1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Bézier paths (up to cubic).
#![allow(clippy::many_single_char_names)]
use core::iter::{Extend, FromIterator};
use core::mem;
use core::ops::{Mul, Range};
use alloc::vec::Vec;
use arrayvec::ArrayVec;
use crate::common::{solve_cubic, solve_quadratic};
use crate::MAX_EXTREMA;
use crate::{
Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea,
ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, Rect, Shape, TranslateScale, Vec2,
};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
/// A Bézier path.
///
/// These docs assume basic familiarity with Bézier curves; for an introduction,
/// see Pomax's wonderful [A Primer on Bézier Curves].
///
/// This path can contain lines, quadratics ([`QuadBez`]) and cubics
/// ([`CubicBez`]), and may contain multiple subpaths.
///
/// # Elements and Segments
///
/// A Bézier path can be represented in terms of either 'elements' ([`PathEl`])
/// or 'segments' ([`PathSeg`]). Elements map closely to how Béziers are
/// generally used in PostScript-style drawing APIs; they can be thought of as
/// instructions for drawing the path. Segments more directly describe the
/// path itself, with each segment being an independent line or curve.
///
/// These different representations are useful in different contexts.
/// For tasks like drawing, elements are a natural fit, but when doing
/// hit-testing or subdividing, we need to have access to the segments.
///
/// Conceptually, a `BezPath` contains zero or more subpaths. Each subpath
/// *always* begins with a `MoveTo`, then has zero or more `LineTo`, `QuadTo`,
/// and `CurveTo` elements, and optionally ends with a `ClosePath`.
///
/// Internally, a `BezPath` is a list of [`PathEl`]s; as such it implements
/// [`FromIterator<PathEl>`] and [`Extend<PathEl>`]:
///
/// ```
/// use kurbo::{BezPath, Rect, Shape, Vec2};
/// let accuracy = 0.1;
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.));
/// // these are equivalent
/// let path1 = rect.to_path(accuracy);
/// let path2: BezPath = rect.path_elements(accuracy).collect();
///
/// // extend a path with another path:
/// let mut path = rect.to_path(accuracy);
/// let shifted_rect = rect + Vec2::new(5.0, 10.0);
/// path.extend(shifted_rect.to_path(accuracy));
/// ```
///
/// You can iterate the elements of a `BezPath` with the [`iter`] method,
/// and the segments with the [`segments`] method:
///
/// ```
/// use kurbo::{BezPath, Line, PathEl, PathSeg, Point, Rect, Shape};
/// let accuracy = 0.1;
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.));
/// // these are equivalent
/// let path = rect.to_path(accuracy);
/// let first_el = PathEl::MoveTo(Point::ZERO);
/// let first_seg = PathSeg::Line(Line::new((0., 0.), (10., 0.)));
/// assert_eq!(path.iter().next(), Some(first_el));
/// assert_eq!(path.segments().next(), Some(first_seg));
/// ```
/// In addition, if you have some other type that implements
/// `Iterator<Item=PathEl>`, you can adapt that to an iterator of segments with
/// the [`segments` free function].
///
/// # Advanced functionality
///
/// In addition to the basic API, there are several useful pieces of advanced
/// functionality available on `BezPath`:
///
/// - [`flatten`] does Bézier flattening, converting a curve to a series of
/// line segments
/// - [`intersect_line`] computes intersections of a path with a line, useful
/// for things like subdividing
///
/// [A Primer on Bézier Curves]: https://pomax.github.io/bezierinfo/
/// [`iter`]: BezPath::iter
/// [`segments`]: BezPath::segments
/// [`flatten`]: BezPath::flatten
/// [`intersect_line`]: PathSeg::intersect_line
/// [`segments` free function]: segments
/// [`FromIterator<PathEl>`]: std::iter::FromIterator
/// [`Extend<PathEl>`]: std::iter::Extend
#[derive(Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct BezPath(Vec<PathEl>);
/// The element of a Bézier path.
///
/// A valid path has `MoveTo` at the beginning of each subpath.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathEl {
/// Move directly to the point without drawing anything, starting a new
/// subpath.
MoveTo(Point),
/// Draw a line from the current location to the point.
LineTo(Point),
/// Draw a quadratic bezier using the current location and the two points.
QuadTo(Point, Point),
/// Draw a cubic bezier using the current location and the three points.
CurveTo(Point, Point, Point),
/// Close off the path.
ClosePath,
}
/// A segment of a Bézier path.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathSeg {
/// A line segment.
Line(Line),
/// A quadratic bezier segment.
Quad(QuadBez),
/// A cubic bezier segment.
Cubic(CubicBez),
}
/// An intersection of a [`Line`] and a [`PathSeg`].
///
/// This can be generated with the [`PathSeg::intersect_line`] method.
#[derive(Debug, Clone, Copy)]
pub struct LineIntersection {
/// The 'time' that the intersection occurs, on the line.
///
/// This value is in the range 0..1.
pub line_t: f64,
/// The 'time' that the intersection occurs, on the path segment.
///
/// This value is nominally in the range 0..1, although it may slightly exceed
/// that range at the boundaries of segments.
pub segment_t: f64,
}
/// The minimum distance between two Bézier curves.
pub struct MinDistance {
/// The shortest distance between any two points on the two curves.
pub distance: f64,
/// The position of the nearest point on the first curve, as a parameter.
///
/// To resolve this to a [`Point`], use [`ParamCurve::eval`].
///
/// [`ParamCurve::eval`]: crate::ParamCurve::eval
pub t1: f64,
/// The position of the nearest point on the second curve, as a parameter.
///
/// To resolve this to a [`Point`], use [`ParamCurve::eval`].
