1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Bézier paths (up to cubic).

#![allow(clippy::many_single_char_names)]

use core::iter::{Extend, FromIterator};
use core::mem;
use core::ops::{Mul, Range};

use alloc::vec::Vec;

use arrayvec::ArrayVec;

use crate::common::{solve_cubic, solve_quadratic};
use crate::MAX_EXTREMA;
use crate::{
    Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea,
    ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, Rect, Shape, TranslateScale, Vec2,
};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// A Bézier path.
///
/// These docs assume basic familiarity with Bézier curves; for an introduction,
/// see Pomax's wonderful [A Primer on Bézier Curves].
///
/// This path can contain lines, quadratics ([`QuadBez`]) and cubics
/// ([`CubicBez`]), and may contain multiple subpaths.
///
/// # Elements and Segments
///
/// A Bézier path can be represented in terms of either 'elements' ([`PathEl`])
/// or 'segments' ([`PathSeg`]). Elements map closely to how Béziers are
/// generally used in PostScript-style drawing APIs; they can be thought of as
/// instructions for drawing the path. Segments more directly describe the
/// path itself, with each segment being an independent line or curve.
///
/// These different representations are useful in different contexts.
/// For tasks like drawing, elements are a natural fit, but when doing
/// hit-testing or subdividing, we need to have access to the segments.
///
/// Conceptually, a `BezPath` contains zero or more subpaths. Each subpath
/// *always* begins with a `MoveTo`, then has zero or more `LineTo`, `QuadTo`,
/// and `CurveTo` elements, and optionally ends with a `ClosePath`.
///
/// Internally, a `BezPath` is a list of [`PathEl`]s; as such it implements
/// [`FromIterator<PathEl>`] and [`Extend<PathEl>`]:
///
/// ```
/// use kurbo::{BezPath, Rect, Shape, Vec2};
/// let accuracy = 0.1;
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.));
/// // these are equivalent
/// let path1 = rect.to_path(accuracy);
/// let path2: BezPath = rect.path_elements(accuracy).collect();
///
/// // extend a path with another path:
/// let mut path = rect.to_path(accuracy);
/// let shifted_rect = rect + Vec2::new(5.0, 10.0);
/// path.extend(shifted_rect.to_path(accuracy));
/// ```
///
/// You can iterate the elements of a `BezPath` with the [`iter`] method,
/// and the segments with the [`segments`] method:
///
/// ```
/// use kurbo::{BezPath, Line, PathEl, PathSeg, Point, Rect, Shape};
/// let accuracy = 0.1;
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.));
/// // these are equivalent
/// let path = rect.to_path(accuracy);
/// let first_el = PathEl::MoveTo(Point::ZERO);
/// let first_seg = PathSeg::Line(Line::new((0., 0.), (10., 0.)));
/// assert_eq!(path.iter().next(), Some(first_el));
/// assert_eq!(path.segments().next(), Some(first_seg));
/// ```
/// In addition, if you have some other type that implements
/// `Iterator<Item=PathEl>`, you can adapt that to an iterator of segments with
/// the [`segments` free function].
///
/// # Advanced functionality
///
/// In addition to the basic API, there are several useful pieces of advanced
/// functionality available on `BezPath`:
///
/// - [`flatten`] does Bézier flattening, converting a curve to a series of
/// line segments
/// - [`intersect_line`] computes intersections of a path with a line, useful
/// for things like subdividing
///
/// [A Primer on Bézier Curves]: https://pomax.github.io/bezierinfo/
/// [`iter`]: BezPath::iter
/// [`segments`]: BezPath::segments
/// [`flatten`]: BezPath::flatten
/// [`intersect_line`]: PathSeg::intersect_line
/// [`segments` free function]: segments
/// [`FromIterator<PathEl>`]: std::iter::FromIterator
/// [`Extend<PathEl>`]: std::iter::Extend
#[derive(Clone, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct BezPath(Vec<PathEl>);

/// The element of a Bézier path.
///
/// A valid path has `MoveTo` at the beginning of each subpath.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathEl {
    /// Move directly to the point without drawing anything, starting a new
    /// subpath.
    MoveTo(Point),
    /// Draw a line from the current location to the point.
    LineTo(Point),
    /// Draw a quadratic bezier using the current location and the two points.
    QuadTo(Point, Point),
    /// Draw a cubic bezier using the current location and the three points.
    CurveTo(Point, Point, Point),
    /// Close off the path.
    ClosePath,
}

/// A segment of a Bézier path.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum PathSeg {
    /// A line segment.
    Line(Line),
    /// A quadratic bezier segment.
    Quad(QuadBez),
    /// A cubic bezier segment.
    Cubic(CubicBez),
}

/// An intersection of a [`Line`] and a [`PathSeg`].
///
/// This can be generated with the [`PathSeg::intersect_line`] method.
#[derive(Debug, Clone, Copy)]
pub struct LineIntersection {
    /// The 'time' that the intersection occurs, on the line.
    ///
    /// This value is in the range 0..1.
    pub line_t: f64,

    /// The 'time' that the intersection occurs, on the path segment.
    ///
    /// This value is nominally in the range 0..1, although it may slightly exceed
    /// that range at the boundaries of segments.
    pub segment_t: f64,
}

/// The minimum distance between two Bézier curves.
pub struct MinDistance {
    /// The shortest distance between any two points on the two curves.
    pub distance: f64,
    /// The position of the nearest point on the first curve, as a parameter.
    ///
    /// To resolve this to a [`Point`], use [`ParamCurve::eval`].
    ///
    /// [`ParamCurve::eval`]: crate::ParamCurve::eval
    pub t1: f64,
    /// The position of the nearest point on the second curve, as a parameter.
    ///
    /// To resolve this to a [`Point`], use [`ParamCurve::eval`].
    ///
    /// [`ParamCurve::eval`]: crate::ParamCurve::eval
    pub t2: f64,
}

impl BezPath {
    /// Create a new path.
    pub fn new() -> BezPath {
        Default::default()
    }

