use std::collections::VecDeque;
use std::sync::Arc;
use jxl_bitstream::{unpack_signed, Bitstream, Bundle};
use jxl_coding::Decoder;
use jxl_grid::{AllocHandle, AllocTracker};
use super::predictor::{Predictor, Properties};
use crate::{sample::Sealed, Result, Sample};
#[derive(Debug, Clone)]
pub struct MaConfig {
num_tree_nodes: usize,
tree_depth: usize,
tree: Arc<(MaTreeNode, Option<AllocHandle>)>,
decoder: Decoder,
}
impl MaConfig {
pub fn decoder(&self) -> &Decoder {
&self.decoder
}
pub fn make_flat_tree(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> FlatMaTree {
let nodes = self.tree.0.flatten(channel, stream_idx, prev_channels);
FlatMaTree::new(nodes)
}
}
impl MaConfig {
#[inline]
pub fn num_tree_nodes(&self) -> usize {
self.num_tree_nodes
}
#[inline]
pub fn tree_depth(&self) -> usize {
self.tree_depth
}
}
#[derive(Debug, Copy, Clone)]
pub struct MaConfigParams<'a> {
pub tracker: Option<&'a AllocTracker>,
pub node_limit: usize,
}
impl Bundle<MaConfigParams<'_>> for MaConfig {
type Error = crate::Error;
fn parse(bitstream: &mut Bitstream, params: MaConfigParams) -> crate::Result<Self> {
struct FoldingTreeLeaf {
ctx: u32,
predictor: super::predictor::Predictor,
offset: i32,
multiplier: u32,
}
enum FoldingTree {
Decision(u32, i32),
Leaf(FoldingTreeLeaf),
}
let MaConfigParams {
tracker,
node_limit,
} = params;
let mut tree_decoder = Decoder::parse(bitstream, 6)?;
if is_infinite_tree_dist(&tree_decoder) {
tracing::error!("Infinite MA tree");
return Err(crate::Error::InvalidMaTree);
}
let mut ctx = 0u32;
let mut nodes_left = 1usize;
let mut tmp_alloc_handle = tracker
.map(|tracker| tracker.alloc::<FoldingTree>(16))
.transpose()?;
let mut nodes = Vec::with_capacity(16);
let mut max_depth = 1usize;
tree_decoder.begin(bitstream)?;
while nodes_left > 0 {
if nodes.len() >= (1 << 26) {
return Err(crate::Error::InvalidMaTree);
}
if nodes.len() > node_limit {
tracing::error!(node_limit, "MA tree limit exceeded");
return Err(
jxl_bitstream::Error::ProfileConformance("MA tree limit exceeded").into(),
);
}
if nodes.len() == nodes.capacity() && tmp_alloc_handle.is_some() {
let tracker = tracker.unwrap();
let current_len = nodes.len();
if current_len <= 16 {
drop(tmp_alloc_handle);
tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(256)?);
nodes.reserve(256 - current_len);
} else if current_len <= 256 {
drop(tmp_alloc_handle);
tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(1024)?);
nodes.reserve(1024 - current_len);
} else {
drop(tmp_alloc_handle);
tmp_alloc_handle = Some(tracker.alloc::<FoldingTree>(current_len * 2)?);
nodes.reserve(current_len);
}
}
nodes_left -= 1;
let property = tree_decoder.read_varint(bitstream, 1)?;
let node = if let Some(property) = property.checked_sub(1) {
let value = unpack_signed(tree_decoder.read_varint(bitstream, 0)?);
let node = FoldingTree::Decision(property, value);
nodes_left += 2;
node
} else {
let predictor = tree_decoder.read_varint(bitstream, 2)?;
let predictor = Predictor::try_from(predictor)?;