///
/// [`ParamCurve::eval`]: crate::ParamCurve::eval
pub t2: f64,
}
impl BezPath {
/// Create a new path.
pub fn new() -> BezPath {
Default::default()
}
/// Create a path from a vector of path elements.
///
/// `BezPath` also implements `FromIterator<PathEl>`, so it works with `collect`:
///
/// ```
/// // a very contrived example:
/// use kurbo::{BezPath, PathEl};
///
/// let path = BezPath::new();
/// let as_vec: Vec<PathEl> = path.into_iter().collect();
/// let back_to_path: BezPath = as_vec.into_iter().collect();
/// ```
pub fn from_vec(v: Vec<PathEl>) -> BezPath {
debug_assert!(
v.first().is_none() || matches!(v.first(), Some(PathEl::MoveTo(_))),
"BezPath must begin with MoveTo"
);
BezPath(v)
}
/// Removes the last [`PathEl`] from the path and returns it, or `None` if the path is empty.
pub fn pop(&mut self) -> Option<PathEl> {
self.0.pop()
}
/// Push a generic path element onto the path.
pub fn push(&mut self, el: PathEl) {
self.0.push(el);
debug_assert!(
matches!(self.0.first(), Some(PathEl::MoveTo(_))),
"BezPath must begin with MoveTo"
)
}
/// Push a "move to" element onto the path.
pub fn move_to<P: Into<Point>>(&mut self, p: P) {
self.push(PathEl::MoveTo(p.into()));
}
/// Push a "line to" element onto the path.
///
/// Will panic with a debug assert when the current subpath does not
/// start with `move_to`.
pub fn line_to<P: Into<Point>>(&mut self, p: P) {
debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
self.push(PathEl::LineTo(p.into()));
}
/// Push a "quad to" element onto the path.
///
/// Will panic with a debug assert when the current subpath does not
/// start with `move_to`.
pub fn quad_to<P: Into<Point>>(&mut self, p1: P, p2: P) {
debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
self.push(PathEl::QuadTo(p1.into(), p2.into()));
}
/// Push a "curve to" element onto the path.
///
/// Will panic with a debug assert when the current subpath does not
/// start with `move_to`.
pub fn curve_to<P: Into<Point>>(&mut self, p1: P, p2: P, p3: P) {
debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
self.push(PathEl::CurveTo(p1.into(), p2.into(), p3.into()));
}
/// Push a "close path" element onto the path.
///
/// Will panic with a debug assert when the current subpath does not
/// start with `move_to`.
pub fn close_path(&mut self) {
debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
self.push(PathEl::ClosePath);
}
fn is_open_subpath(&self) -> bool {
!self.0.is_empty() && self.0.last() != Some(&PathEl::ClosePath)
}
/// Get the path elements.
pub fn elements(&self) -> &[PathEl] {
&self.0
}
/// Get the path elements (mut version).
pub fn elements_mut(&mut self) -> &mut [PathEl] {
&mut self.0
}
/// Returns an iterator over the path's elements.
pub fn iter(&self) -> impl Iterator<Item = PathEl> + Clone + '_ {
self.0.iter().copied()
}
/// Iterate over the path segments.
pub fn segments(&self) -> impl Iterator<Item = PathSeg> + Clone + '_ {
segments(self.iter())
}
/// Shorten the path, keeping the first `len` elements.
pub fn truncate(&mut self, len: usize) {
self.0.truncate(len);
}
/// Flatten the path, invoking the callback repeatedly.
///
/// Flattening is the action of approximating a curve with a succession of line segments.
///
/// <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm">
/// <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/>
/// <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/>
/// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
/// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/>
/// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
/// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
/// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/>
/// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
/// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
/// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
/// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
/// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/>
/// <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)">
/// <tspan x="35.74" y="284.49" font-size="10.58">→</tspan>
/// </text>
/// </svg>
///
/// The tolerance value controls the maximum distance between the curved input
/// segments and their polyline approximations. (In technical terms, this is the
/// Hausdorff distance). The algorithm attempts to bound this distance between
/// by `tolerance` but this is not absolutely guaranteed. The appropriate value
/// depends on the use, but for antialiased rendering, a value of 0.25 has been
/// determined to give good results. The number of segments tends to scale as the
/// inverse square root of tolerance.
///
/// <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg">
/// <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/>
/// <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/>
/// <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/>
/// <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/>
/// <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/>
/// <g fill="none" stroke="#ff7f2a" stroke-width=".26">
/// <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/>
/// </g>
/// </svg>
///
/// The callback will be called in order with each element of the generated
/// path. Because the result is made of polylines, these will be straight-line
/// path elements only, no curves.
///
/// This algorithm is based on the blog post [Flattening quadratic Béziers]
/// but with some refinements. For one, there is a more careful approximation
/// at cusps. For two, the algorithm is extended to work with cubic Béziers
/// as well, by first subdividing into quadratics and then computing the
/// subdivision of each quadratic. However, as a clever trick, these quadratics
/// are subdivided fractionally, and their endpoints are not included.
///
/// TODO: write a paper explaining this in more detail.
///
/// Note: the [`flatten`] function provides the same
/// functionality but works with slices and other [`PathEl`] iterators.
///
/// [Flattening quadratic Béziers]: https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
pub fn flatten(&self, tolerance: f64, callback: impl FnMut(PathEl)) {
flatten(self, tolerance, callback);
}
/// Get the segment at the given element index.
///
/// If you need to access all segments, [`segments`] provides a better
/// API. This is intended for random access of specific elements, for clients
/// that require this specifically.
