Vec::with_capacity(16);
        let mut max_depth = 1usize;

        tree_decoder.begin(bitstream)?;
        while nodes_left > 0 {
            if nodes.len() >= (1 << 26) {
                return Err(crate::Error::InvalidMaTree);
            }
            if nodes.len() > node_limit {
                tracing::error!(node_limit, "MA tree limit exceeded");
                return Err(
                    jxl_bitstream::Error::ProfileConformance("MA tree limit exceeded").into(),
                );
            }

            if nodes.len() == nodes.capacity() && tmp_alloc_handle.is_some() {
                let tracker = tracker.unwrap();
                let current_len = nodes.len();
                if current_len <= 16 {
                    drop(tmp_alloc_handle);
                    tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(256)?);
                    nodes.reserve(256 - current_len);
                } else if current_len <= 256 {
                    drop(tmp_alloc_handle);
                    tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(1024)?);
                    nodes.reserve(1024 - current_len);
                } else {
                    drop(tmp_alloc_handle);
                    tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(current_len * 2)?);
                    nodes.reserve(current_len);
                }
            }

            nodes_left -= 1;
            let property = tree_decoder.read_varint(bitstream, 1)?;
            let node = if let Some(property) = property.checked_sub(1) {
                let value = unpack_signed(tree_decoder.read_varint(bitstream, 0)?);
                let node = FoldingTree::Decision(property, value);
                nodes_left += 2;
                node
            } else {
                let predictor = tree_decoder.read_varint(bitstream, 2)?;
                let predictor = Predictor::try_from(predictor)?;
                let offset = unpack_signed(tree_decoder.read_varint(bitstream, 3)?);
                let mul_log = tree_decoder.read_varint(bitstream, 4)?;
                if mul_log > 30 {
                    return Err(crate::Error::InvalidMaTree);
                }
                let mul_bits = tree_decoder.read_varint(bitstream, 5)?;
                if mul_bits > (1 << (31 - mul_log)) - 2 {
                    return Err(crate::Error::InvalidMaTree);
                }
                let multiplier = (mul_bits + 1) << mul_log;
                let node = FoldingTree::Leaf(FoldingTreeLeaf {
                    ctx,
                    predictor,
                    offset,
                    multiplier,
                });
                ctx += 1;
                node
            };
            nodes.push(node);
            max_depth = max_depth.max(nodes_left);
        }
        tree_decoder.finalize()?;
        let num_tree_nodes = nodes.len();
        let decoder = Decoder::parse(bitstream, ctx)?;
        let cluster_map = decoder.cluster_map();

        let tree_alloc_handle = tracker
            .map(|tracker| tracker.alloc::<FoldingTree>(nodes.len()))
            .transpose()?;
        let mut tmp = VecDeque::<(_, usize)>::with_capacity(max_depth);
        for node in nodes.into_iter().rev() {
            match node {
                FoldingTree::Decision(property, value) => {
                    let (right, dr) = tmp.pop_front().unwrap();
                    let (left, dl) = tmp.pop_front().unwrap();
                    let node = Box::new(MaTreeNode::Decision {
                        property,
                        value,
                        left,
                        right,
                    });
                    let depth = dr.max(dl) + 1;
                    if depth > depth_limit {
                        tracing::error!(depth_limit, "Decoded MA tree is too deep");
                        return Err(jxl_bitstream::Error::ProfileConformance(
                            "decoded MA tree is too deep",
                        )
                        .into());
                    }

                    tmp.push_back((node, depth));
                }
                FoldingTree::Leaf(FoldingTreeLeaf {
                    ctx,
                    predictor,
                    offset,
                    multiplier,
                }) => {
                    let cluster = cluster_map[ctx as usize];
                    let leaf = MaTreeLeafClustered {
                        cluster,
                        predictor,
                        offset,
                        multiplier,
                    };
                    let node = Box::new(MaTreeNode::Leaf(leaf));
                    tmp.push_back((node, 0));
                }
            }
        }
        assert_eq!(tmp.len(), 1);
        let (tree, tree_depth) = tmp.pop_front().unwrap();
        let tree = *tree;

