1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Cubic Bézier segments.

use alloc::vec;
use alloc::vec::Vec;
use core::ops::{Mul, Range};

use crate::MAX_EXTREMA;
use crate::{Line, QuadSpline, Vec2};
use arrayvec::ArrayVec;

use crate::common::{
    solve_quadratic, GAUSS_LEGENDRE_COEFFS_16_HALF, GAUSS_LEGENDRE_COEFFS_24_HALF,
    GAUSS_LEGENDRE_COEFFS_8, GAUSS_LEGENDRE_COEFFS_8_HALF,
};
use crate::{
    Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature,
    ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, QuadBez, Rect, Shape,
};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

const MAX_SPLINE_SPLIT: usize = 100;

/// A single cubic Bézier segment.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[allow(missing_docs)]
pub struct CubicBez {
    pub p0: Point,
    pub p1: Point,
    pub p2: Point,
    pub p3: Point,
}

/// An iterator which produces quadratic Bézier segments.
struct ToQuads {
    c: CubicBez,
    i: usize,
    n: usize,
}

impl CubicBez {
    /// Create a new cubic Bézier segment.
    #[inline]
    pub fn new<P: Into<Point>>(p0: P, p1: P, p2: P, p3: P) -> CubicBez {
        CubicBez {
            p0: p0.into(),
            p1: p1.into(),
            p2: p2.into(),
            p3: p3.into(),
        }
    }

    /// Convert to quadratic Béziers.
    ///
    /// The iterator returns the start and end parameter in the cubic of each quadratic
    /// segment, along with the quadratic.
    ///
    /// Note that the resulting quadratic Béziers are not in general G1 continuous;
    /// they are optimized for minimizing distance error.
    ///
    /// This iterator will always produce at least one `QuadBez`.
    #[inline]
    pub fn to_quads(&self, accuracy: f64) -> impl Iterator<Item = (f64, f64, QuadBez)> {
        // The maximum error, as a vector from the cubic to the best approximating
        // quadratic, is proportional to the third derivative, which is constant
        // across the segment. Thus, the error scales down as the third power of
        // the number of subdivisions. Our strategy then is to subdivide `t` evenly.
        //
        // This is an overestimate of the error because only the component
        // perpendicular to the first derivative is important. But the simplicity is
        // appealing.

        // This magic number is the square of 36 / sqrt(3).
        // See: http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
        let max_hypot2 = 432.0 * accuracy * accuracy;
        let p1x2 = 3.0 * self.p1.to_vec2() - self.p0.to_vec2();
        let p2x2 = 3.0 * self.p2.to_vec2() - self.p3.to_vec2();
        let err = (p2x2 - p1x2).hypot2();
        let n = ((err / max_hypot2).powf(1. / 6.0).ceil() as usize).max(1);

        ToQuads { c: *self, n, i: 0 }
    }

    /// Return a [`QuadSpline`] approximating this cubic Bézier.
    ///
    /// Returns `None` if no suitable approximation is found within the given
    /// tolerance.
    pub fn approx_spline(&self, accuracy: f64) -> Option<QuadSpline> {
        (1..=MAX_SPLINE_SPLIT).find_map(|n| self.approx_spline_n(n, accuracy))
    }

    // Approximate a cubic curve with a quadratic spline of `n` curves
    fn approx_spline_n(&self, n: usize, accuracy: f64) -> Option<QuadSpline> {
        if n == 1 {
            return self
                .try_approx_quadratic(accuracy)
                .map(|quad| QuadSpline::new(vec![quad.p0, quad.p1, quad.p2]));
        }
        let mut cubics = self.split_into_n(n);