    /// Create a path from a vector of path elements.
    ///
    /// `BezPath` also implements `FromIterator<PathEl>`, so it works with `collect`:
    ///
    /// ```
    /// // a very contrived example:
    /// use kurbo::{BezPath, PathEl};
    ///
    /// let path = BezPath::new();
    /// let as_vec: Vec<PathEl> = path.into_iter().collect();
    /// let back_to_path: BezPath = as_vec.into_iter().collect();
    /// ```
    pub fn from_vec(v: Vec<PathEl>) -> BezPath {
        debug_assert!(
            v.first().is_none() || matches!(v.first(), Some(PathEl::MoveTo(_))),
            "BezPath must begin with MoveTo"
        );
        BezPath(v)
    }

    /// Removes the last [`PathEl`] from the path and returns it, or `None` if the path is empty.
    pub fn pop(&mut self) -> Option<PathEl> {
        self.0.pop()
    }

    /// Push a generic path element onto the path.
    pub fn push(&mut self, el: PathEl) {
        self.0.push(el);
        debug_assert!(
            matches!(self.0.first(), Some(PathEl::MoveTo(_))),
            "BezPath must begin with MoveTo"
        )
    }

    /// Push a "move to" element onto the path.
    pub fn move_to<P: Into<Point>>(&mut self, p: P) {
        self.push(PathEl::MoveTo(p.into()));
    }

    /// Push a "line to" element onto the path.
    ///
    /// Will panic with a debug assert when the current subpath does not
    /// start with `move_to`.
    pub fn line_to<P: Into<Point>>(&mut self, p: P) {
        debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
        self.push(PathEl::LineTo(p.into()));
    }

    /// Push a "quad to" element onto the path.
    ///
    /// Will panic with a debug assert when the current subpath does not
    /// start with `move_to`.
    pub fn quad_to<P: Into<Point>>(&mut self, p1: P, p2: P) {
        debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
        self.push(PathEl::QuadTo(p1.into(), p2.into()));
    }

    /// Push a "curve to" element onto the path.
    ///
    /// Will panic with a debug assert when the current subpath does not
    /// start with `move_to`.
    pub fn curve_to<P: Into<Point>>(&mut self, p1: P, p2: P, p3: P) {
        debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
        self.push(PathEl::CurveTo(p1.into(), p2.into(), p3.into()));
    }

    /// Push a "close path" element onto the path.
    ///
    /// Will panic with a debug assert when the current subpath does not
    /// start with `move_to`.
    pub fn close_path(&mut self) {
        debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)");
        self.push(PathEl::ClosePath);
    }

    fn is_open_subpath(&self) -> bool {
        !self.0.is_empty() && self.0.last() != Some(&PathEl::ClosePath)
    }

    /// Get the path elements.
    pub fn elements(&self) -> &[PathEl] {
        &self.0
    }

    /// Get the path elements (mut version).
    pub fn elements_mut(&mut self) -> &mut [PathEl] {
        &mut self.0
    }

    /// Returns an iterator over the path's elements.
    pub fn iter(&self) -> impl Iterator<Item = PathEl> + Clone + '_ {
        self.0.iter().copied()
    }

    /// Iterate over the path segments.
    pub fn segments(&self) -> impl Iterator<Item = PathSeg> + Clone + '_ {
        segments(self.iter())
    }

    /// Shorten the path, keeping the first `len` elements.
    pub fn truncate(&mut self, len: usize) {
        self.0.truncate(len);
    }

    /// Flatten the path, invoking the callback repeatedly.
    ///
    /// Flattening is the action of approximating a curve with a succession of line segments.
    ///
    /// <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm">
    ///   <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/>
    ///   <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/>
    ///   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
    ///   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/>
    ///   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
    ///   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/>
    ///   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/>
    ///   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/>
    ///   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/>
    ///   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/>
    ///   <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)">
    ///     <tspan x="35.74" y="284.49" font-size="10.58">→</tspan>
    ///   </text>
    /// </svg>
    ///
    /// The tolerance value controls the maximum distance between the curved input
    /// segments and their polyline approximations. (In technical terms, this is the
    /// Hausdorff distance). The algorithm attempts to bound this distance between
    /// by `tolerance` but this is not absolutely guaranteed. The appropriate value
    /// depends on the use, but for antialiased rendering, a value of 0.25 has been
    /// determined to give good results. The number of segments tends to scale as the
    /// inverse square root of tolerance.
    ///
    /// <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg">
    ///   <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/>
    ///   <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/>
    ///   <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/>
    ///   <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/>
    ///   <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/>
    ///   <g fill="none" stroke="#ff7f2a" stroke-width=".26">
    ///     <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/>
    ///   </g>
    /// </svg>
    ///
    /// The callback will be called in order with each element of the generated
    /// path. Because the result is made of polylines, these will be straight-line
    /// path elements only, no curves.
    ///
    /// This algorithm is based on the blog post [Flattening quadratic Béziers]
    /// but with some refinements. For one, there is a more careful approximation
    /// at cusps. For two, the algorithm is extended to work with cubic Béziers
    /// as well, by first subdividing into quadratics and then computing the
    /// subdivision of each quadratic. However, as a clever trick, these quadratics
    /// are subdivided fractionally, and their endpoints are not included.
    ///
    /// TODO: write a paper explaining this in more detail.
    ///
    /// Note: the [`flatten`] function provides the same
    /// functionality but works with slices and other [`PathEl`] iterators.
    ///
    /// [Flattening quadratic Béziers]: https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
    pub fn flatten(&self, tolerance: f64, callback: impl FnMut(PathEl)) {
        flatten(self, tolerance, callback);
    }