        Ok(Self {
            num_tree_nodes,
            tree_depth,
            tree: Arc::new((tree, tree_alloc_handle)),
            decoder,
        })
    }
}

fn is_infinite_tree_dist(decoder: &Decoder) -> bool {
    let cluster_map = decoder.cluster_map();

    // Distribution #1 decides whether it's decision node or leaf node; if it reads 0 it's a leaf
    // node. Therefore, the tree is infinitely large if the dist always reads token other than 0.
    let cluster = cluster_map[1];
    let Some(token) = decoder.single_token(cluster) else {
        return false;
    };
    token != 0
}

/// A "flat" meta-adaptive tree, constructed with [`MaConfig::make_flat_tree`].
#[derive(Debug)]
pub struct FlatMaTree {
    nodes: Vec<FlatMaTreeNode>,
    need_self_correcting: bool,
    max_prev_channel_depth: usize,
}

#[derive(Debug)]
enum FlatMaTreeNode {
    FusedDecision {
        prop_level0: u32,
        value_level0: i32,
        props_level1: (u32, u32),
        values_level1: (i32, i32),
        index_base: u32,
    },
    Table {
        prop: u32,
        value_base: i32,
        indices: Box<[u32]>,
    },
    Leaf(MaTreeLeafClustered),
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) struct MaTreeLeafClustered {
    pub(crate) cluster: u8,
    pub(crate) predictor: super::predictor::Predictor,
    pub(crate) offset: i32,
    pub(crate) multiplier: u32,
}

impl FlatMaTree {
    fn new(nodes: Vec<FlatMaTreeNode>) -> Self {
        let need_self_correcting = nodes.iter().any(|node| match *node {
            FlatMaTreeNode::FusedDecision {
                prop_level0: p,
                props_level1: (pl, pr),
                ..
            } => p == 15 || pl == 15 || pr == 15,
            FlatMaTreeNode::Table { prop, .. } => prop == 15,
            FlatMaTreeNode::Leaf(MaTreeLeafClustered { predictor, .. }) => {
                predictor == Predictor::SelfCorrecting
            }
        });

        let mut max_prev_channel_depth = 0usize;
        for node in &nodes {
            if let FlatMaTreeNode::FusedDecision {
                prop_level0: p,
                props_level1: (pl, pr),
                ..
            } = *node
            {
                if let Some(p) = p.checked_sub(16) {
                    max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
                }
                if let Some(p) = pl.checked_sub(16) {
                    max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
                }
                if let Some(p) = pr.checked_sub(16) {
                    max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
                }
            } else if let FlatMaTreeNode::Table { prop, .. } = *node {
                if let Some(p) = prop.checked_sub(16) {
                    max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
                }
            }
        }

        Self {
            nodes,
            need_self_correcting,
            max_prev_channel_depth,
        }
    }

    pub(crate) fn get_leaf<S: Sample>(&self, properties: &Properties<S>) -> &MaTreeLeafClustered {
        let mut current_node = &self.nodes[0];
        loop {
            match current_node {
                &FlatMaTreeNode::FusedDecision {
                    prop_level0: p,
                    value_level0: v,
                    props_level1: (pl, pr),
                    values_level1: (vl, vr),
                    index_base,
                } => {
                    let p0v = properties.get(p as usize);
                    let plv = properties.get(pl as usize);
                    let prv = properties.get(pr as usize);
                    let high_bit = p0v <= v;
                    let l = (plv <= vl) as u32;
                    let r = 2 | (prv <= vr) as u32;
                    let next_node = index_base + if high_bit { r } else { l };
                    current_node = &self.nodes[next_node as usize];
                }
                &FlatMaTreeNode::Table {
                    prop,
                    value_base,
                    ref indices,
                } => {
                    let v = properties.get(prop as usize);
                    let idx = v
                        .saturating_sub(value_base)
                        .clamp(0, indices.len() as i32 - 1) as usize;
                    let next_node = indices[idx];
                    current_node = &self.nodes[next_node as usize];
                }
                FlatMaTreeNode::Leaf(leaf) => return leaf,
            }
        }
    }
}

impl FlatMaTree {
    /// Returns whether self-correcting predictor should be initialized.
    ///
    /// The return value of this method can be used to optimize the decoding process, since
    /// self-correcting predictors are computationally heavy.
    #[inline]
    pub fn need_self_correcting(&self) -> bool {
        self.need_self_correcting
    }