///
/// **note**: This returns the segment that ends at the provided element
/// index. In effect this means it is *1-indexed*: since no segment ends at
/// the first element (which is presumed to be a `MoveTo`) `get_seg(0)` will
/// always return `None`.
pub fn get_seg(&self, ix: usize) -> Option<PathSeg> {
if ix == 0 || ix >= self.0.len() {
return None;
}
let last = match self.0[ix - 1] {
PathEl::MoveTo(p) => p,
PathEl::LineTo(p) => p,
PathEl::QuadTo(_, p2) => p2,
PathEl::CurveTo(_, _, p3) => p3,
_ => return None,
};
match self.0[ix] {
PathEl::LineTo(p) => Some(PathSeg::Line(Line::new(last, p))),
PathEl::QuadTo(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))),
PathEl::CurveTo(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))),
PathEl::ClosePath => self.0[..ix].iter().rev().find_map(|el| match *el {
PathEl::MoveTo(start) if start != last => {
Some(PathSeg::Line(Line::new(last, start)))
}
_ => None,
}),
_ => None,
}
}
/// Returns `true` if the path contains no segments.
pub fn is_empty(&self) -> bool {
self.0
.iter()
.all(|el| matches!(el, PathEl::MoveTo(..) | PathEl::ClosePath))
}
/// Apply an affine transform to the path.
pub fn apply_affine(&mut self, affine: Affine) {
for el in self.0.iter_mut() {
*el = affine * (*el);
}
}
/// Is this path finite?
#[inline]
pub fn is_finite(&self) -> bool {
self.0.iter().all(|v| v.is_finite())
}
/// Is this path NaN?
#[inline]
pub fn is_nan(&self) -> bool {
self.0.iter().any(|v| v.is_nan())
}
}
impl FromIterator<PathEl> for BezPath {
fn from_iter<T: IntoIterator<Item = PathEl>>(iter: T) -> Self {
let el_vec: Vec<_> = iter.into_iter().collect();
BezPath::from_vec(el_vec)
}
}
/// Allow iteration over references to `BezPath`.
///
/// Note: the semantics are slightly different from simply iterating over the
/// slice, as it returns `PathEl` items, rather than references.
impl<'a> IntoIterator for &'a BezPath {
type Item = PathEl;
type IntoIter = core::iter::Cloned<core::slice::Iter<'a, PathEl>>;
fn into_iter(self) -> Self::IntoIter {
self.elements().iter().cloned()
}
}
impl IntoIterator for BezPath {
type Item = PathEl;
type IntoIter = alloc::vec::IntoIter<PathEl>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl Extend<PathEl> for BezPath {
fn extend<I: IntoIterator<Item = PathEl>>(&mut self, iter: I) {
self.0.extend(iter);
}
}
/// Proportion of tolerance budget that goes to cubic to quadratic conversion.
const TO_QUAD_TOL: f64 = 0.1;
/// Flatten the path, invoking the callback repeatedly.
///
/// See [`BezPath::flatten`] for more discussion.
/// This signature is a bit more general, allowing flattening of `&[PathEl]` slices
/// and other iterators yielding `PathEl`.
pub fn flatten(
path: impl IntoIterator<Item = PathEl>,
tolerance: f64,
mut callback: impl FnMut(PathEl),
) {
let sqrt_tol = tolerance.sqrt();
let mut last_pt = None;
let mut quad_buf = Vec::new();
for el in path {
match el {
PathEl::MoveTo(p) => {
last_pt = Some(p);
callback(PathEl::MoveTo(p));
}
PathEl::LineTo(p) => {
last_pt = Some(p);
callback(PathEl::LineTo(p));
}
PathEl::QuadTo(p1, p2) => {
if let Some(p0) = last_pt {
let q = QuadBez::new(p0, p1, p2);
let params = q.estimate_subdiv(sqrt_tol);
let n = ((0.5 * params.val / sqrt_tol).ceil() as usize).max(1);
let step = 1.0 / (n as f64);
for i in 1..n {
let u = (i as f64) * step;
let t = q.determine_subdiv_t(¶ms, u);
let p = q.eval(t);
callback(PathEl::LineTo(p));
}
callback(PathEl::LineTo(p2));
}
last_pt = Some(p2);
}
PathEl::CurveTo(p1, p2, p3) => {
if let Some(p0) = last_pt {
let c = CubicBez::new(p0, p1, p2, p3);
// Subdivide into quadratics, and estimate the number of
// subdivisions required for each, summing to arrive at an
// estimate for the number of subdivisions for the cubic.
// Also retain these parameters for later.
let iter = c.to_quads(tolerance * TO_QUAD_TOL);
quad_buf.clear();
quad_buf.reserve(iter.size_hint().0);
let sqrt_remain_tol = sqrt_tol * (1.0 - TO_QUAD_TOL).sqrt();
let mut sum = 0.0;
for (_, _, q) in iter {
let params = q.estimate_subdiv(sqrt_remain_tol);
sum += params.val;
quad_buf.push((q, params));
}
let n = ((0.5 * sum / sqrt_remain_tol).ceil() as usize).max(1);
// Iterate through the quadratics, outputting the points of
// subdivisions that fall within that quadratic.