let offset = unpack_signed(tree_decoder.read_varint(bitstream, 3)?);
let mul_log = tree_decoder.read_varint(bitstream, 4)?;
if mul_log > 30 {
return Err(crate::Error::InvalidMaTree);
}
let mul_bits = tree_decoder.read_varint(bitstream, 5)?;
if mul_bits > (1 << (31 - mul_log)) - 2 {
return Err(crate::Error::InvalidMaTree);
}
let multiplier = (mul_bits + 1) << mul_log;
let node = FoldingTree::Leaf(FoldingTreeLeaf {
ctx,
predictor,
offset,
multiplier,
});
ctx += 1;
node
};
nodes.push(node);
max_depth = max_depth.max(nodes_left);
}
tree_decoder.finalize()?;
let num_tree_nodes = nodes.len();
let decoder = Decoder::parse(bitstream, ctx)?;
let cluster_map = decoder.cluster_map();
let tree_alloc_handle = tracker
.map(|tracker| tracker.alloc::<FoldingTree>(nodes.len()))
.transpose()?;
let mut tmp = VecDeque::<(_, usize)>::with_capacity(max_depth);
for node in nodes.into_iter().rev() {
match node {
FoldingTree::Decision(property, value) => {
let (right, dr) = tmp.pop_front().unwrap();
let (left, dl) = tmp.pop_front().unwrap();
let node = Box::new(MaTreeNode::Decision {
property,
value,
left,
right,
});
tmp.push_back((node, dr.max(dl) + 1));
}
FoldingTree::Leaf(FoldingTreeLeaf {
ctx,
predictor,
offset,
multiplier,
}) => {
let cluster = cluster_map[ctx as usize];
let leaf = MaTreeLeafClustered {
cluster,
predictor,
offset,
multiplier,
};
let node = Box::new(MaTreeNode::Leaf(leaf));
tmp.push_back((node, 0));
}
}
}
assert_eq!(tmp.len(), 1);
let (tree, tree_depth) = tmp.pop_front().unwrap();
let tree = *tree;
Ok(Self {
num_tree_nodes,
tree_depth,
tree: Arc::new((tree, tree_alloc_handle)),
decoder,
})
}
}
fn is_infinite_tree_dist(decoder: &Decoder) -> bool {
let cluster_map = decoder.cluster_map();
let cluster = cluster_map[1];
let Some(token) = decoder.single_token(cluster) else {
return false;
};
token != 0
}
#[derive(Debug)]
pub struct FlatMaTree {
nodes: Vec<FlatMaTreeNode>,
need_self_correcting: bool,
max_prev_channel_depth: usize,
}
#[derive(Debug)]
enum FlatMaTreeNode {
FusedDecision {
prop_level0: u32,
value_level0: i32,
props_level1: (u32, u32),
values_level1: (i32, i32),
index_base: u32,
},
Table {
prop: u32,
value_base: i32,
indices: Box<[u32]>,
},
Leaf(MaTreeLeafClustered),
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) struct MaTreeLeafClustered {
pub(crate) cluster: u8,
pub(crate) predictor: super::predictor::Predictor,
pub(crate) offset: i32,
pub(crate) multiplier: u32,
}
impl FlatMaTree {
fn new(nodes: Vec<FlatMaTreeNode>) -> Self {
let need_self_correcting = nodes.iter().any(|node| match *node {
FlatMaTreeNode::FusedDecision {
prop_level0: p,
props_level1: (pl, pr),
..
} => p == 15 || pl == 15 || pr == 15,
FlatMaTreeNode::Table { prop, .. } => prop == 15,
FlatMaTreeNode::Leaf(MaTreeLeafClustered { predictor, .. }) => {
predictor == Predictor::SelfCorrecting
}
});
let mut max_prev_channel_depth = 0usize;
for node in &nodes {
if let FlatMaTreeNode::FusedDecision {
prop_level0: p,
props_level1: (pl, pr),
..