        // The above function guarantees that the iterator returns n items,
        // which is why we're unwrapping things with wild abandon.
        let mut next_cubic = cubics.next().unwrap();
        let mut next_q1: Point = next_cubic.approx_quad_control(0.0);
        let mut q2 = self.p0;
        let mut d1 = Vec2::ZERO;
        let mut spline = vec![self.p0, next_q1];
        for i in 1..=n {
            let current_cubic: CubicBez = next_cubic;
            let q0 = q2;
            let q1 = next_q1;
            q2 = if i < n {
                next_cubic = cubics.next().unwrap();
                next_q1 = next_cubic.approx_quad_control(i as f64 / (n - 1) as f64);

                spline.push(next_q1);
                q1.midpoint(next_q1)
            } else {
                current_cubic.p3
            };
            let d0 = d1;
            d1 = q2.to_vec2() - current_cubic.p3.to_vec2();

            if d1.hypot() > accuracy
                || !CubicBez::new(
                    d0.to_point(),
                    q0.lerp(q1, 2.0 / 3.0) - current_cubic.p1.to_vec2(),
                    q2.lerp(q1, 2.0 / 3.0) - current_cubic.p2.to_vec2(),
                    d1.to_point(),
                )
                .fit_inside(accuracy)
            {
                return None;
            }
        }
        spline.push(self.p3);
        Some(QuadSpline::new(spline))
    }

    fn approx_quad_control(&self, t: f64) -> Point {
        let p1 = self.p0 + (self.p1 - self.p0) * 1.5;
        let p2 = self.p3 + (self.p2 - self.p3) * 1.5;
        p1.lerp(p2, t)
    }

    /// Approximate a cubic with a single quadratic
    ///
    /// Returns a quadratic approximating the given cubic that maintains
    /// endpoint tangents if that is within tolerance, or None otherwise.
    fn try_approx_quadratic(&self, accuracy: f64) -> Option<QuadBez> {
        if let Some(q1) = Line::new(self.p0, self.p1).crossing_point(Line::new(self.p2, self.p3)) {
            let c1 = self.p0.lerp(q1, 2.0 / 3.0);
            let c2 = self.p3.lerp(q1, 2.0 / 3.0);
            if !CubicBez::new(
                Point::ZERO,
                c1 - self.p1.to_vec2(),
                c2 - self.p2.to_vec2(),
                Point::ZERO,
            )
            .fit_inside(accuracy)
            {
                return None;
            }
            return Some(QuadBez::new(self.p0, q1, self.p3));
        }
        None
    }

    fn split_into_n(&self, n: usize) -> impl Iterator<Item = CubicBez> {
        // for certain small values of `n` we precompute all our values.
        // if we have six or fewer items we precompute them.
        let mut storage = ArrayVec::<_, 6>::new();

        match n {
            1 => storage.push(*self),
            2 => {
                let (l, r) = self.subdivide();
                storage.try_extend_from_slice(&[r, l]).unwrap();
            }
            3 => {
                let (left, mid, right) = self.subdivide_3();
                storage.try_extend_from_slice(&[right, mid, left]).unwrap();
            }
            4 => {
                let (l, r) = self.subdivide();
                let (ll, lr) = l.subdivide();
                let (rl, rr) = r.subdivide();
                storage.try_extend_from_slice(&[rr, rl, lr, ll]).unwrap();
            }
            6 => {
                let (l, r) = self.subdivide();
                let (l1, l2, l3) = l.subdivide_3();
                let (r1, r2, r3) = r.subdivide_3();
                storage
                    .try_extend_from_slice(&[r3, r2, r1, l3, l2, l1])
                    .unwrap();
            }
            _ => (),
        }

        // a limitation of returning 'impl Trait' is that the implementation
        // can only return a single concrete type; that is you cannot return
        // Vec::into_iter() from one branch, and then HashSet::into_iter from
        // another branch.
        //
        // This means we have to get a bit fancy, and have a single concrete
        // type that represents both of our possible cases.

        let mut storage = if storage.is_empty() {
            None
        } else {
            Some(storage)
        };

        // used in the fallback case
        let mut i = 0;
        let (a, b, c, d) = self.parameters();
        let dt = 1.0 / n as f64;
        let delta_2 = dt * dt;
        let delta_3 = dt * delta_2;

        core::iter::from_fn(move || {
            // if storage exists, we use it exclusively
            if let Some(storage) = storage.as_mut() {
                return storage.pop();
            }

