1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! A rectangle with rounded corners.
use core::f64::consts::{FRAC_PI_2, FRAC_PI_4};
use core::ops::{Add, Sub};
use crate::{arc::ArcAppendIter, Arc, PathEl, Point, Rect, RoundedRectRadii, Shape, Size, Vec2};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
/// A rectangle with equally rounded corners.
///
/// By construction the rounded rectangle will have
/// non-negative dimensions and radii clamped to half size of the rect.
///
/// The easiest way to create a `RoundedRect` is often to create a [`Rect`],
/// and then call [`to_rounded_rect`].
///
/// ```
/// use kurbo::{RoundedRect, RoundedRectRadii};
///
/// // Create a rounded rectangle with a single radius for all corners:
/// RoundedRect::new(0.0, 0.0, 10.0, 10.0, 5.0);
///
/// // Or, specify different radii for each corner, clockwise from the top-left:
/// RoundedRect::new(0.0, 0.0, 10.0, 10.0, (1.0, 2.0, 3.0, 4.0));
/// ```
///
/// [`to_rounded_rect`]: Rect::to_rounded_rect
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct RoundedRect {
/// Coordinates of the rectangle.
rect: Rect,
/// Radius of all four corners.
radii: RoundedRectRadii,
}
impl RoundedRect {
/// A new rectangle from minimum and maximum coordinates.
///
/// The result will have non-negative width, height and radii.
#[inline]
pub fn new(
x0: f64,
y0: f64,
x1: f64,
y1: f64,
radii: impl Into<RoundedRectRadii>,
) -> RoundedRect {
RoundedRect::from_rect(Rect::new(x0, y0, x1, y1), radii)
}
/// A new rounded rectangle from a rectangle and corner radii.
///
/// The result will have non-negative width, height and radii.
///
/// See also [`Rect::to_rounded_rect`], which offers the same utility.
#[inline]
pub fn from_rect(rect: Rect, radii: impl Into<RoundedRectRadii>) -> RoundedRect {
let rect = rect.abs();
let shortest_side_length = (rect.width()).min(rect.height());
let radii = radii.into().abs().clamp(shortest_side_length / 2.0);
RoundedRect { rect, radii }
}
/// A new rectangle from two [`Point`]s.
///
/// The result will have non-negative width, height and radius.
#[inline]
pub fn from_points(
p0: impl Into<Point>,
p1: impl Into<Point>,
radii: impl Into<RoundedRectRadii>,
) -> RoundedRect {
Rect::from_points(p0, p1).to_rounded_rect(radii)
}
/// A new rectangle from origin and size.
///
/// The result will have non-negative width, height and radius.
#[inline]
pub fn from_origin_size(
origin: impl Into<Point>,
size: impl Into<Size>,
radii: impl Into<RoundedRectRadii>,
) -> RoundedRect {
Rect::from_origin_size(origin, size).to_rounded_rect(radii)
}
/// The width of the rectangle.
#[inline]
pub fn width(&self) -> f64 {
self.rect.width()
}
/// The height of the rectangle.
#[inline]
pub fn height(&self) -> f64 {
self.rect.height()
}
/// Radii of the rounded corners.
#[inline]
pub fn radii(&self) -> RoundedRectRadii {
self.radii
}
/// The (non-rounded) rectangle.
pub fn rect(&self) -> Rect {
self.rect
}
/// The origin of the rectangle.
///
/// This is the top left corner in a y-down space.
#[inline]
pub fn origin(&self) -> Point {
self.rect.origin()
}
/// The center point of the rectangle.
#[inline]
pub fn center(&self) -> Point {
self.rect.center()
}
/// Is this rounded rectangle finite?
#[inline]
pub fn is_finite(&self) -> bool {
self.rect.is_finite() && self.radii.is_finite()
}
/// Is this rounded rectangle NaN?
#[inline]
pub fn is_nan(&self) -> bool {
self.rect.is_nan() || self.radii.is_nan()
}
}
#[doc(hidden)]
pub struct RoundedRectPathIter {
idx: usize,
rect: RectPathIter,
arcs: [ArcAppendIter; 4],
}
impl Shape for RoundedRect {
type PathElementsIter<'iter> = RoundedRectPathIter;
fn path_elements(&self, tolerance: f64) -> RoundedRectPathIter {
let radii = self.radii();
let build_arc_iter = |i, center, ellipse_radii| {
let arc = Arc {
center,
radii: ellipse_radii,
start_angle: FRAC_PI_2 * i as f64,
sweep_angle: FRAC_PI_2,
x_rotation: 0.0,
};
arc.append_iter(tolerance)
};
// Note: order follows the rectangle path iterator.
