1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//
// Copyright (c) 2016 KAMADA Ken'ichi.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
//

use endian::{Endian, BigEndian, LittleEndian};
use error::Error;
use tag;
use tag_priv::{Context, Tag};
use value::Value;
use value::get_type_info;
use util::atou16;

// TIFF header magic numbers [EXIF23 4.5.2].
const TIFF_BE: u16 = 0x4d4d;
const TIFF_LE: u16 = 0x4949;
const TIFF_FORTY_TWO: u16 = 0x002a;
const TIFF_BE_SIG: [u8; 4] = [0x4d, 0x4d, 0x00, 0x2a];
const TIFF_LE_SIG: [u8; 4] = [0x49, 0x49, 0x2a, 0x00];

/// A TIFF field.
#[derive(Debug)]
pub struct Field<'a> {
    /// The tag of this field.
    pub tag: Tag,
    /// False for the primary image and true for the thumbnail.
    pub thumbnail: bool,
    /// The value of this field.
    pub value: Value<'a>,
}

/// Parse the Exif attributes in the TIFF format.
///
/// Returns a Vec of Exif fields and a bool.
/// The boolean value is true if the data is little endian.
/// If an error occurred, `exif::Error` is returned.
pub fn parse_exif(data: &[u8]) -> Result<(Vec<Field>, bool), Error> {
    // Check the byte order and call the real parser.
    if data.len() < 8 {
        return Err(Error::InvalidFormat("Truncated TIFF header"));
    }
    match BigEndian::loadu16(data, 0) {
        TIFF_BE => parse_exif_sub::<BigEndian>(data).map(|v| (v, false)),
        TIFF_LE => parse_exif_sub::<LittleEndian>(data).map(|v| (v, true)),
        _ => Err(Error::InvalidFormat("Invalid TIFF byte order")),
    }
}

fn parse_exif_sub<E>(data: &[u8])
                     -> Result<Vec<Field>, Error> where E: Endian {
    // Parse the rest of the header (42 and the IFD offset).
    if E::loadu16(data, 2) != TIFF_FORTY_TWO {
        return Err(Error::InvalidFormat("Invalid forty two"));
    }
    let ifd_offset = E::loadu32(data, 4) as usize;
    parse_ifd::<E>(data, ifd_offset, Context::Tiff, false)
}

// Parse IFD [EXIF23 4.6.2].
fn parse_ifd<E>(data: &[u8], offset: usize, ctx: Context, thumbnail: bool)
                -> Result<Vec<Field>, Error> where E: Endian {
    // Count (the number of the entries).
    if data.len() < offset || data.len() - offset < 2 {
        return Err(Error::InvalidFormat("Truncated IFD count"));
    }
    let count = E::loadu16(data, offset) as usize;

    // Array of entries.  (count * 12) never overflow.
    if data.len() - offset - 2 < count * 12 {
        return Err(Error::InvalidFormat("Truncated IFD"));
    }
    let mut fields = Vec::with_capacity(count);
    for i in 0..count as usize {
        let tag = E::loadu16(data, offset + 2 + i * 12);
        let typ = E::loadu16(data, offset + 2 + i * 12 + 2);
        let cnt = E::loadu32(data, offset + 2 + i * 12 + 4) as usize;
        let ofs = E::loadu32(data, offset + 2 + i * 12 + 8) as usize;
        let (unitlen, parser) = get_type_info::<E>(typ);
        let vallen = try!(unitlen.checked_mul(cnt).ok_or(
            Error::InvalidFormat("Invalid entry count")));
        let val;
        if unitlen == 0 {
            val = Value::Unknown(typ, cnt as u32, ofs as u32);
        } else if vallen <= 4 {
            val = parser(data, offset + 2 + i * 12 + 8, cnt);
        } else {
            if data.len() < ofs || data.len() - ofs < vallen {
                return Err(Error::InvalidFormat("Truncated field value"));
            }
            val = parser(data, ofs, cnt);
        }