    /// Get the segment at the given element index.
    ///
    /// If you need to access all segments, [`segments`] provides a better
    /// API. This is intended for random access of specific elements, for clients
    /// that require this specifically.
    ///
    /// **note**: This returns the segment that ends at the provided element
    /// index. In effect this means it is *1-indexed*: since no segment ends at
    /// the first element (which is presumed to be a `MoveTo`) `get_seg(0)` will
    /// always return `None`.
    pub fn get_seg(&self, ix: usize) -> Option<PathSeg> {
        if ix == 0 || ix >= self.0.len() {
            return None;
        }
        let last = match self.0[ix - 1] {
            PathEl::MoveTo(p) => p,
            PathEl::LineTo(p) => p,
            PathEl::QuadTo(_, p2) => p2,
            PathEl::CurveTo(_, _, p3) => p3,
            _ => return None,
        };
        match self.0[ix] {
            PathEl::LineTo(p) => Some(PathSeg::Line(Line::new(last, p))),
            PathEl::QuadTo(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))),
            PathEl::CurveTo(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))),
            PathEl::ClosePath => self.0[..ix].iter().rev().find_map(|el| match *el {
                PathEl::MoveTo(start) if start != last => {
                    Some(PathSeg::Line(Line::new(last, start)))
                }
                _ => None,
            }),
            _ => None,
        }
    }

    /// Returns `true` if the path contains no segments.
    pub fn is_empty(&self) -> bool {
        self.0
            .iter()
            .all(|el| matches!(el, PathEl::MoveTo(..) | PathEl::ClosePath))
    }

    /// Apply an affine transform to the path.
    pub fn apply_affine(&mut self, affine: Affine) {
        for el in self.0.iter_mut() {
            *el = affine * (*el);
        }
    }

    /// Is this path finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.0.iter().all(|v| v.is_finite())
    }

    /// Is this path NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.0.iter().any(|v| v.is_nan())
    }
}

impl FromIterator<PathEl> for BezPath {
    fn from_iter<T: IntoIterator<Item = PathEl>>(iter: T) -> Self {
        let el_vec: Vec<_> = iter.into_iter().collect();
        BezPath::from_vec(el_vec)
    }
}

/// Allow iteration over references to `BezPath`.
///
/// Note: the semantics are slightly different from simply iterating over the
/// slice, as it returns `PathEl` items, rather than references.
impl<'a> IntoIterator for &'a BezPath {
    type Item = PathEl;
    type IntoIter = core::iter::Cloned<core::slice::Iter<'a, PathEl>>;

    fn into_iter(self) -> Self::IntoIter {
        self.elements().iter().cloned()
    }
}

impl IntoIterator for BezPath {
    type Item = PathEl;
    type IntoIter = alloc::vec::IntoIter<PathEl>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl Extend<PathEl> for BezPath {
    fn extend<I: IntoIterator<Item = PathEl>>(&mut self, iter: I) {
        self.0.extend(iter);
    }
}

/// Proportion of tolerance budget that goes to cubic to quadratic conversion.
const TO_QUAD_TOL: f64 = 0.1;

/// Flatten the path, invoking the callback repeatedly.
///
/// See [`BezPath::flatten`] for more discussion.
/// This signature is a bit more general, allowing flattening of `&[PathEl]` slices
/// and other iterators yielding `PathEl`.
pub fn flatten(
    path: impl IntoIterator<Item = PathEl>,
    tolerance: f64,
    mut callback: impl FnMut(PathEl),
) {
    let sqrt_tol = tolerance.sqrt();
    let mut last_pt = None;
    let mut quad_buf = Vec::new();
    for el in path {
        match el {
            PathEl::MoveTo(p) => {
                last_pt = Some(p);
                callback(PathEl::MoveTo(p));
            }
            PathEl::LineTo(p) => {
                last_pt = Some(p);
                callback(PathEl::LineTo(p));
            }
            PathEl::QuadTo(p1, p2) => {
                if let Some(p0) = last_pt {
                    let q = QuadBez::new(p0, p1, p2);
                    let params = q.estimate_subdiv(sqrt_tol);
                    let n = ((0.5 * params.val / sqrt_tol).ceil() as usize).max(1);
                    let step = 1.0 / (n as f64);
                    for i in 1..n {
                        let u = (i as f64) * step;
                        let t = q.determine_subdiv_t(&params, u);
                        let p = q.eval(t);
                        callback(PathEl::LineTo(p));
                    }
                    callback(PathEl::LineTo(p2));
                }
                last_pt = Some(p2);
            }
            PathEl::CurveTo(p1, p2, p3) => {
                if let Some(p0) = last_pt {
                    let c = CubicBez::new(p0, p1, p2, p3);

                    // Subdivide into quadratics, and estimate the number of
                    // subdivisions required for each, summing to arrive at an
                    // estimate for the number of subdivisions for the cubic.
                    // Also retain these parameters for later.
                    let iter = c.to_quads(tolerance * TO_QUAD_TOL);
                    quad_buf.clear();
                    quad_buf.reserve(iter.size_hint().0);
                    let sqrt_remain_tol = sqrt_tol * (1.0 - TO_QUAD_TOL).sqrt();
                    let mut sum = 0.0;
                    for (_, _, q) in iter {
                        let params = q.estimate_subdiv(sqrt_remain_tol);
                        sum += params.val;
                        quad_buf.push((q, params));
                    }
                    let n = ((0.5 * sum / sqrt_remain_tol).ceil() as usize).max(1);

                    // Iterate through the quadratics, outputting the points of
                    // subdivisions that fall within that quadratic.
                    let step = sum / (n as f64);
                    let mut i = 1;
                    let mut val_sum = 0.0;
                    for (q, params) in &quad_buf {
                        let mut target = (i as f64) * step;
                        let recip_val = params.val.recip();
                        while target < val_sum + params.val {
                            let u = (target - val_sum) * recip_val;
                            let t = q.determine_subdiv_t(params, u);
                            let p = q.eval(t);
                            callback(PathEl::LineTo(p));
                            i += 1;
                            if i == n + 1 {
                                break;
                            }
                            target = (i as f64) * step;
                        }
                        val_sum += params.val;
                    }
                    callback(PathEl::LineTo(p3));
                }
                last_pt = Some(p3);
            }
            PathEl::ClosePath => {
                last_pt = None;
                callback(PathEl::ClosePath);
            }
        }
    }
}