let arcs = [
build_arc_iter(
2,
Point {
x: self.rect.x0 + radii.top_left,
y: self.rect.y0 + radii.top_left,
},
Vec2 {
x: radii.top_left,
y: radii.top_left,
},
),
build_arc_iter(
3,
Point {
x: self.rect.x1 - radii.top_right,
y: self.rect.y0 + radii.top_right,
},
Vec2 {
x: radii.top_right,
y: radii.top_right,
},
),
build_arc_iter(
0,
Point {
x: self.rect.x1 - radii.bottom_right,
y: self.rect.y1 - radii.bottom_right,
},
Vec2 {
x: radii.bottom_right,
y: radii.bottom_right,
},
),
build_arc_iter(
1,
Point {
x: self.rect.x0 + radii.bottom_left,
y: self.rect.y1 - radii.bottom_left,
},
Vec2 {
x: radii.bottom_left,
y: radii.bottom_left,
},
),
];
let rect = RectPathIter {
rect: self.rect,
ix: 0,
radii,
};
RoundedRectPathIter { idx: 0, rect, arcs }
}
#[inline]
fn area(&self) -> f64 {
// A corner is a quarter-circle, i.e.
// .............#
// . ######
// . #########
// . ###########
// . ############
// .#############
// ##############
// |-----r------|
// For each corner, we need to subtract the square that bounds this
// quarter-circle, and add back in the area of quarter circle.
let radii = self.radii();
// Start with the area of the bounding rectangle. For each corner,
// subtract the area of the corner under the quarter-circle, and add
// back the area of the quarter-circle.
self.rect.area()
+ [
radii.top_left,
radii.top_right,
radii.bottom_right,
radii.bottom_left,
]
.iter()
.map(|radius| (FRAC_PI_4 - 1.0) * radius * radius)
.sum::<f64>()
}
#[inline]
fn perimeter(&self, _accuracy: f64) -> f64 {
// A corner is a quarter-circle, i.e.
// .............#
// . #
// . #
// . #
// . #
// .#
// #
// |-----r------|
// If we start with the bounding rectangle, then subtract 2r (the
// straight edge outside the circle) and add 1/4 * pi * (2r) (the
// perimeter of the quarter-circle) for each corner with radius r, we
// get the perimeter of the shape.
let radii = self.radii();
// Start with the full perimeter. For each corner, subtract the
// border surrounding the rounded corner and add the quarter-circle
// perimeter.
self.rect.perimeter(1.0)
+ ([
radii.top_left,
radii.top_right,
radii.bottom_right,
radii.bottom_left,
])
.iter()
.map(|radius| (-2.0 + FRAC_PI_2) * radius)
.sum::<f64>()
}
#[inline]
fn winding(&self, mut pt: Point) -> i32 {
let center = self.center();
// 1. Translate the point relative to the center of the rectangle.
pt.x -= center.x;
pt.y -= center.y;
// 2. Pick a radius value to use based on which quadrant the point is
// in.
let radii = self.radii();
let radius = match pt {
pt if pt.x < 0.0 && pt.y < 0.0 => radii.top_left,
pt if pt.x >= 0.0 && pt.y < 0.0 => radii.top_right,
pt if pt.x >= 0.0 && pt.y >= 0.0 => radii.bottom_right,
pt if pt.x < 0.0 && pt.y >= 0.0 => radii.bottom_left,
_ => 0.0,
};
// 3. This is the width and height of a rectangle with one corner at
// the center of the rounded rectangle, and another corner at the
// center of the relevant corner circle.
let inside_half_width = (self.width() / 2.0 - radius).max(0.0);
let inside_half_height = (self.height() / 2.0 - radius).max(0.0);
// 4. Three things are happening here.
//
// First, the x- and y-values are being reflected into the positive
// (bottom-right quadrant). The radius has already been determined,
// so it doesn't matter what quadrant is used.