            // if storage does not exist, we are exclusively working down here.
            if i >= n {
                return None;
            }

            let t1 = i as f64 * dt;
            let t1_2 = t1 * t1;
            let a1 = a * delta_3;
            let b1 = (3.0 * a * t1 + b) * delta_2;
            let c1 = (2.0 * b * t1 + c + 3.0 * a * t1_2) * dt;
            let d1 = a * t1 * t1_2 + b * t1_2 + c * t1 + d;
            let result = CubicBez::from_parameters(a1, b1, c1, d1);
            i += 1;
            Some(result)
        })
    }

    fn parameters(&self) -> (Vec2, Vec2, Vec2, Vec2) {
        let c = (self.p1 - self.p0) * 3.0;
        let b = (self.p2 - self.p1) * 3.0 - c;
        let d = self.p0.to_vec2();
        let a = self.p3.to_vec2() - d - c - b;
        (a, b, c, d)
    }

    /// Rust port of cu2qu [calc_cubic_points](https://github.com/fonttools/fonttools/blob/3b9a73ff8379ab49d3ce35aaaaf04b3a7d9d1655/Lib/fontTools/cu2qu/cu2qu.py#L63-L68)
    fn from_parameters(a: Vec2, b: Vec2, c: Vec2, d: Vec2) -> Self {
        let p0 = d.to_point();
        let p1 = c.div_exact(3.0).to_point() + d;
        let p2 = (b + c).div_exact(3.0).to_point() + p1.to_vec2();
        let p3 = (a + d + c + b).to_point();
        CubicBez::new(p0, p1, p2, p3)
    }

    fn subdivide_3(&self) -> (CubicBez, CubicBez, CubicBez) {
        let (p0, p1, p2, p3) = (
            self.p0.to_vec2(),
            self.p1.to_vec2(),
            self.p2.to_vec2(),
            self.p3.to_vec2(),
        );
        // The original Python cu2qu code here does not use division operator to divide by 27 but
        // instead uses multiplication by the reciprocal 1 / 27. We want to match it exactly
        // to avoid any floating point differences, hence in this particular case we do not use div_exact.
        // I could directly use the Vec2 Div trait (also implemented as multiplication by reciprocal)
        // but I prefer to be explicit here.
        // Source: https://github.com/fonttools/fonttools/blob/85c80be/Lib/fontTools/cu2qu/cu2qu.py#L215-L218
        // See also: https://github.com/linebender/kurbo/issues/272
        let one_27th = 27.0_f64.recip();
        let mid1 = ((8.0 * p0 + 12.0 * p1 + 6.0 * p2 + p3) * one_27th).to_point();
        let deriv1 = (p3 + 3.0 * p2 - 4.0 * p0) * one_27th;
        let mid2 = ((p0 + 6.0 * p1 + 12.0 * p2 + 8.0 * p3) * one_27th).to_point();
        let deriv2 = (4.0 * p3 - 3.0 * p1 - p0) * one_27th;

        let left = CubicBez::new(
            self.p0,
            (2.0 * p0 + p1).div_exact(3.0).to_point(),
            mid1 - deriv1,
            mid1,
        );
        let mid = CubicBez::new(mid1, mid1 + deriv1, mid2 - deriv2, mid2);
        let right = CubicBez::new(
            mid2,
            mid2 + deriv2,
            (p2 + 2.0 * p3).div_exact(3.0).to_point(),
            self.p3,
        );
        (left, mid, right)
    }

    /// Does this curve fit inside the given distance from the origin?
    ///
    /// Rust port of cu2qu [cubic_farthest_fit_inside](https://github.com/fonttools/fonttools/blob/3b9a73ff8379ab49d3ce35aaaaf04b3a7d9d1655/Lib/fontTools/cu2qu/cu2qu.py#L281)
    fn fit_inside(&self, distance: f64) -> bool {
        if self.p2.to_vec2().hypot() <= distance && self.p1.to_vec2().hypot() <= distance {
            return true;
        }
        let mid =
            (self.p0.to_vec2() + 3.0 * (self.p1.to_vec2() + self.p2.to_vec2()) + self.p3.to_vec2())
                * 0.125;
        if mid.hypot() > distance {
            return false;
        }
        // Split in two. Note that cu2qu here uses a 3/8 subdivision. I don't know why.
        let (left, right) = self.subdivide();
        left.fit_inside(distance) && right.fit_inside(distance)
    }