    /// Returns the number of previously decoded channels needed in order to traverse the MA tree.
    #[inline]
    pub fn max_prev_channel_depth(&self) -> usize {
        self.max_prev_channel_depth
    }

    /// Decode a sample with the given state.
    pub fn decode_sample<S: Sample>(
        &self,
        bitstream: &mut Bitstream,
        decoder: &mut Decoder,
        properties: &Properties<S>,
        dist_multiplier: u32,
    ) -> Result<(i32, super::predictor::Predictor)> {
        let leaf = self.get_leaf(properties);
        let diff = decoder.read_varint_with_multiplier_clustered(
            bitstream,
            leaf.cluster,
            dist_multiplier,
        )?;
        let diff = unpack_signed(diff).wrapping_muladd_i32(leaf.multiplier as i32, leaf.offset);
        Ok((diff, leaf.predictor))
    }

    #[inline]
    pub(crate) fn single_node(&self) -> Option<&MaTreeLeafClustered> {
        match self.nodes.first() {
            Some(FlatMaTreeNode::Leaf(node)) => Some(node),
            _ => None,
        }
    }

    pub(crate) fn simple_table(&self) -> Option<SimpleMaTable> {
        let Some(&FlatMaTreeNode::Table {
            prop: decision_prop,
            value_base,
            ref indices,
        }) = self.nodes.first()
        else {
            return None;
        };

        let mut state: Option<(Predictor, i32, u32)> = None;
        let mut cluster_table = Vec::with_capacity(indices.len());
        for &index in &**indices {
            let node = &self.nodes[index as usize];
            let FlatMaTreeNode::Leaf(leaf) = node else {
                return None;
            };

            let leaf_props = (leaf.predictor, leaf.offset, leaf.multiplier);
            let &mut state = state.get_or_insert(leaf_props);
            if leaf_props != state {
                return None;
            }

            cluster_table.push(leaf.cluster);
        }

        let (predictor, offset, multiplier) = state.unwrap();
        Some(SimpleMaTable {
            decision_prop,
            value_base,
            predictor,
            offset,
            multiplier,
            cluster_table: cluster_table.into_boxed_slice(),
        })
    }
}

#[derive(Debug)]
pub(crate) struct SimpleMaTable {
    pub(crate) decision_prop: u32,
    pub(crate) value_base: i32,
    pub(crate) predictor: Predictor,
    pub(crate) offset: i32,
    pub(crate) multiplier: u32,
    pub(crate) cluster_table: Box<[u8]>,
}

#[derive(Debug)]
enum MaTreeNode {
    Decision {
        property: u32,
        value: i32,
        left: Box<MaTreeNode>,
        right: Box<MaTreeNode>,
    },
    Leaf(MaTreeLeafClustered),
}

impl MaTreeNode {
    fn next_decision_node(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> &MaTreeNode {
        match *self {
            MaTreeNode::Decision {
                property: property @ (0 | 1),
                value,
                ref left,
                ref right,
            } => {
                let target = if property == 0 { channel } else { stream_idx };
                let node = if target as i32 > value { left } else { right };
                node.next_decision_node(channel, stream_idx, prev_channels)
            }
            ref node @ MaTreeNode::Decision {
                property,
                value,
                ref left,
                ref right,
            } if property >= 16 => {
                let prev_channel_idx = (property - 16) / 4;
                if prev_channel_idx >= prev_channels {
                    let node = if value < 0 { left } else { right };
                    node.next_decision_node(channel, stream_idx, prev_channels)
                } else {
                    node
                }
            }
            ref node => node,
        }
    }

    fn try_compile_to_table(
        &self,
        channel: u32,
        stream_idx: u32,
        prev_channels: u32,
        next_index_base: u32,
    ) -> Option<(FlatMaTreeNode, Vec<&MaTreeNode>)> {
        let &MaTreeNode::Decision {
            property,
            value,
            ref left,
            ref right,
        } = self
        else {
            return None;
        };