//
// After reflecting, the points are clamped so that their x- and y-
// values can't be lower than the x- and y- values of the center of
// the corner circle, and the coordinate system is transformed
// again, putting (0, 0) at the center of the corner circle.
let px = (pt.x.abs() - inside_half_width).max(0.0);
let py = (pt.y.abs() - inside_half_height).max(0.0);
// 5. The transforms above clamp all input points such that they will
// be inside the rounded rectangle if the corresponding output point
// (px, py) is inside a circle centered around the origin with the
// given radius.
let inside = px * px + py * py <= radius * radius;
if inside {
1
} else {
0
}
}
#[inline]
fn bounding_box(&self) -> Rect {
self.rect.bounding_box()
}
#[inline]
fn as_rounded_rect(&self) -> Option<RoundedRect> {
Some(*self)
}
}
struct RectPathIter {
rect: Rect,
radii: RoundedRectRadii,
ix: usize,
}
// This is clockwise in a y-down coordinate system for positive area.
impl Iterator for RectPathIter {
type Item = PathEl;
fn next(&mut self) -> Option<PathEl> {
self.ix += 1;
match self.ix {
1 => Some(PathEl::MoveTo(Point::new(
self.rect.x0,
self.rect.y0 + self.radii.top_left,
))),
2 => Some(PathEl::LineTo(Point::new(
self.rect.x1 - self.radii.top_right,
self.rect.y0,
))),
3 => Some(PathEl::LineTo(Point::new(
self.rect.x1,
self.rect.y1 - self.radii.bottom_right,
))),
4 => Some(PathEl::LineTo(Point::new(
self.rect.x0 + self.radii.bottom_left,
self.rect.y1,
))),
5 => Some(PathEl::ClosePath),
_ => None,
}
}
}
// This is clockwise in a y-down coordinate system for positive area.
impl Iterator for RoundedRectPathIter {
type Item = PathEl;
fn next(&mut self) -> Option<PathEl> {
if self.idx > 4 {
return None;
}
// Iterate between rectangle and arc iterators.
// Rect iterator will start and end the path.
// Initial point set by the rect iterator
if self.idx == 0 {
self.idx += 1;
return self.rect.next();
}
// Generate the arc curve elements.
// If we reached the end of the arc, add a line towards next arc (rect iterator).
match self.arcs[self.idx - 1].next() {
Some(elem) => Some(elem),
None => {
self.idx += 1;
self.rect.next()
}
}
}
}
impl Add<Vec2> for RoundedRect {
type Output = RoundedRect;
#[inline]
fn add(self, v: Vec2) -> RoundedRect {
RoundedRect::from_rect(self.rect + v, self.radii)
}
}
impl Sub<Vec2> for RoundedRect {
type Output = RoundedRect;
#[inline]
fn sub(self, v: Vec2) -> RoundedRect {
RoundedRect::from_rect(self.rect - v, self.radii)
}
}
#[cfg(test)]
mod tests {
use crate::{Circle, Point, Rect, RoundedRect, Shape};
#[test]
fn area() {
let epsilon = 1e-9;
// Extremum: 0.0 radius corner -> rectangle
let rect = Rect::new(0.0, 0.0, 100.0, 100.0);
let rounded_rect = RoundedRect::new(0.0, 0.0, 100.0, 100.0, 0.0);
assert!((rect.area() - rounded_rect.area()).abs() < epsilon);
// Extremum: half-size radius corner -> circle
let circle = Circle::new((0.0, 0.0), 50.0);
let rounded_rect = RoundedRect::new(0.0, 0.0, 100.0, 100.0, 50.0);
assert!((circle.area() - rounded_rect.area()).abs() < epsilon);
}
#[test]
fn winding() {
let rect = RoundedRect::new(-5.0, -5.0, 10.0, 20.0, (5.0, 5.0, 5.0, 0.0));
assert_eq!(rect.winding(Point::new(0.0, 0.0)), 1);
assert_eq!(rect.winding(Point::new(-5.0, 0.0)), 1); // left edge
assert_eq!(rect.winding(Point::new(0.0, 20.0)), 1); // bottom edge
assert_eq!(rect.winding(Point::new(10.0, 20.0)), 0); // bottom-right corner
assert_eq!(rect.winding(Point::new(-5.0, 20.0)), 1); // bottom-left corner (has a radius of 0)
assert_eq!(rect.winding(Point::new(-10.0, 0.0)), 0);
let rect = RoundedRect::new(-10.0, -20.0, 10.0, 20.0, 0.0); // rectangle
assert_eq!(rect.winding(Point::new(10.0, 20.0)), 1); // bottom-right corner
}
#[test]
fn bez_conversion() {
let rect = RoundedRect::new(-5.0, -5.0, 10.0, 20.0, 5.0);
let p = rect.to_path(1e-9);
// Note: could be more systematic about tolerance tightness.
let epsilon = 1e-7;
assert!((rect.area() - p.area()).abs() < epsilon);
assert_eq!(p.winding(Point::new(0.0, 0.0)), 1);
}
}