impl Mul<PathEl> for Affine {
    type Output = PathEl;

    fn mul(self, other: PathEl) -> PathEl {
        match other {
            PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
            PathEl::LineTo(p) => PathEl::LineTo(self * p),
            PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
            PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
            PathEl::ClosePath => PathEl::ClosePath,
        }
    }
}

impl Mul<PathSeg> for Affine {
    type Output = PathSeg;

    fn mul(self, other: PathSeg) -> PathSeg {
        match other {
            PathSeg::Line(line) => PathSeg::Line(self * line),
            PathSeg::Quad(quad) => PathSeg::Quad(self * quad),
            PathSeg::Cubic(cubic) => PathSeg::Cubic(self * cubic),
        }
    }
}

impl Mul<BezPath> for Affine {
    type Output = BezPath;

    fn mul(self, other: BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl<'a> Mul<&'a BezPath> for Affine {
    type Output = BezPath;

    fn mul(self, other: &BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl Mul<PathEl> for TranslateScale {
    type Output = PathEl;

    fn mul(self, other: PathEl) -> PathEl {
        match other {
            PathEl::MoveTo(p) => PathEl::MoveTo(self * p),
            PathEl::LineTo(p) => PathEl::LineTo(self * p),
            PathEl::QuadTo(p1, p2) => PathEl::QuadTo(self * p1, self * p2),
            PathEl::CurveTo(p1, p2, p3) => PathEl::CurveTo(self * p1, self * p2, self * p3),
            PathEl::ClosePath => PathEl::ClosePath,
        }
    }
}

impl Mul<PathSeg> for TranslateScale {
    type Output = PathSeg;

    fn mul(self, other: PathSeg) -> PathSeg {
        match other {
            PathSeg::Line(line) => PathSeg::Line(self * line),
            PathSeg::Quad(quad) => PathSeg::Quad(self * quad),
            PathSeg::Cubic(cubic) => PathSeg::Cubic(self * cubic),
        }
    }
}

impl Mul<BezPath> for TranslateScale {
    type Output = BezPath;

    fn mul(self, other: BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

impl<'a> Mul<&'a BezPath> for TranslateScale {
    type Output = BezPath;

    fn mul(self, other: &BezPath) -> BezPath {
        BezPath(other.0.iter().map(|&el| self * el).collect())
    }
}

/// Transform an iterator over path elements into one over path
/// segments.
///
/// See also [`BezPath::segments`].
/// This signature is a bit more general, allowing `&[PathEl]` slices
/// and other iterators yielding `PathEl`.
pub fn segments<I>(elements: I) -> Segments<I::IntoIter>
where
    I: IntoIterator<Item = PathEl>,
{
    Segments {
        elements: elements.into_iter(),
        start_last: None,
    }
}

/// An iterator that transforms path elements to path segments.
///
/// This struct is created by the [`segments`] function.
#[derive(Clone)]
pub struct Segments<I: Iterator<Item = PathEl>> {
    elements: I,
    start_last: Option<(Point, Point)>,
}

impl<I: Iterator<Item = PathEl>> Iterator for Segments<I> {
    type Item = PathSeg;

    fn next(&mut self) -> Option<PathSeg> {
        for el in &mut self.elements {
            // We first need to check whether this is the first
            // path element we see to fill in the start position.
            let (start, last) = self.start_last.get_or_insert_with(|| {
                let point = match el {
                    PathEl::MoveTo(p) => p,
                    PathEl::LineTo(p) => p,
                    PathEl::QuadTo(_, p2) => p2,
                    PathEl::CurveTo(_, _, p3) => p3,
                    PathEl::ClosePath => panic!("Can't start a segment on a ClosePath"),
                };
                (point, point)
            });

            return Some(match el {
                PathEl::MoveTo(p) => {
                    *start = p;
                    *last = p;
                    continue;
                }
                PathEl::LineTo(p) => PathSeg::Line(Line::new(mem::replace(last, p), p)),
                PathEl::QuadTo(p1, p2) => {
                    PathSeg::Quad(QuadBez::new(mem::replace(last, p2), p1, p2))
                }
                PathEl::CurveTo(p1, p2, p3) => {
                    PathSeg::Cubic(CubicBez::new(mem::replace(last, p3), p1, p2, p3))
                }
                PathEl::ClosePath => {
                    if *last != *start {
                        PathSeg::Line(Line::new(mem::replace(last, *start), *start))
                    } else {
                        continue;
                    }
                }
            });
        }

        None
    }
}

impl<I: Iterator<Item = PathEl>> Segments<I> {
    /// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst,
    /// the total error is `accuracy` times the number of Bézier segments.

    // TODO: pub? Or is this subsumed by method of &[PathEl]?
    pub(crate) fn perimeter(self, accuracy: f64) -> f64 {
        self.map(|seg| seg.arclen(accuracy)).sum()
    }

    // Same
    pub(crate) fn area(self) -> f64 {
        self.map(|seg| seg.signed_area()).sum()
    }

    // Same
    pub(crate) fn winding(self, p: Point) -> i32 {
        self.map(|seg| seg.winding(p)).sum()
    }

    // Same
    pub(crate) fn bounding_box(self) -> Rect {
        let mut bbox: Option<Rect> = None;
        for seg in self {
            let seg_bb = ParamCurveExtrema::bounding_box(&seg);
            if let Some(bb) = bbox {
                bbox = Some(bb.union(seg_bb));
            } else {
                bbox = Some(seg_bb)
            }
        }
        bbox.unwrap_or_default()
    }
}

impl ParamCurve for PathSeg {
    fn eval(&self, t: f64) -> Point {
        match *self {
            PathSeg::Line(line) => line.eval(t),
            PathSeg::Quad(quad) => quad.eval(t),
            PathSeg::Cubic(cubic) => cubic.eval(t),
        }
    }

    fn subsegment(&self, range: Range<f64>) -> PathSeg {
        match *self {
            PathSeg::Line(line) => PathSeg::Line(line.subsegment(range)),
            PathSeg::Quad(quad) => PathSeg::Quad(quad.subsegment(range)),
            PathSeg::Cubic(cubic) => PathSeg::Cubic(cubic.subsegment(range)),
        }
    }
}