        // No infinite recursion will occur because the context is not
        // recursively defined.
        // XXX Should we check the type and count of a pointer?
        // A pointer field has type == LONG and count == 1, so the
        // value (IFD offset) must be embedded in the "value offset"
        // element of the field.
        let tag = Tag(ctx, tag);
        if tag == tag::ExifIFDPointer {
            let mut v = try!(
                parse_ifd::<E>(data, ofs, Context::Exif, thumbnail));
            fields.append(&mut v);
        } else if tag == tag::GPSInfoIFDPointer {
            let mut v = try!(
                parse_ifd::<E>(data, ofs, Context::Gps, thumbnail));
            fields.append(&mut v);
        } else if tag == tag::InteropIFDPointer {
            let mut v = try!(
                parse_ifd::<E>(data, ofs, Context::Interop, thumbnail));
            fields.append(&mut v);
        } else {
            fields.push(Field { tag: tag, thumbnail: thumbnail, value: val });
        }
    }

    // Offset to the next IFD.
    if data.len() - offset - 2 - count * 12 < 4 {
        return Err(Error::InvalidFormat("Truncated next IFD offset"));
    }
    let next_ifd_offset = E::loadu32(data, offset + 2 + count * 12) as usize;
    if next_ifd_offset != 0 {
        if ctx != Context::Tiff || thumbnail {
            return Err(Error::InvalidFormat("Unexpected next IFD"));
        }
        let mut v = try!(
            parse_ifd::<E>(data, next_ifd_offset, Context::Tiff, true));
        fields.append(&mut v);
    }

    Ok(fields)
}

pub fn is_tiff(buf: &[u8]) -> bool {
    buf.starts_with(&TIFF_BE_SIG) || buf.starts_with(&TIFF_LE_SIG)
}

/// A struct used to parse a DateTime field.
#[derive(Debug)]
pub struct DateTime {
    pub year: u16,
    pub month: u8,
    pub day: u8,
    pub hour: u8,
    pub minute: u8,
    pub second: u8,
}

impl DateTime {
    /// Parse an ASCII data of a DateTime field.  The range of a number
    /// is not validated, so, for example, 13 may be returned as the month.
    pub fn from_ascii(data: &[u8]) -> Result<DateTime, Error> {
        if data == b"    :  :     :  :  " || data == b"                   " {
            return Err(Error::BlankValue("DateTime is blank"));
        } else if data.len() < 19 {
            return Err(Error::InvalidFormat("DateTime too short"));
        } else if !(data[4] == b':' && data[7] == b':' && data[10] == b' ' &&
                    data[13] == b':' && data[16] == b':') {
            return Err(Error::InvalidFormat("Invalid DateTime delimiter"));
        }
        Ok(DateTime {
            year: try!(atou16(&data[0..4])),
            month: try!(atou16(&data[5..7])) as u8,
            day: try!(atou16(&data[8..10])) as u8,
            hour: try!(atou16(&data[11..13])) as u8,
            minute: try!(atou16(&data[14..16])) as u8,
            second: try!(atou16(&data[17..19])) as u8,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // Before the error is returned, the IFD is parsed twice as the
    // 0th and 1st IFDs.
    #[test]
    fn inf_loop_by_next() {
        let data = b"MM\0\x2a\0\0\0\x08\
                     \0\x01\x01\0\0\x03\0\0\0\x01\0\x14\0\0\0\0\0\x08";
        assert_err_pat!(parse_exif(data),
                        Error::InvalidFormat("Unexpected next IFD"));
    }

    #[test]
    fn unknown_field() {
        let data = b"MM\0\x2a\0\0\0\x08\
                     \0\x01\x01\0\xff\xff\0\0\0\x01\0\x14\0\0\0\0\0\0";
        let (v, _) = parse_exif(data).unwrap();
        assert_eq!(v.len(), 1);
        assert_pat!(v[0].value, Value::Unknown(0xffff, 1, 0x140000));
    }
}