    /// Is this cubic Bezier curve finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite() && self.p3.is_finite()
    }

    /// Is this cubic Bezier curve NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan() || self.p3.is_nan()
    }

    /// Determine the inflection points.
    ///
    /// Return value is t parameter for the inflection points of the curve segment.
    /// There are a maximum of two for a cubic Bézier.
    ///
    /// See <https://www.caffeineowl.com/graphics/2d/vectorial/cubic-inflexion.html>
    /// for the theory.
    pub fn inflections(&self) -> ArrayVec<f64, 2> {
        let a = self.p1 - self.p0;
        let b = (self.p2 - self.p1) - a;
        let c = (self.p3 - self.p0) - 3. * (self.p2 - self.p1);
        solve_quadratic(a.cross(b), a.cross(c), b.cross(c))
            .iter()
            .copied()
            .filter(|t| *t >= 0.0 && *t <= 1.0)
            .collect()
    }
}

/// An iterator for cubic beziers.
pub struct CubicBezIter {
    cubic: CubicBez,
    ix: usize,
}

impl Shape for CubicBez {
    type PathElementsIter<'iter> = CubicBezIter;

    #[inline]
    fn path_elements(&self, _tolerance: f64) -> CubicBezIter {
        CubicBezIter {
            cubic: *self,
            ix: 0,
        }
    }

    fn area(&self) -> f64 {
        0.0
    }

    #[inline]
    fn perimeter(&self, accuracy: f64) -> f64 {
        self.arclen(accuracy)
    }

    fn winding(&self, _pt: Point) -> i32 {
        0
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        ParamCurveExtrema::bounding_box(self)
    }
}

impl Iterator for CubicBezIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        self.ix += 1;
        match self.ix {
            1 => Some(PathEl::MoveTo(self.cubic.p0)),
            2 => Some(PathEl::CurveTo(self.cubic.p1, self.cubic.p2, self.cubic.p3)),
            _ => None,
        }
    }
}

impl ParamCurve for CubicBez {
    #[inline]
    fn eval(&self, t: f64) -> Point {
        let mt = 1.0 - t;
        let v = self.p0.to_vec2() * (mt * mt * mt)
            + (self.p1.to_vec2() * (mt * mt * 3.0)
                + (self.p2.to_vec2() * (mt * 3.0) + self.p3.to_vec2() * t) * t)
                * t;
        v.to_point()
    }

    fn subsegment(&self, range: Range<f64>) -> CubicBez {
        let (t0, t1) = (range.start, range.end);
        let p0 = self.eval(t0);
        let p3 = self.eval(t1);
        let d = self.deriv();
        let scale = (t1 - t0) * (1.0 / 3.0);
        let p1 = p0 + scale * d.eval(t0).to_vec2();
        let p2 = p3 - scale * d.eval(t1).to_vec2();
        CubicBez { p0, p1, p2, p3 }
    }

    /// Subdivide into halves, using de Casteljau.
    #[inline]
    fn subdivide(&self) -> (CubicBez, CubicBez) {
        let pm = self.eval(0.5);
        (
            CubicBez::new(
                self.p0,
                self.p0.midpoint(self.p1),
                ((self.p0.to_vec2() + self.p1.to_vec2() * 2.0 + self.p2.to_vec2()) * 0.25)
                    .to_point(),
                pm,
            ),
            CubicBez::new(
                pm,
                ((self.p1.to_vec2() + self.p2.to_vec2() * 2.0 + self.p3.to_vec2()) * 0.25)
                    .to_point(),
                self.p2.midpoint(self.p3),
                self.p3,
            ),
        )
    }

    #[inline]
    fn start(&self) -> Point {
        self.p0
    }

    #[inline]
    fn end(&self) -> Point {
        self.p3
    }
}

impl ParamCurveDeriv for CubicBez {
    type DerivResult = QuadBez;