impl ParamCurveArclen for PathSeg {
    fn arclen(&self, accuracy: f64) -> f64 {
        match *self {
            PathSeg::Line(line) => line.arclen(accuracy),
            PathSeg::Quad(quad) => quad.arclen(accuracy),
            PathSeg::Cubic(cubic) => cubic.arclen(accuracy),
        }
    }

    fn inv_arclen(&self, arclen: f64, accuracy: f64) -> f64 {
        match *self {
            PathSeg::Line(line) => line.inv_arclen(arclen, accuracy),
            PathSeg::Quad(quad) => quad.inv_arclen(arclen, accuracy),
            PathSeg::Cubic(cubic) => cubic.inv_arclen(arclen, accuracy),
        }
    }
}

impl ParamCurveArea for PathSeg {
    fn signed_area(&self) -> f64 {
        match *self {
            PathSeg::Line(line) => line.signed_area(),
            PathSeg::Quad(quad) => quad.signed_area(),
            PathSeg::Cubic(cubic) => cubic.signed_area(),
        }
    }
}

impl ParamCurveNearest for PathSeg {
    fn nearest(&self, p: Point, accuracy: f64) -> Nearest {
        match *self {
            PathSeg::Line(line) => line.nearest(p, accuracy),
            PathSeg::Quad(quad) => quad.nearest(p, accuracy),
            PathSeg::Cubic(cubic) => cubic.nearest(p, accuracy),
        }
    }
}

impl ParamCurveExtrema for PathSeg {
    fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
        match *self {
            PathSeg::Line(line) => line.extrema(),
            PathSeg::Quad(quad) => quad.extrema(),
            PathSeg::Cubic(cubic) => cubic.extrema(),
        }
    }
}

impl PathSeg {
    /// Get the [`PathEl`] that is equivalent to discarding the segment start point.
    pub fn as_path_el(&self) -> PathEl {
        match self {
            PathSeg::Line(line) => PathEl::LineTo(line.p1),
            PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2),
            PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3),
        }
    }

    /// Returns a new `PathSeg` describing the same path as `self`, but with
    /// the points reversed.
    pub fn reverse(&self) -> PathSeg {
        match self {
            PathSeg::Line(Line { p0, p1 }) => PathSeg::Line(Line::new(*p1, *p0)),
            PathSeg::Quad(q) => PathSeg::Quad(QuadBez::new(q.p2, q.p1, q.p0)),
            PathSeg::Cubic(c) => PathSeg::Cubic(CubicBez::new(c.p3, c.p2, c.p1, c.p0)),
        }
    }

    /// Convert this segment to a cubic bezier.
    pub fn to_cubic(&self) -> CubicBez {
        match *self {
            PathSeg::Line(Line { p0, p1 }) => CubicBez::new(p0, p0, p1, p1),
            PathSeg::Cubic(c) => c,
            PathSeg::Quad(q) => q.raise(),
        }
    }

    // Assumes split at extrema.
    fn winding_inner(&self, p: Point) -> i32 {
        let start = self.start();
        let end = self.end();
        let sign = if end.y > start.y {
            if p.y < start.y || p.y >= end.y {
                return 0;
            }
            -1
        } else if end.y < start.y {
            if p.y < end.y || p.y >= start.y {
                return 0;
            }
            1
        } else {
            return 0;
        };
        match *self {
            PathSeg::Line(_line) => {
                if p.x < start.x.min(end.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x) {
                    return sign;
                }
                // line equation ax + by = c
                let a = end.y - start.y;
                let b = start.x - end.x;
                let c = a * start.x + b * start.y;
                if (a * p.x + b * p.y - c) * (sign as f64) <= 0.0 {
                    sign
                } else {
                    0
                }
            }
            PathSeg::Quad(quad) => {
                let p1 = quad.p1;
                if p.x < start.x.min(end.x).min(p1.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x).max(p1.x) {
                    return sign;
                }
                let a = end.y - 2.0 * p1.y + start.y;
                let b = 2.0 * (p1.y - start.y);
                let c = start.y - p.y;
                for t in solve_quadratic(c, b, a) {
                    if (0.0..=1.0).contains(&t) {
                        let x = quad.eval(t).x;
                        if p.x >= x {
                            return sign;
                        } else {
                            return 0;
                        }
                    }
                }
                0
            }
            PathSeg::Cubic(cubic) => {
                let p1 = cubic.p1;
                let p2 = cubic.p2;
                if p.x < start.x.min(end.x).min(p1.x).min(p2.x) {
                    return 0;
                }
                if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) {
                    return sign;
                }
                let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y;
                let b = 3.0 * (p2.y - 2.0 * p1.y + start.y);
                let c = 3.0 * (p1.y - start.y);
                let d = start.y - p.y;
                for t in solve_cubic(d, c, b, a) {
                    if (0.0..=1.0).contains(&t) {
                        let x = cubic.eval(t).x;
                        if p.x >= x {
                            return sign;
                        } else {
                            return 0;
                        }
                    }
                }
                0
            }
        }
    }

    /// Compute the winding number contribution of a single segment.
    ///
    /// Cast a ray to the left and count intersections.
    fn winding(&self, p: Point) -> i32 {
        self.extrema_ranges()
            .into_iter()
            .map(|range| self.subsegment(range).winding_inner(p))
            .sum()
    }