let step = sum / (n as f64);
let mut i = 1;
let mut val_sum = 0.0;
for (q, params) in &quad_buf {
let mut target = (i as f64) * step;
let recip_val = params.val.recip();
while target < val_sum + params.val {
let u = (target - val_sum) * recip_val;
let t = q.determine_subdiv_t(params, u);
let p = q.eval(t);
callback(PathEl::LineTo(p));
i += 1;
if i == n + 1 {
break;
}
target = (i as f64) * step;
}
val_sum += params.val;
}
callback(PathEl::LineTo(p3));
}
last_pt = Some(p3);
}
PathEl::ClosePath => {
last_pt = None;
callback(PathEl::ClosePath);
}
}
}
}
impl Mul<PathEl> for Affine {
type Output = PathEl;
fn mul(self, other: PathEl) -> PathEl {
match other {
PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
PathEl::LineTo(p) => PathEl::LineTo(self * p),
PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
PathEl::ClosePath => PathEl::ClosePath,
}
}
}
impl Mul<PathSeg> for Affine {
type Output = PathSeg;
fn mul(self, other: PathSeg) -> PathSeg {
match other {
PathSeg::Line(line) => PathSeg::Line(self * line),
PathSeg::Quad(quad) => PathSeg::Quad(self * quad),
PathSeg::Cubic(cubic) => PathSeg::Cubic(self * cubic),
}
}
}
impl Mul<BezPath> for Affine {
type Output = BezPath;
fn mul(self, other: BezPath) -> BezPath {
BezPath(other.0.iter().map(|&el| self * el).collect())
}
}
impl<'a> Mul<&'a BezPath> for Affine {
type Output = BezPath;
fn mul(self, other: &BezPath) -> BezPath {
BezPath(other.0.iter().map(|&el| self * el).collect())
}
}
impl Mul<PathEl> for TranslateScale {
type Output = PathEl;
fn mul(self, other: PathEl) -> PathEl {
match other {
PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
PathEl::LineTo(p) => PathEl::LineTo(self * p),
PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
PathEl::ClosePath => PathEl::ClosePath,
}
}
}
impl Mul<PathSeg> for TranslateScale {
type Output = PathSeg;
fn mul(self, other: PathSeg) -> PathSeg {
match other {
PathSeg::Line(line) => PathSeg::Line(self * line),
PathSeg::Quad(quad) => PathSeg::Quad(self * quad),
PathSeg::Cubic(cubic) => PathSeg::Cubic(self * cubic),
}
}
}
impl Mul<BezPath> for TranslateScale {
type Output = BezPath;
fn mul(self, other: BezPath) -> BezPath {
BezPath(other.0.iter().map(|&el| self * el).collect())
}
}
impl<'a> Mul<&'a BezPath> for TranslateScale {
type Output = BezPath;
fn mul(self, other: &BezPath) -> BezPath {
BezPath(other.0.iter().map(|&el| self * el).collect())
}
}
/// Transform an iterator over path elements into one over path
/// segments.
///
/// See also [`BezPath::segments`].
/// This signature is a bit more general, allowing `&[PathEl]` slices
/// and other iterators yielding `PathEl`.
pub fn segments<I>(elements: I) -> Segments<I::IntoIter>
where
I: IntoIterator<Item = PathEl>,
{
Segments {
elements: elements.into_iter(),
start_last: None,
}
}
/// An iterator that transforms path elements to path segments.
///
/// This struct is created by the [`segments`] function.
#[derive(Clone)]
pub struct Segments<I: Iterator<Item = PathEl>> {
elements: I,
start_last: Option<(Point, Point)>,
}
impl<I: Iterator<Item = PathEl>> Iterator for Segments<I> {
type Item = PathSeg;
fn next(&mut self) -> Option<PathSeg> {
for el in &mut self.elements {
// We first need to check whether this is the first
// path element we see to fill in the start position.
let (start, last) = self.start_last.get_or_insert_with(|| {
let point = match el {
PathEl::MoveTo(p) => p,
PathEl::LineTo(p) => p,
PathEl::QuadTo(_, p2) => p2,
PathEl::CurveTo(_, _, p3) => p3,
PathEl::ClosePath => panic!("Can't start a segment on a ClosePath"),
};
(point, point)
});
return Some(match el {
PathEl::MoveTo(p) => {
*start = p;
*last = p;
continue;
}
PathEl::LineTo(p) => PathSeg::Line(Line::new(mem::replace(last, p), p)),
PathEl::QuadTo(p1, p2) => {
PathSeg::Quad(QuadBez::new(mem::replace(last, p2), p1, p2))
}
PathEl::CurveTo(p1, p2, p3) => {
PathSeg::Cubic(CubicBez::new(mem::replace(last, p3), p1, p2, p3))
}
PathEl::ClosePath => {
if *last != *start {
PathSeg::Line(Line::new(mem::replace(last, *start), *start))
} else {
continue;
}
}
});
}
None
}
}
impl<I: Iterator<Item = PathEl>> Segments<I> {
/// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst,
/// the total error is `accuracy` times the number of Bézier segments.
// TODO: pub? Or is this subsumed by method of &[PathEl]?