} = *node
{
if let Some(p) = p.checked_sub(16) {
max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
}
if let Some(p) = pl.checked_sub(16) {
max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
}
if let Some(p) = pr.checked_sub(16) {
max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
}
} else if let FlatMaTreeNode::Table { prop, .. } = *node {
if let Some(p) = prop.checked_sub(16) {
max_prev_channel_depth = max_prev_channel_depth.max((p as usize / 4) + 1);
}
}
}
Self {
nodes,
need_self_correcting,
max_prev_channel_depth,
}
}
pub(crate) fn get_leaf<S: Sample>(&self, properties: &Properties<S>) -> &MaTreeLeafClustered {
let mut current_node = &self.nodes[0];
loop {
match current_node {
&FlatMaTreeNode::FusedDecision {
prop_level0: p,
value_level0: v,
props_level1: (pl, pr),
values_level1: (vl, vr),
index_base,
} => {
let p0v = properties.get(p as usize);
let plv = properties.get(pl as usize);
let prv = properties.get(pr as usize);
let high_bit = p0v <= v;
let l = (plv <= vl) as u32;
let r = 2 | (prv <= vr) as u32;
let next_node = index_base + if high_bit { r } else { l };
current_node = &self.nodes[next_node as usize];
}
&FlatMaTreeNode::Table {
prop,
value_base,
ref indices,
} => {
let v = properties.get(prop as usize);
let idx = (v - value_base).clamp(0, indices.len() as i32 - 1) as usize;
let next_node = indices[idx];
current_node = &self.nodes[next_node as usize];
}
FlatMaTreeNode::Leaf(leaf) => return leaf,
}
}
}
}
impl FlatMaTree {
#[inline]
pub fn need_self_correcting(&self) -> bool {
self.need_self_correcting
}
#[inline]
pub fn max_prev_channel_depth(&self) -> usize {
self.max_prev_channel_depth
}
pub fn decode_sample<S: Sample>(
&self,
bitstream: &mut Bitstream,
decoder: &mut Decoder,
properties: &Properties<S>,
dist_multiplier: u32,
) -> Result<(i32, super::predictor::Predictor)> {
let leaf = self.get_leaf(properties);
let diff = decoder.read_varint_with_multiplier_clustered(
bitstream,
leaf.cluster,
dist_multiplier,
)?;
let diff = unpack_signed(diff).wrapping_muladd_i32(leaf.multiplier as i32, leaf.offset);
Ok((diff, leaf.predictor))
}
#[inline]
pub(crate) fn single_node(&self) -> Option<&MaTreeLeafClustered> {
match self.nodes.first() {
Some(FlatMaTreeNode::Leaf(node)) => Some(node),
_ => None,
}
}
pub(crate) fn simple_table(&self) -> Option<SimpleMaTable> {
let Some(&FlatMaTreeNode::Table {
prop: decision_prop,
value_base,
ref indices,
}) = self.nodes.first()
else {
return None;
};
let mut state: Option<(Predictor, i32, u32)> = None;
let mut cluster_table = Vec::with_capacity(indices.len());
for &index in &**indices {
let node = &self.nodes[index as usize];
let FlatMaTreeNode::Leaf(leaf) = node else {
return None;
};
let leaf_props = (leaf.predictor, leaf.offset, leaf.multiplier);
let &mut state = state.get_or_insert(leaf_props);
if leaf_props != state {
return None;
}
cluster_table.push(leaf.cluster);
}
let (predictor, offset, multiplier) = state.unwrap();
Some(SimpleMaTable {
decision_prop,
value_base,
predictor,
offset,
multiplier,
cluster_table: cluster_table.into_boxed_slice(),
})
}
}
#[derive(Debug)]
pub(crate) struct SimpleMaTable {
pub(crate) decision_prop: u32,
pub(crate) value_base: i32,
pub(crate) predictor: Predictor,
pub(crate) offset: i32,
pub(crate) multiplier: u32,
pub(crate) cluster_table: Box<[u8]>,
}
#[derive(Debug)]
enum MaTreeNode {
Decision {
property: u32,
value: i32,
left: Box<MaTreeNode>,
right: Box<MaTreeNode>,
},
Leaf(MaTreeLeafClustered),
}
impl MaTreeNode {
fn next_decision_node(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> &MaTreeNode {
match *self {
MaTreeNode::Decision {
property: property @ (0 | 1),
value,
ref left,
ref right,
} => {
let target = if property == 0 { channel } else { stream_idx };
let node = if target as i32 > value { left } else { right };
node.next_decision_node(channel, stream_idx, prev_channels)
}
ref node @ MaTreeNode::Decision {
property,
value,
ref left,
ref right,