    /// Compute intersections against a line.
    ///
    /// Returns a vector of the intersections. For each intersection,
    /// the `t` value of the segment and line are given.
    ///
    /// Note: This test is designed to be inclusive of points near the endpoints
    /// of the segment. This is so that testing a line against multiple
    /// contiguous segments of a path will be guaranteed to catch at least one
    /// of them. In such cases, use higher level logic to coalesce the hits
    /// (the `t` value may be slightly outside the range of 0..1).
    ///
    /// # Examples
    ///
    /// ```
    /// # use kurbo::*;
    /// let seg = PathSeg::Line(Line::new((0.0, 0.0), (2.0, 0.0)));
    /// let line = Line::new((1.0, 2.0), (1.0, -2.0));
    /// let intersection = seg.intersect_line(line);
    /// assert_eq!(intersection.len(), 1);
    /// let intersection = intersection[0];
    /// assert_eq!(intersection.segment_t, 0.5);
    /// assert_eq!(intersection.line_t, 0.5);
    ///
    /// let point = seg.eval(intersection.segment_t);
    /// assert_eq!(point, Point::new(1.0, 0.0));
    /// ```
    pub fn intersect_line(&self, line: Line) -> ArrayVec<LineIntersection, 3> {
        const EPSILON: f64 = 1e-9;
        let p0 = line.p0;
        let p1 = line.p1;
        let dx = p1.x - p0.x;
        let dy = p1.y - p0.y;
        let mut result = ArrayVec::new();
        match self {
            PathSeg::Line(l) => {
                let det = dx * (l.p1.y - l.p0.y) - dy * (l.p1.x - l.p0.x);
                if det.abs() < EPSILON {
                    // Lines are coincident (or nearly so).
                    return result;
                }
                let t = dx * (p0.y - l.p0.y) - dy * (p0.x - l.p0.x);
                // t = position on self
                let t = t / det;
                if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
                    // u = position on probe line
                    let u =
                        (l.p0.x - p0.x) * (l.p1.y - l.p0.y) - (l.p0.y - p0.y) * (l.p1.x - l.p0.x);
                    let u = u / det;
                    if (0.0..=1.0).contains(&u) {
                        result.push(LineIntersection::new(u, t));
                    }
                }
            }
            PathSeg::Quad(q) => {
                // The basic technique here is to determine x and y as a quadratic polynomial
                // as a function of t. Then plug those values into the line equation for the
                // probe line (giving a sort of signed distance from the probe line) and solve
                // that for t.
                let (px0, px1, px2) = quadratic_bez_coefs(q.p0.x, q.p1.x, q.p2.x);
                let (py0, py1, py2) = quadratic_bez_coefs(q.p0.y, q.p1.y, q.p2.y);
                let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
                let c1 = dy * px1 - dx * py1;
                let c2 = dy * px2 - dx * py2;
                let invlen2 = (dx * dx + dy * dy).recip();
                for t in crate::common::solve_quadratic(c0, c1, c2) {
                    if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
                        let x = px0 + t * px1 + t * t * px2;
                        let y = py0 + t * py1 + t * t * py2;
                        let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
                        if (0.0..=1.0).contains(&u) {
                            result.push(LineIntersection::new(u, t));
                        }
                    }
                }
            }
            PathSeg::Cubic(c) => {
                // Same technique as above, but cubic polynomial.
                let (px0, px1, px2, px3) = cubic_bez_coefs(c.p0.x, c.p1.x, c.p2.x, c.p3.x);
                let (py0, py1, py2, py3) = cubic_bez_coefs(c.p0.y, c.p1.y, c.p2.y, c.p3.y);
                let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y);
                let c1 = dy * px1 - dx * py1;
                let c2 = dy * px2 - dx * py2;
                let c3 = dy * px3 - dx * py3;
                let invlen2 = (dx * dx + dy * dy).recip();
                for t in crate::common::solve_cubic(c0, c1, c2, c3) {
                    if (-EPSILON..=(1.0 + EPSILON)).contains(&t) {
                        let x = px0 + t * px1 + t * t * px2 + t * t * t * px3;
                        let y = py0 + t * py1 + t * t * py2 + t * t * t * py3;
                        let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2;
                        if (0.0..=1.0).contains(&u) {
                            result.push(LineIntersection::new(u, t));
                        }
                    }
                }
            }
        }
        result
    }

    /// Is this Bezier path finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        match self {
            PathSeg::Line(line) => line.is_finite(),
            PathSeg::Quad(quad_bez) => quad_bez.is_finite(),
            PathSeg::Cubic(cubic_bez) => cubic_bez.is_finite(),
        }
    }

    /// Is this Bezier path NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        match self {
            PathSeg::Line(line) => line.is_nan(),
            PathSeg::Quad(quad_bez) => quad_bez.is_nan(),
            PathSeg::Cubic(cubic_bez) => cubic_bez.is_nan(),
        }
    }

    #[inline]
    fn as_vec2_vec(&self) -> ArrayVec<Vec2, 4> {
        let mut a = ArrayVec::new();
        match self {
            PathSeg::Line(l) => {
                a.push(l.p0.to_vec2());
                a.push(l.p1.to_vec2());
            }
            PathSeg::Quad(q) => {
                a.push(q.p0.to_vec2());
                a.push(q.p1.to_vec2());
                a.push(q.p2.to_vec2());
            }
            PathSeg::Cubic(c) => {
                a.push(c.p0.to_vec2());
                a.push(c.p1.to_vec2());
                a.push(c.p2.to_vec2());
                a.push(c.p3.to_vec2());
            }
        };
        a
    }

    /// Minimum distance between two PathSegs
    ///
    /// Returns a tuple of the distance, the path time `t1` of the closest point
    /// on the first PathSeg, and the path time `t2` of the closest point on the
    /// second PathSeg.
    pub fn min_dist(&self, other: PathSeg, accuracy: f64) -> MinDistance {
        let (distance, t1, t2) = crate::mindist::min_dist_param(
            &self.as_vec2_vec(),
            &other.as_vec2_vec(),
            (0.0, 1.0),
            (0.0, 1.0),
            accuracy,
            None,
        );
        MinDistance {
            distance: distance.sqrt(),
            t1,
            t2,
        }
    }