pub(crate) fn perimeter(self, accuracy: f64) -> f64 {
self.map(|seg| seg.arclen(accuracy)).sum()
}
// Same
pub(crate) fn area(self) -> f64 {
self.map(|seg| seg.signed_area()).sum()
}
// Same
pub(crate) fn winding(self, p: Point) -> i32 {
self.map(|seg| seg.winding(p)).sum()
}
// Same
pub(crate) fn bounding_box(self) -> Rect {
let mut bbox: Option<Rect> = None;
for seg in self {
let seg_bb = ParamCurveExtrema::bounding_box(&seg);
if let Some(bb) = bbox {
bbox = Some(bb.union(seg_bb));
} else {
bbox = Some(seg_bb)
}
}
bbox.unwrap_or_default()
}
}
impl ParamCurve for PathSeg {
fn eval(&self, t: f64) -> Point {
match *self {
PathSeg::Line(line) => line.eval(t),
PathSeg::Quad(quad) => quad.eval(t),
PathSeg::Cubic(cubic) => cubic.eval(t),
}
}
fn subsegment(&self, range: Range<f64>) -> PathSeg {
match *self {
PathSeg::Line(line) => PathSeg::Line(line.subsegment(range)),
PathSeg::Quad(quad) => PathSeg::Quad(quad.subsegment(range)),
PathSeg::Cubic(cubic) => PathSeg::Cubic(cubic.subsegment(range)),
}
}
}
impl ParamCurveArclen for PathSeg {
fn arclen(&self, accuracy: f64) -> f64 {
match *self {
PathSeg::Line(line) => line.arclen(accuracy),
PathSeg::Quad(quad) => quad.arclen(accuracy),
PathSeg::Cubic(cubic) => cubic.arclen(accuracy),
}
}
fn inv_arclen(&self, arclen: f64, accuracy: f64) -> f64 {
match *self {
PathSeg::Line(line) => line.inv_arclen(arclen, accuracy),
PathSeg::Quad(quad) => quad.inv_arclen(arclen, accuracy),
PathSeg::Cubic(cubic) => cubic.inv_arclen(arclen, accuracy),
}
}
}
impl ParamCurveArea for PathSeg {
fn signed_area(&self) -> f64 {
match *self {
PathSeg::Line(line) => line.signed_area(),
PathSeg::Quad(quad) => quad.signed_area(),
PathSeg::Cubic(cubic) => cubic.signed_area(),
}
}
}
impl ParamCurveNearest for PathSeg {
fn nearest(&self, p: Point, accuracy: f64) -> Nearest {
match *self {
PathSeg::Line(line) => line.nearest(p, accuracy),
PathSeg::Quad(quad) => quad.nearest(p, accuracy),
PathSeg::Cubic(cubic) => cubic.nearest(p, accuracy),
}
}
}
impl ParamCurveExtrema for PathSeg {
fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
match *self {
PathSeg::Line(line) => line.extrema(),
PathSeg::Quad(quad) => quad.extrema(),
PathSeg::Cubic(cubic) => cubic.extrema(),
}
}
}
impl PathSeg {
/// Get the [`PathEl`] that is equivalent to discarding the segment start point.
pub fn as_path_el(&self) -> PathEl {
match self {
PathSeg::Line(line) => PathEl::LineTo(line.p1),
PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2),
PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3),
}
}
/// Returns a new `PathSeg` describing the same path as `self`, but with
/// the points reversed.
pub fn reverse(&self) -> PathSeg {
match self {
PathSeg::Line(Line { p0, p1 }) => PathSeg::Line(Line::new(*p1, *p0)),
PathSeg::Quad(q) => PathSeg::Quad(QuadBez::new(q.p2, q.p1, q.p0)),
PathSeg::Cubic(c) => PathSeg::Cubic(CubicBez::new(c.p3, c.p2, c.p1, c.p0)),
}
}
/// Convert this segment to a cubic bezier.
pub fn to_cubic(&self) -> CubicBez {
match *self {
PathSeg::Line(Line { p0, p1 }) => CubicBez::new(p0, p0, p1, p1),
PathSeg::Cubic(c) => c,
PathSeg::Quad(q) => q.raise(),
}
}
// Assumes split at extrema.
fn winding_inner(&self, p: Point) -> i32 {
let start = self.start();
let end = self.end();
let sign = if end.y > start.y {
if p.y < start.y || p.y >= end.y {
return 0;
}
-1
} else if end.y < start.y {
if p.y < end.y || p.y >= start.y {
return 0;
}
1
} else {
return 0;
};
match *self {
PathSeg::Line(_line) => {
if p.x < start.x.min(end.x) {
return 0;
}
if p.x >= start.x.max(end.x) {
return sign;
}
// line equation ax + by = c
let a = end.y - start.y;
let b = start.x - end.x;
let c = a * start.x + b * start.y;
if (a * p.x + b * p.y - c) * (sign as f64) <= 0.0 {
sign
} else {
0
}
}
PathSeg::Quad(quad) => {
let p1 = quad.p1;
if p.x < start.x.min(end.x).min(p1.x) {
return 0;
}
if p.x >= start.x.max(end.x).max(p1.x) {
return sign;
}
let a = end.y - 2.0 * p1.y + start.y;
let b = 2.0 * (p1.y - start.y);
let c = start.y - p.y;
for t in solve_quadratic(c, b, a) {
if (0.0..=1.0).contains(&t) {
let x = quad.eval(t).x;
if p.x >= x {
return sign;
} else {
return 0;
}
}
}
0
}
PathSeg::Cubic(cubic) => {
let p1 = cubic.p1;
let p2 = cubic.p2;
if p.x < start.x.min(end.x).min(p1.x).min(p2.x) {
return 0;
}
if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) {
return sign;
}
let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y;
let b = 3.0 * (p2.y - 2.0 * p1.y + start.y);
let c = 3.0 * (p1.y - start.y);
let d = start.y - p.y;
for t in solve_cubic(d, c, b, a) {
if (0.0..=1.0).contains(&t) {
let x = cubic.eval(t).x;
if p.x >= x {
return sign;
} else {
return 0;
}
}
}
0
}
}
}
/// Compute the winding number contribution of a single segment.
///
/// Cast a ray to the left and count intersections.
fn winding(&self, p: Point) -> i32 {
self.extrema_ranges()
.into_iter()
.map(|range| self.subsegment(range).winding_inner(p))
.sum()
}
/// Compute intersections against a line.
///
/// Returns a vector of the intersections. For each intersection,
/// the `t` value of the segment and line are given.
///
/// Note: This test is designed to be inclusive of points near the endpoints
/// of the segment. This is so that testing a line against multiple
/// contiguous segments of a path will be guaranteed to catch at least one
/// of them. In such cases, use higher level logic to coalesce the hits
/// (the `t` value may be slightly outside the range of 0..1).
