1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use hmac::Mac;
use std::fmt::{self, Debug};
use std::str::FromStr;
use subtle::{Choice, ConstantTimeEq};
use zeroize::{Zeroize, Zeroizing};

use crate::{
    result::Result, types::*, ChildNumber, DerivationPath, ExtendedKey, ExtendedKeyAttrs, ExtendedPublicKey, Prefix, PrivateKey,
    PublicKey,
};

/// Derivation domain separator for BIP39 keys.
const BIP39_DOMAIN_SEPARATOR: [u8; 12] = [0x42, 0x69, 0x74, 0x63, 0x6f, 0x69, 0x6e, 0x20, 0x73, 0x65, 0x65, 0x64];

/// Extended private keys derived using BIP32.
///
/// Generic around a [`PrivateKey`] type.
#[derive(Clone)]
pub struct ExtendedPrivateKey<K: PrivateKey> {
    /// Derived private key
    private_key: K,

    /// Extended key attributes.
    attrs: ExtendedKeyAttrs,
}

impl<K> ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    /// Maximum derivation depth.
    pub const MAX_DEPTH: Depth = u8::MAX;

    /// Create the root extended key for the given seed value.
    pub fn new<S>(seed: S) -> Result<Self>
    where
        S: AsRef<[u8]>,
    {
        if ![16, 32, 64].contains(&seed.as_ref().len()) {
            return Err(Error::SeedLength);
        }

        let mut hmac = HmacSha512::new_from_slice(&BIP39_DOMAIN_SEPARATOR)?;
        hmac.update(seed.as_ref());

        let result = hmac.finalize().into_bytes();
        //println!("seed hash {}", hex::encode(result));
        let (secret_key, chain_code) = result.split_at(KEY_SIZE);
        let private_key = PrivateKey::from_bytes(secret_key.try_into()?)?;
        let attrs = ExtendedKeyAttrs {
            depth: 0,
            parent_fingerprint: KeyFingerprint::default(),
            child_number: ChildNumber::default(),
            chain_code: chain_code.try_into()?,
        };

        Ok(ExtendedPrivateKey { private_key, attrs })
    }

    /// Derive a child key for a particular [`ChildNumber`].
    pub fn derive_child(&self, child_number: ChildNumber) -> Result<Self> {
        let depth = self.attrs.depth.checked_add(1).ok_or(Error::Depth)?;

        let mut hmac = HmacSha512::new_from_slice(&self.attrs.chain_code).map_err(Error::Hmac)?;

        if child_number.is_hardened() {
            hmac.update(&[0]);
            hmac.update(&self.private_key.to_bytes());
        } else {
            hmac.update(&self.private_key.public_key().to_bytes());
        }

        hmac.update(&child_number.to_bytes());

        let result = hmac.finalize().into_bytes();
        let (child_key, chain_code) = result.split_at(KEY_SIZE);

        // We should technically loop here if a `secret_key` is zero or overflows
        // the order of the underlying elliptic curve group, incrementing the
        // index, however per "Child key derivation (CKD) functions":
        // https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-ckd-functions
        //
        // > "Note: this has probability lower than 1 in 2^127."
        //
        // ...so instead, we simply return an error if this were ever to happen,
        // as the chances of it happening are vanishingly small.
        let private_key = self.private_key.derive_child(child_key.try_into()?)?;

        let attrs = ExtendedKeyAttrs {
            parent_fingerprint: self.private_key.public_key().fingerprint(),
            child_number,
            chain_code: chain_code.try_into()?,
            depth,
        };

        Ok(ExtendedPrivateKey { private_key, attrs })
    }

    pub fn derive_path(self, path: DerivationPath) -> Result<Self> {
        path.iter().try_fold(self, |key, child_num| key.derive_child(child_num))
    }

    /// Borrow the derived private key value.
    pub fn private_key(&self) -> &K {
        &self.private_key
    }

    /// Serialize the derived public key as bytes.
    pub fn public_key(&self) -> ExtendedPublicKey<K::PublicKey> {
        self.into()
    }

    /// Get attributes for this key such as depth, parent fingerprint,
    /// child number, and chain code.
    pub fn attrs(&self) -> &ExtendedKeyAttrs {
        &self.attrs
    }

    /// Serialize the raw private key as a byte array.
    pub fn to_bytes(&self) -> PrivateKeyBytes {
        self.private_key.to_bytes()
    }

    /// Serialize this key as an [`ExtendedKey`].
    pub fn to_extended_key(&self, prefix: Prefix) -> ExtendedKey {
        // Add leading `0` byte
        let mut key_bytes = [0u8; KEY_SIZE + 1];
        key_bytes[1..].copy_from_slice(&self.to_bytes());

        ExtendedKey { prefix, attrs: self.attrs.clone(), key_bytes }
    }

    pub fn to_string(&self, prefix: Prefix) -> Zeroizing<String> {
        Zeroizing::new(self.to_extended_key(prefix).to_string())
    }
}

impl<K> ConstantTimeEq for ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    fn ct_eq(&self, other: &Self) -> Choice {
        let mut key_a = self.to_bytes();
        let mut key_b = self.to_bytes();

        let result = key_a.ct_eq(&key_b)
            & self.attrs.depth.ct_eq(&other.attrs.depth)
            & self.attrs.parent_fingerprint.ct_eq(&other.attrs.parent_fingerprint)
            & self.attrs.child_number.0.ct_eq(&other.attrs.child_number.0)
            & self.attrs.chain_code.ct_eq(&other.attrs.chain_code);

        key_a.zeroize();
        key_b.zeroize();

        result
    }
}

impl<K> Debug for ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // TODO(tarcieri): use `finish_non_exhaustive` when stable
        f.debug_struct("ExtendedPrivateKey").field("private_key", &"...").field("attrs", &self.attrs).finish()
    }
}

/// NOTE: uses [`ConstantTimeEq`] internally
impl<K> Eq for ExtendedPrivateKey<K> where K: PrivateKey {}

/// NOTE: uses [`ConstantTimeEq`] internally
impl<K> PartialEq for ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl<K> FromStr for ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    type Err = Error;

    fn from_str(xprv: &str) -> Result<Self> {
        let key = ExtendedKey::from_str(xprv)?;
        key.try_into()
    }
}

impl<K> TryFrom<ExtendedKey> for ExtendedPrivateKey<K>
where
    K: PrivateKey,
{
    type Error = Error;

    fn try_from(extended_key: ExtendedKey) -> Result<ExtendedPrivateKey<K>> {
        if extended_key.prefix.is_private() && extended_key.key_bytes[0] == 0 {
            Ok(ExtendedPrivateKey {
                private_key: PrivateKey::from_bytes(extended_key.key_bytes[1..].try_into()?)?,
                attrs: extended_key.attrs.clone(),
            })
        } else {
            Err(Error::Crypto(secp256k1::Error::InvalidSecretKey))
        }
    }
}