} if property >= 16 => {
let prev_channel_idx = (property - 16) / 4;
if prev_channel_idx >= prev_channels {
let node = if value < 0 { left } else { right };
node.next_decision_node(channel, stream_idx, prev_channels)
} else {
node
}
}
ref node => node,
}
}
fn try_compile_to_table(
&self,
channel: u32,
stream_idx: u32,
prev_channels: u32,
next_index_base: u32,
) -> Option<(FlatMaTreeNode, Vec<&MaTreeNode>)> {
let &MaTreeNode::Decision {
property,
value,
ref left,
ref right,
} = self
else {
return None;
};
let mut lower_bound = value;
let mut upper_bound = value;
let mut stack = vec![
(&**left, (value + 1)..=i32::MAX),
(&**right, i32::MIN..=value),
];
let mut range_nodes = Vec::new();
while let Some((node, range)) = stack.pop() {
let node = node.next_decision_node(channel, stream_idx, prev_channels);
let (value, left, right) = match node {
&MaTreeNode::Decision {
property: target_property,
value,
ref left,
ref right,
} if target_property == property => (value, left, right),
_ => {
range_nodes.push((node, *range.end()));
continue;
}
};
let new_lower_bound = lower_bound.min(value);
let new_upper_bound = upper_bound.max(value);
if new_upper_bound.abs_diff(new_lower_bound) > 1024 - 2 {
range_nodes.push((node, *range.end()));
continue;
}
lower_bound = new_lower_bound;
upper_bound = new_upper_bound;
let left_range = (value + 1)..=(*range.end());
let right_range = (*range.start())..=value;
if !left_range.is_empty() {
stack.push((&**left, left_range));
}
if !right_range.is_empty() {
stack.push((&**right, right_range));
}
}
if range_nodes.len() < 4 {
return None;
}
range_nodes.sort_unstable_by_key(|(_, range_end)| *range_end);
let index_count = upper_bound.abs_diff(lower_bound) as usize + 2;
let mut indices = vec![0u32; index_count];
let mut nodes = Vec::with_capacity(range_nodes.len());
let mut range_start = lower_bound - 1;
let mut next_index = 0usize;
for (idx, (node, range_end)) in range_nodes.into_iter().enumerate() {
if range_end == i32::MAX {
*indices.last_mut().unwrap() = next_index_base + idx as u32;
nodes.push(node);
break;
}
let len = range_end.abs_diff(range_start) as usize;
let end_index = next_index + len;
indices[next_index..end_index].fill(next_index_base + idx as u32);
nodes.push(node);
next_index = end_index;
range_start = range_end;
}
let node = FlatMaTreeNode::Table {
prop: property,
value_base: lower_bound,
indices: indices.into_boxed_slice(),
};
Some((node, nodes))
}
fn flatten(&self, channel: u32, stream_idx: u32, prev_channels: u32) -> Vec<FlatMaTreeNode> {
let target = self.next_decision_node(channel, stream_idx, prev_channels);
let mut q = std::collections::VecDeque::new();
q.push_back(target);
let mut out = Vec::new();
let mut next_base = 1u32;
while let Some(target) = q.pop_front() {
let target = target.next_decision_node(channel, stream_idx, prev_channels);
if let Some((out_node, nodes)) =
target.try_compile_to_table(channel, stream_idx, prev_channels, next_base)
{
let len = nodes.len() as u32;
out.push(out_node);
q.extend(nodes);
next_base += len;
continue;
}
match *target {
MaTreeNode::Decision {
property,
value,
ref left,
ref right,
} => {
let left = left.next_decision_node(channel, stream_idx, prev_channels);
let (lp, lv, ll, lr) = match left {
&MaTreeNode::Decision {
property,
value,
ref left,
ref right,
} => (property, value, &**left, &**right),
node => (0, 0, node, node),
};
let right = right.next_decision_node(channel, stream_idx, prev_channels);
let (rp, rv, rl, rr) = match right {
&MaTreeNode::Decision {
property,
value,
ref left,
ref right,
} => (property, value, &**left, &**right),
node => (0, 0, node, node),
};
out.push(FlatMaTreeNode::FusedDecision {
prop_level0: property,
value_level0: value,
props_level1: (lp, rp),
values_level1: (lv, rv),
index_base: next_base,
});
q.push_back(ll);
q.push_back(lr);
q.push_back(rl);
q.push_back(rr);
next_base += 4;
}
MaTreeNode::Leaf(ref leaf) => {
out.push(FlatMaTreeNode::Leaf(leaf.clone()));
}
}
}
out
}
}