///
/// # Examples
///
/// ```
/// # use kurbo::*;
/// let seg = PathSeg::Line(Line::new((0.0, 0.0), (2.0, 0.0)));
/// let line = Line::new((1.0, 2.0), (1.0, -2.0));
/// let intersection = seg.intersect_line(line);
/// assert_eq!(intersection.len(), 1);
/// let intersection = intersection[0];
/// assert_eq!(intersection.segment_t, 0.5);
/// assert_eq!(intersection.line_t, 0.5);
///
/// let point = seg.eval(intersection.segment_t);
/// assert_eq!(point, Point::new(1.0, 0.0));
/// ```
pub fn intersect_line(&self, line: Line) -> ArrayVec<LineIntersection, 3> {
const EPSILON: f64 = 1e-9;
let p0 = line.p0;
let p1 = line.p1;
let dx = p1.x - p0.x;
let dy = p1.y - p0.y;
let mut result = ArrayVec::new();
match self {
PathSeg::Line(l) => {
let det = dx * (l.p1.y - l.p0.y) - dy * (l.p1.x - l.p0.x);
if det.abs() < EPSILON {
// Lines are coincident (or nearly so).
return result;
}
let t = dx * (p0.y - l.p0.y) - dy * (p0.x - l.p0.x);
// t = position on self
let t = t / det;
if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
// u = position on probe line
let u =
(l.p0.x - p0.x) * (l.p1.y - l.p0.y) - (l.p0.y - p0.y) * (l.p1.x - l.p0.x);
let u = u / det;
if (0.0..=1.0).contains(&u) {
result.push(LineIntersection::new(u, t));
}
}
}
PathSeg::Quad(q) => {
// The basic technique here is to determine x and y as a quadratic polynomial
// as a function of t. Then plug those values into the line equation for the
// probe line (giving a sort of signed distance from the probe line) and solve
// that for t.
let (px0, px1, px2) = quadratic_bez_coefs(q.p0.x, q.p1.x, q.p2.x);
let (py0, py1, py2) = quadratic_bez_coefs(q.p0.y, q.p1.y, q.p2.y);
let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
let c1 = dy * px1 - dx * py1;
let c2 = dy * px2 - dx * py2;
let invlen2 = (dx * dx + dy * dy).recip();
for t in crate::common::solve_quadratic(c0, c1, c2) {
if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
let x = px0 + t * px1 + t * t * px2;
let y = py0 + t * py1 + t * t * py2;
let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
if (0.0..=1.0).contains(&u) {
result.push(LineIntersection::new(u, t));
}
}
}
}
PathSeg::Cubic(c) => {
// Same technique as above, but cubic polynomial.
let (px0, px1, px2, px3) = cubic_bez_coefs(c.p0.x, c.p1.x, c.p2.x, c.p3.x);
let (py0, py1, py2, py3) = cubic_bez_coefs(c.p0.y, c.p1.y, c.p2.y, c.p3.y);
let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
let c1 = dy * px1 - dx * py1;
let c2 = dy * px2 - dx * py2;
let c3 = dy * px3 - dx * py3;
let invlen2 = (dx * dx + dy * dy).recip();
for t in crate::common::solve_cubic(c0, c1, c2, c3) {
if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
let x = px0 + t * px1 + t * t * px2 + t * t * t * px3;
let y = py0 + t * py1 + t * t * py2 + t * t * t * py3;
let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
if (0.0..=1.0).contains(&u) {
result.push(LineIntersection::new(u, t));
}
}
}
}
}
result
}
/// Is this Bezier path finite?
#[inline]
pub fn is_finite(&self) -> bool {
match self {
PathSeg::Line(line) => line.is_finite(),
PathSeg::Quad(quad_bez) => quad_bez.is_finite(),
PathSeg::Cubic(cubic_bez) => cubic_bez.is_finite(),
}
}
/// Is this Bezier path NaN?
#[inline]
pub fn is_nan(&self) -> bool {
match self {
PathSeg::Line(line) => line.is_nan(),
PathSeg::Quad(quad_bez) => quad_bez.is_nan(),
PathSeg::Cubic(cubic_bez) => cubic_bez.is_nan(),
}
}
#[inline]
fn as_vec2_vec(&self) -> ArrayVec<Vec2, 4> {
let mut a = ArrayVec::new();
match self {
PathSeg::Line(l) => {
a.push(l.p0.to_vec2());
a.push(l.p1.to_vec2());
}
PathSeg::Quad(q) => {
a.push(q.p0.to_vec2());
a.push(q.p1.to_vec2());
a.push(q.p2.to_vec2());
}
PathSeg::Cubic(c) => {
a.push(c.p0.to_vec2());
a.push(c.p1.to_vec2());
a.push(c.p2.to_vec2());
a.push(c.p3.to_vec2());
}
};
a
}
/// Minimum distance between two PathSegs
///
/// Returns a tuple of the distance, the path time `t1` of the closest point
/// on the first PathSeg, and the path time `t2` of the closest point on the
/// second PathSeg.
pub fn min_dist(&self, other: PathSeg, accuracy: f64) -> MinDistance {
let (distance, t1, t2) = crate::mindist::min_dist_param(
&self.as_vec2_vec(),
&other.as_vec2_vec(),
(0.0, 1.0),
(0.0, 1.0),
accuracy,
None,
);
MinDistance {
distance: distance.sqrt(),
t1,
t2,
}
}
/// Compute endpoint tangents of a path segment.