        let mut lower_bound = value;
        let mut upper_bound = value;
        let mut stack = vec![
            (&**left, (value + 1)..=i32::MAX),
            (&**right, i32::MIN..=value),
        ];
        let mut range_nodes = Vec::new();
        while let Some((node, range)) = stack.pop() {
            let node = node.next_decision_node(channel, stream_idx, prev_channels);
            let (value, left, right) = match node {
                &MaTreeNode::Decision {
                    property: target_property,
                    value,
                    ref left,
                    ref right,
                } if target_property == property => (value, left, right),
                _ => {
                    range_nodes.push((node, *range.end()));
                    continue;
                }
            };
            let new_lower_bound = lower_bound.min(value);
            let new_upper_bound = upper_bound.max(value);
            if new_upper_bound.abs_diff(new_lower_bound) > 1024 - 2 {
                range_nodes.push((node, *range.end()));
                continue;
            }
            lower_bound = new_lower_bound;
            upper_bound = new_upper_bound;

            let left_range = (value + 1)..=(*range.end());
            let right_range = (*range.start())..=value;
            if !left_range.is_empty() {
                stack.push((&**left, left_range));
            }
            if !right_range.is_empty() {
                stack.push((&**right, right_range));
            }
        }
        if range_nodes.len() < 4 {
            return None;
        }

        range_nodes.sort_unstable_by_key(|(_, range_end)| *range_end);

        let index_count = upper_bound.abs_diff(lower_bound) as usize + 2;
        let mut indices = vec![0u32; index_count];
        let mut nodes = Vec::with_capacity(range_nodes.len());

        let mut range_start = lower_bound - 1;
        let mut next_index = 0usize;
        for (idx, (node, range_end)) in range_nodes.into_iter().enumerate() {
            if range_end == i32::MAX {
                *indices.last_mut().unwrap() = next_index_base + idx as u32;
                nodes.push(node);
                break;
            }
            let len = range_end.abs_diff(range_start) as usize;
            let end_index = next_index + len;
            indices[next_index..end_index].fill(next_index_base + idx as u32);
            nodes.push(node);
            next_index = end_index;
            range_start = range_end;
        }

        let node = FlatMaTreeNode::Table {
            prop: property,
            value_base: lower_bound,
            indices: indices.into_boxed_slice(),
        };
        Some((node, nodes))
    }

    fn flatten(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> Vec<FlatMaTreeNode> {
        let target = self.next_decision_node(channel, stream_idx, prev_channels);
        let mut q = std::collections::VecDeque::new();
        q.push_back(target);

        let mut out = Vec::new();
        let mut next_base = 1u32;
        while let Some(target) = q.pop_front() {
            let target = target.next_decision_node(channel, stream_idx, prev_channels);
            if let Some((out_node, nodes)) =
                target.try_compile_to_table(channel, stream_idx, prev_channels, next_base)
            {
                let len = nodes.len() as u32;
                out.push(out_node);
                q.extend(nodes);
                next_base += len;
                continue;
            }

            match *target {
                MaTreeNode::Decision {
                    property,
                    value,
                    ref left,
                    ref right,
                } => {
                    let left = left.next_decision_node(channel, stream_idx, prev_channels);
                    let (lp, lv, ll, lr) = match left {
                        &MaTreeNode::Decision {
                            property,
                            value,
                            ref left,
                            ref right,
                        } => (property, value, &**left, &**right),
                        node => (0, 0, node, node),
                    };
                    let right = right.next_decision_node(channel, stream_idx, prev_channels);
                    let (rp, rv, rl, rr) = match right {
                        &MaTreeNode::Decision {
                            property,
                            value,
                            ref left,
                            ref right,
                        } => (property, value, &**left, &**right),
                        node => (0, 0, node, node),
                    };
                    out.push(FlatMaTreeNode::FusedDecision {
                        prop_level0: property,
                        value_level0: value,
                        props_level1: (lp, rp),
                        values_level1: (lv, rv),
                        index_base: next_base,
                    });
                    q.push_back(ll);
                    q.push_back(lr);
                    q.push_back(rl);
                    q.push_back(rr);
                    next_base += 4;
                }
                MaTreeNode::Leaf(ref leaf) => {
                    out.push(FlatMaTreeNode::Leaf(leaf.clone()));
                }
            }
        }

        out
    }
}