    /// Compute endpoint tangents of a path segment.
    ///
    /// This version is robust to the path segment not being a regular curve.
    pub(crate) fn tangents(&self) -> (Vec2, Vec2) {
        const EPS: f64 = 1e-12;
        match self {
            PathSeg::Line(l) => {
                let d = l.p1 - l.p0;
                (d, d)
            }
            PathSeg::Quad(q) => {
                let d01 = q.p1 - q.p0;
                let d0 = if d01.hypot2() > EPS { d01 } else { q.p2 - q.p0 };
                let d12 = q.p2 - q.p1;
                let d1 = if d12.hypot2() > EPS { d12 } else { q.p2 - q.p0 };
                (d0, d1)
            }
            PathSeg::Cubic(c) => {
                let d01 = c.p1 - c.p0;
                let d0 = if d01.hypot2() > EPS {
                    d01
                } else {
                    let d02 = c.p2 - c.p0;
                    if d02.hypot2() > EPS {
                        d02
                    } else {
                        c.p3 - c.p0
                    }
                };
                let d23 = c.p3 - c.p2;
                let d1 = if d23.hypot2() > EPS {
                    d23
                } else {
                    let d13 = c.p3 - c.p1;
                    if d13.hypot2() > EPS {
                        d13
                    } else {
                        c.p3 - c.p0
                    }
                };
                (d0, d1)
            }
        }
    }
}

impl LineIntersection {
    fn new(line_t: f64, segment_t: f64) -> Self {
        LineIntersection { line_t, segment_t }
    }

    /// Is this line intersection finite?
    #[inline]
    pub fn is_finite(self) -> bool {
        self.line_t.is_finite() && self.segment_t.is_finite()
    }

    /// Is this line intersection NaN?
    #[inline]
    pub fn is_nan(self) -> bool {
        self.line_t.is_nan() || self.segment_t.is_nan()
    }
}

// Return polynomial coefficients given cubic bezier coordinates.
fn quadratic_bez_coefs(x0: f64, x1: f64, x2: f64) -> (f64, f64, f64) {
    let p0 = x0;
    let p1 = 2.0 * x1 - 2.0 * x0;
    let p2 = x2 - 2.0 * x1 + x0;
    (p0, p1, p2)
}

// Return polynomial coefficients given cubic bezier coordinates.
fn cubic_bez_coefs(x0: f64, x1: f64, x2: f64, x3: f64) -> (f64, f64, f64, f64) {
    let p0 = x0;
    let p1 = 3.0 * x1 - 3.0 * x0;
    let p2 = 3.0 * x2 - 6.0 * x1 + 3.0 * x0;
    let p3 = x3 - 3.0 * x2 + 3.0 * x1 - x0;
    (p0, p1, p2, p3)
}

impl From<CubicBez> for PathSeg {
    fn from(cubic_bez: CubicBez) -> PathSeg {
        PathSeg::Cubic(cubic_bez)
    }
}

impl From<Line> for PathSeg {
    fn from(line: Line) -> PathSeg {
        PathSeg::Line(line)
    }
}

impl From<QuadBez> for PathSeg {
    fn from(quad_bez: QuadBez) -> PathSeg {
        PathSeg::Quad(quad_bez)
    }
}

impl Shape for BezPath {
    type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>;

    fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
        self.0.iter().copied()
    }

    fn to_path(&self, _tolerance: f64) -> BezPath {
        self.clone()
    }

    fn into_path(self, _tolerance: f64) -> BezPath {
        self
    }

    /// Signed area.
    fn area(&self) -> f64 {
        self.elements().area()
    }

    fn perimeter(&self, accuracy: f64) -> f64 {
        self.elements().perimeter(accuracy)
    }

    /// Winding number of point.
    fn winding(&self, pt: Point) -> i32 {
        self.elements().winding(pt)
    }

    fn bounding_box(&self) -> Rect {
        self.elements().bounding_box()
    }

    fn as_path_slice(&self) -> Option<&[PathEl]> {
        Some(&self.0)
    }
}

impl PathEl {
    /// Is this path element finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        match self {
            PathEl::MoveTo(p) => p.is_finite(),
            PathEl::LineTo(p) => p.is_finite(),
            PathEl::QuadTo(p, p2) => p.is_finite() && p2.is_finite(),
            PathEl::CurveTo(p, p2, p3) => p.is_finite() && p2.is_finite() && p3.is_finite(),
            PathEl::ClosePath => true,
        }
    }

    /// Is this path element NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        match self {
            PathEl::MoveTo(p) => p.is_nan(),
            PathEl::LineTo(p) => p.is_nan(),
            PathEl::QuadTo(p, p2) => p.is_nan() || p2.is_nan(),
            PathEl::CurveTo(p, p2, p3) => p.is_nan() || p2.is_nan() || p3.is_nan(),
            PathEl::ClosePath => false,
        }
    }
}

/// Implements [`Shape`] for a slice of [`PathEl`], provided that the first element of the slice is
/// not a `PathEl::ClosePath`. If it is, several of these functions will panic.
///
/// If the slice starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`.
impl<'a> Shape for &'a [PathEl] {
    type PathElementsIter<'iter>

    = core::iter::Copied<core::slice::Iter<'a, PathEl>> where 'a: 'iter;

    #[inline]
    fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
        self.iter().copied()
    }

    fn to_path(&self, _tolerance: f64) -> BezPath {
        BezPath::from_vec(self.to_vec())
    }

    /// Signed area.
    fn area(&self) -> f64 {
        segments(self.iter().copied()).area()
    }

    fn perimeter(&self, accuracy: f64) -> f64 {
        segments(self.iter().copied()).perimeter(accuracy)
    }

    /// Winding number of point.
    fn winding(&self, pt: Point) -> i32 {
        segments(self.iter().copied()).winding(pt)
    }

    fn bounding_box(&self) -> Rect {
        segments(self.iter().copied()).bounding_box()
    }

    #[inline]
    fn as_path_slice(&self) -> Option<&[PathEl]> {
        Some(self)
    }
}

/// Implements [`Shape`] for an array of [`PathEl`], provided that the first element of the array is
/// not a `PathEl::ClosePath`. If it is, several of these functions will panic.
///
/// If the array starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`.
impl<const N: usize> Shape for [PathEl; N] {
    type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>;