///
/// This version is robust to the path segment not being a regular curve.
pub(crate) fn tangents(&self) -> (Vec2, Vec2) {
const EPS: f64 = 1e-12;
match self {
PathSeg::Line(l) => {
let d = l.p1 - l.p0;
(d, d)
}
PathSeg::Quad(q) => {
let d01 = q.p1 - q.p0;
let d0 = if d01.hypot2() > EPS { d01 } else { q.p2 - q.p0 };
let d12 = q.p2 - q.p1;
let d1 = if d12.hypot2() > EPS { d12 } else { q.p2 - q.p0 };
(d0, d1)
}
PathSeg::Cubic(c) => {
let d01 = c.p1 - c.p0;
let d0 = if d01.hypot2() > EPS {
d01
} else {
let d02 = c.p2 - c.p0;
if d02.hypot2() > EPS {
d02
} else {
c.p3 - c.p0
}
};
let d23 = c.p3 - c.p2;
let d1 = if d23.hypot2() > EPS {
d23
} else {
let d13 = c.p3 - c.p1;
if d13.hypot2() > EPS {
d13
} else {
c.p3 - c.p0
}
};
(d0, d1)
}
}
}
}
impl LineIntersection {
fn new(line_t: f64, segment_t: f64) -> Self {
LineIntersection { line_t, segment_t }
}
/// Is this line intersection finite?
#[inline]
pub fn is_finite(self) -> bool {
self.line_t.is_finite() && self.segment_t.is_finite()
}
/// Is this line intersection NaN?
#[inline]
pub fn is_nan(self) -> bool {
self.line_t.is_nan() || self.segment_t.is_nan()
}
}
// Return polynomial coefficients given cubic bezier coordinates.
fn quadratic_bez_coefs(x0: f64, x1: f64, x2: f64) -> (f64, f64, f64) {
let p0 = x0;
let p1 = 2.0 * x1 - 2.0 * x0;
let p2 = x2 - 2.0 * x1 + x0;
(p0, p1, p2)
}
// Return polynomial coefficients given cubic bezier coordinates.
fn cubic_bez_coefs(x0: f64, x1: f64, x2: f64, x3: f64) -> (f64, f64, f64, f64) {
let p0 = x0;
let p1 = 3.0 * x1 - 3.0 * x0;
let p2 = 3.0 * x2 - 6.0 * x1 + 3.0 * x0;
let p3 = x3 - 3.0 * x2 + 3.0 * x1 - x0;
(p0, p1, p2, p3)
}
impl From<CubicBez> for PathSeg {
fn from(cubic_bez: CubicBez) -> PathSeg {
PathSeg::Cubic(cubic_bez)
}
}
impl From<Line> for PathSeg {
fn from(line: Line) -> PathSeg {
PathSeg::Line(line)
}
}
impl From<QuadBez> for PathSeg {
fn from(quad_bez: QuadBez) -> PathSeg {
PathSeg::Quad(quad_bez)
}
}
impl Shape for BezPath {
type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>;
fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
self.0.iter().copied()
}
fn to_path(&self, _tolerance: f64) -> BezPath {
self.clone()
}
fn into_path(self, _tolerance: f64) -> BezPath {
self
}
/// Signed area.
fn area(&self) -> f64 {
self.elements().area()
}
fn perimeter(&self, accuracy: f64) -> f64 {
self.elements().perimeter(accuracy)
}
/// Winding number of point.
fn winding(&self, pt: Point) -> i32 {
self.elements().winding(pt)
}
fn bounding_box(&self) -> Rect {
self.elements().bounding_box()
}
fn as_path_slice(&self) -> Option<&[PathEl]> {
Some(&self.0)
}
}
impl PathEl {
/// Is this path element finite?
#[inline]
pub fn is_finite(&self) -> bool {
match self {
PathEl::MoveTo(p) => p.is_finite(),
PathEl::LineTo(p) => p.is_finite(),
PathEl::QuadTo(p, p2) => p.is_finite() && p2.is_finite(),
PathEl::CurveTo(p, p2, p3) => p.is_finite() && p2.is_finite() && p3.is_finite(),
PathEl::ClosePath => true,
}
}
/// Is this path element NaN?
#[inline]
pub fn is_nan(&self) -> bool {
match self {
PathEl::MoveTo(p) => p.is_nan(),
PathEl::LineTo(p) => p.is_nan(),
PathEl::QuadTo(p, p2) => p.is_nan() || p2.is_nan(),
PathEl::CurveTo(p, p2, p3) => p.is_nan() || p2.is_nan() || p3.is_nan(),
PathEl::ClosePath => false,
}
}
}
/// Implements [`Shape`] for a slice of [`PathEl`], provided that the first element of the slice is
/// not a `PathEl::ClosePath`. If it is, several of these functions will panic.
///
/// If the slice starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`.
impl<'a> Shape for &'a [PathEl] {
type PathElementsIter<'iter>
= core::iter::Copied<core::slice::Iter<'a, PathEl>> where 'a: 'iter;
#[inline]
fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
self.iter().copied()
}
fn to_path(&self, _tolerance: f64) -> BezPath {
BezPath::from_vec(self.to_vec())
}
/// Signed area.
fn area(&self) -> f64 {
segments(self.iter().copied()).area()
}
fn perimeter(&self, accuracy: f64) -> f64 {
segments(self.iter().copied()).perimeter(accuracy)
}
/// Winding number of point.
fn winding(&self, pt: Point) -> i32 {
segments(self.iter().copied()).winding(pt)
}
fn bounding_box(&self) -> Rect {
segments(self.iter().copied()).bounding_box()
}
#[inline]
fn as_path_slice(&self) -> Option<&[PathEl]> {
Some(self)
}
}
/// Implements [`Shape`] for an array of [`PathEl`], provided that the first element of the array is
/// not a `PathEl::ClosePath`. If it is, several of these functions will panic.
///
/// If the array starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`.
impl<const N: usize> Shape for [PathEl; N] {
type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>;
#[inline]
fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
self.iter().copied()
}
fn to_path(&self, _tolerance: f64) -> BezPath {
BezPath::from_vec(self.to_vec())
}
/// Signed area.
fn area(&self) -> f64 {
segments(self.iter().copied()).area()
}
fn perimeter(&self, accuracy: f64) -> f64 {
segments(self.iter().copied()).perimeter(accuracy)
}
/// Winding number of point.
fn winding(&self, pt: Point) -> i32 {
segments(self.iter().copied()).winding(pt)
}
fn bounding_box(&self) -> Rect {
segments(self.iter().copied()).bounding_box()
}
#[inline]
fn as_path_slice(&self) -> Option<&[PathEl]> {
Some(self)
}
}
/// An iterator for path segments.
pub struct PathSegIter {
seg: PathSeg,
ix: usize,
}
impl Shape for PathSeg {
type PathElementsIter<'iter> = PathSegIter;
#[inline]
fn path_elements(&self, _tolerance: f64) -> PathSegIter {
PathSegIter { seg: *self, ix: 0 }
}
/// The area under the curve.
///
/// We could just return 0, but this seems more useful.
fn area(&self) -> f64 {
self.signed_area()
}
#[inline]
fn perimeter(&self, accuracy: f64) -> f64 {
self.arclen(accuracy)
}
fn winding(&self, _pt: Point) -> i32 {
0
}
#[inline]
fn bounding_box(&self) -> Rect {
ParamCurveExtrema::bounding_box(self)
}
fn as_line(&self) -> Option<Line> {
if let PathSeg::Line(line) = self {
Some(*line)
} else {
None
}
}
}
impl Iterator for PathSegIter {
type Item = PathEl;
fn next(&mut self) -> Option<PathEl> {
self.ix += 1;
match (self.ix, self.seg) {
// yes I could do some fancy bindings thing here but... :shrug:
(1, PathSeg::Line(seg)) => Some(PathEl::MoveTo(seg.p0)),
(1, PathSeg::Quad(seg)) => Some(PathEl::MoveTo(seg.p0)),
(1, PathSeg::Cubic(seg)) => Some(PathEl::MoveTo(seg.p0)),
(2, PathSeg::Line(seg)) => Some(PathEl::LineTo(seg.p1)),
(2, PathSeg::Quad(seg)) => Some(PathEl::QuadTo(seg.p1, seg.p2)),
(2, PathSeg::Cubic(seg)) => Some(PathEl::CurveTo(seg.p1, seg.p2, seg.p3)),
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use crate::{Circle, DEFAULT_ACCURACY};
use super::*;
fn assert_approx_eq(x: f64, y: f64) {
assert!((x - y).abs() < 1e-8, "{x} != {y}");
}
#[test]
#[should_panic(expected = "no open subpath")]
fn test_elements_to_segments_starts_on_closepath() {
let mut path = BezPath::new();
path.close_path();
path.segments().next();
}
#[test]
fn test_elements_to_segments_closepath_refers_to_last_moveto() {
let mut path = BezPath::new();
path.move_to((5.0, 5.0));
path.line_to((15.0, 15.0));
path.move_to((10.0, 10.0));
path.line_to((15.0, 15.0));
path.close_path();
assert_eq!(
path.segments().collect::<Vec<_>>().last(),
Some(&Line::new((15.0, 15.0), (10.0, 10.0)).into()),
);
}
#[test]
#[should_panic(expected = "no open subpath")]
fn test_must_not_start_on_quad() {
let mut path = BezPath::new();
path.quad_to((5.0, 5.0), (10.0, 10.0));
path.line_to((15.0, 15.0));
path.close_path();
}
#[test]
fn test_intersect_line() {
let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
let intersection = PathSeg::Line(h_line).intersect_line(v_line)[0];
assert_approx_eq(intersection.segment_t, 0.1);
assert_approx_eq(intersection.line_t, 0.5);
let v_line = Line::new((-10.0, -10.0), (-10.0, 10.0));
assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());
let v_line = Line::new((10.0, 10.0), (10.0, 20.0));
assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());
}
#[test]
fn test_intersect_qad() {
let q = QuadBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -10.0));
let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
assert_eq!(PathSeg::Quad(q).intersect_line(v_line).len(), 1);
let intersection = PathSeg::Quad(q).intersect_line(v_line)[0];
assert_approx_eq(intersection.segment_t, 0.5);
assert_approx_eq(intersection.line_t, 0.75);
let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
assert_eq!(PathSeg::Quad(q).intersect_line(h_line).len(), 2);
}
#[test]
fn test_intersect_cubic() {
let c = CubicBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -20.0), (30.0, 10.0));
let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
assert_eq!(PathSeg::Cubic(c).intersect_line(v_line).len(), 1);
let intersection = PathSeg::Cubic(c).intersect_line(v_line)[0];
assert_approx_eq(intersection.segment_t, 0.333333333);
assert_approx_eq(intersection.line_t, 0.592592592);
let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
assert_eq!(PathSeg::Cubic(c).intersect_line(h_line).len(), 3);
}
#[test]
fn test_contains() {
let mut path = BezPath::new();
path.move_to((0.0, 0.0));
path.line_to((1.0, 1.0));
path.line_to((2.0, 0.0));
path.close_path();
assert_eq!(path.winding(Point::new(1.0, 0.5)), -1);
assert!(path.contains(Point::new(1.0, 0.5)));
}
// get_seg(i) should produce the same results as path_segments().nth(i - 1).
#[test]
fn test_get_seg() {
let circle = Circle::new((10.0, 10.0), 2.0).to_path(DEFAULT_ACCURACY);
let segments = circle.path_segments(DEFAULT_ACCURACY).collect::<Vec<_>>();
let get_segs = (1..usize::MAX)
.map_while(|i| circle.get_seg(i))
.collect::<Vec<_>>();
assert_eq!(segments, get_segs);
}
}