    #[inline]
    fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> {
        self.iter().copied()
    }

    fn to_path(&self, _tolerance: f64) -> BezPath {
        BezPath::from_vec(self.to_vec())
    }

    /// Signed area.
    fn area(&self) -> f64 {
        segments(self.iter().copied()).area()
    }

    fn perimeter(&self, accuracy: f64) -> f64 {
        segments(self.iter().copied()).perimeter(accuracy)
    }

    /// Winding number of point.
    fn winding(&self, pt: Point) -> i32 {
        segments(self.iter().copied()).winding(pt)
    }

    fn bounding_box(&self) -> Rect {
        segments(self.iter().copied()).bounding_box()
    }

    #[inline]
    fn as_path_slice(&self) -> Option<&[PathEl]> {
        Some(self)
    }
}

/// An iterator for path segments.
pub struct PathSegIter {
    seg: PathSeg,
    ix: usize,
}

impl Shape for PathSeg {
    type PathElementsIter<'iter> = PathSegIter;

    #[inline]
    fn path_elements(&self, _tolerance: f64) -> PathSegIter {
        PathSegIter { seg: *self, ix: 0 }
    }

    /// The area under the curve.
    ///
    /// We could just return 0, but this seems more useful.
    fn area(&self) -> f64 {
        self.signed_area()
    }

    #[inline]
    fn perimeter(&self, accuracy: f64) -> f64 {
        self.arclen(accuracy)
    }

    fn winding(&self, _pt: Point) -> i32 {
        0
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        ParamCurveExtrema::bounding_box(self)
    }

    fn as_line(&self) -> Option<Line> {
        if let PathSeg::Line(line) = self {
            Some(*line)
        } else {
            None
        }
    }
}

impl Iterator for PathSegIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        self.ix += 1;
        match (self.ix, self.seg) {
            // yes I could do some fancy bindings thing here but... :shrug:
            (1, PathSeg::Line(seg)) => Some(PathEl::MoveTo(seg.p0)),
            (1, PathSeg::Quad(seg)) => Some(PathEl::MoveTo(seg.p0)),
            (1, PathSeg::Cubic(seg)) => Some(PathEl::MoveTo(seg.p0)),
            (2, PathSeg::Line(seg)) => Some(PathEl::LineTo(seg.p1)),
            (2, PathSeg::Quad(seg)) => Some(PathEl::QuadTo(seg.p1, seg.p2)),
            (2, PathSeg::Cubic(seg)) => Some(PathEl::CurveTo(seg.p1, seg.p2, seg.p3)),
            _ => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{Circle, DEFAULT_ACCURACY};

    use super::*;

    fn assert_approx_eq(x: f64, y: f64) {
        assert!((x - y).abs() < 1e-8, "{x} != {y}");
    }

    #[test]
    #[should_panic(expected = "no open subpath")]
    fn test_elements_to_segments_starts_on_closepath() {
        let mut path = BezPath::new();
        path.close_path();
        path.segments().next();
    }

    #[test]
    fn test_elements_to_segments_closepath_refers_to_last_moveto() {
        let mut path = BezPath::new();
        path.move_to((5.0, 5.0));
        path.line_to((15.0, 15.0));
        path.move_to((10.0, 10.0));
        path.line_to((15.0, 15.0));
        path.close_path();
        assert_eq!(
            path.segments().collect::<Vec<_>>().last(),
            Some(&Line::new((15.0, 15.0), (10.0, 10.0)).into()),
        );
    }

    #[test]
    #[should_panic(expected = "no open subpath")]
    fn test_must_not_start_on_quad() {
        let mut path = BezPath::new();
        path.quad_to((5.0, 5.0), (10.0, 10.0));
        path.line_to((15.0, 15.0));
        path.close_path();
    }

    #[test]
    fn test_intersect_line() {
        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        let intersection = PathSeg::Line(h_line).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.1);
        assert_approx_eq(intersection.line_t, 0.5);

        let v_line = Line::new((-10.0, -10.0), (-10.0, 10.0));
        assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());

        let v_line = Line::new((10.0, 10.0), (10.0, 20.0));
        assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty());
    }

    #[test]
    fn test_intersect_qad() {
        let q = QuadBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -10.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        assert_eq!(PathSeg::Quad(q).intersect_line(v_line).len(), 1);
        let intersection = PathSeg::Quad(q).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.5);
        assert_approx_eq(intersection.line_t, 0.75);

        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        assert_eq!(PathSeg::Quad(q).intersect_line(h_line).len(), 2);
    }

    #[test]
    fn test_intersect_cubic() {
        let c = CubicBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -20.0), (30.0, 10.0));
        let v_line = Line::new((10.0, -10.0), (10.0, 10.0));
        assert_eq!(PathSeg::Cubic(c).intersect_line(v_line).len(), 1);
        let intersection = PathSeg::Cubic(c).intersect_line(v_line)[0];
        assert_approx_eq(intersection.segment_t, 0.333333333);
        assert_approx_eq(intersection.line_t, 0.592592592);

        let h_line = Line::new((0.0, 0.0), (100.0, 0.0));
        assert_eq!(PathSeg::Cubic(c).intersect_line(h_line).len(), 3);
    }

    #[test]
    fn test_contains() {
        let mut path = BezPath::new();
        path.move_to((0.0, 0.0));
        path.line_to((1.0, 1.0));
        path.line_to((2.0, 0.0));
        path.close_path();
        assert_eq!(path.winding(Point::new(1.0, 0.5)), -1);
        assert!(path.contains(Point::new(1.0, 0.5)));
    }

    // get_seg(i) should produce the same results as path_segments().nth(i - 1).
    #[test]
    fn test_get_seg() {
        let circle = Circle::new((10.0, 10.0), 2.0).to_path(DEFAULT_ACCURACY);
        let segments = circle.path_segments(DEFAULT_ACCURACY).collect::<Vec<_>>();
        let get_segs = (1..usize::MAX)
            .map_while(|i| circle.get_seg(i))
            .collect::<Vec<_>>();
        assert_eq!(segments, get_segs);
    }
}