    #[inline]
    fn deriv(&self) -> QuadBez {
        QuadBez::new(
            (3.0 * (self.p1 - self.p0)).to_point(),
            (3.0 * (self.p2 - self.p1)).to_point(),
            (3.0 * (self.p3 - self.p2)).to_point(),
        )
    }
}

fn arclen_quadrature_core(coeffs: &[(f64, f64)], dm: Vec2, dm1: Vec2, dm2: Vec2) -> f64 {
    coeffs
        .iter()
        .map(|&(wi, xi)| {
            let d = dm + dm2 * (xi * xi);
            let dpx = (d + dm1 * xi).hypot();
            let dmx = (d - dm1 * xi).hypot();
            (2.25f64.sqrt() * wi) * (dpx + dmx)
        })
        .sum::<f64>()
}

fn arclen_rec(c: &CubicBez, accuracy: f64, depth: usize) -> f64 {
    let d03 = c.p3 - c.p0;
    let d01 = c.p1 - c.p0;
    let d12 = c.p2 - c.p1;
    let d23 = c.p3 - c.p2;
    let lp_lc = d01.hypot() + d12.hypot() + d23.hypot() - d03.hypot();
    let dd1 = d12 - d01;
    let dd2 = d23 - d12;
    // It might be faster to do direct multiplies, the data dependencies would be shorter.
    // The following values don't have the factor of 3 for first deriv
    let dm = 0.25 * (d01 + d23) + 0.5 * d12; // first derivative at midpoint
    let dm1 = 0.5 * (dd2 + dd1); // second derivative at midpoint
    let dm2 = 0.25 * (dd2 - dd1); // 0.5 * (third derivative at midpoint)

    let est = GAUSS_LEGENDRE_COEFFS_8
        .iter()
        .map(|&(wi, xi)| {
            wi * {
                let d_norm2 = (dm + dm1 * xi + dm2 * (xi * xi)).hypot2();
                let dd_norm2 = (dm1 + dm2 * (2.0 * xi)).hypot2();
                dd_norm2 / d_norm2
            }
        })
        .sum::<f64>();
    let est_gauss8_error = (est.powi(3) * 2.5e-6).min(3e-2) * lp_lc;
    if est_gauss8_error < accuracy {
        return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_8_HALF, dm, dm1, dm2);
    }
    let est_gauss16_error = (est.powi(6) * 1.5e-11).min(9e-3) * lp_lc;
    if est_gauss16_error < accuracy {
        return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_16_HALF, dm, dm1, dm2);
    }
    let est_gauss24_error = (est.powi(9) * 3.5e-16).min(3.5e-3) * lp_lc;
    if est_gauss24_error < accuracy || depth >= 20 {
        return arclen_quadrature_core(GAUSS_LEGENDRE_COEFFS_24_HALF, dm, dm1, dm2);
    }
    let (c0, c1) = c.subdivide();
    arclen_rec(&c0, accuracy * 0.5, depth + 1) + arclen_rec(&c1, accuracy * 0.5, depth + 1)
}

impl ParamCurveArclen for CubicBez {
    /// Arclength of a cubic Bézier segment.
    ///
    /// This is an adaptive subdivision approach using Legendre-Gauss quadrature
    /// in the base case, and an error estimate to decide when to subdivide.
    fn arclen(&self, accuracy: f64) -> f64 {
        arclen_rec(self, accuracy, 0)
    }
}

impl ParamCurveArea for CubicBez {
    #[inline]
    fn signed_area(&self) -> f64 {
        (self.p0.x * (6.0 * self.p1.y + 3.0 * self.p2.y + self.p3.y)
            + 3.0
                * (self.p1.x * (-2.0 * self.p0.y + self.p2.y + self.p3.y)
                    - self.p2.x * (self.p0.y + self.p1.y - 2.0 * self.p3.y))
            - self.p3.x * (self.p0.y + 3.0 * self.p1.y + 6.0 * self.p2.y))
            * (1.0 / 20.0)
    }
}

impl ParamCurveNearest for CubicBez {
    /// Find the nearest point, using subdivision.
    fn nearest(&self, p: Point, accuracy: f64) -> Nearest {
        let mut best_r = None;
        let mut best_t = 0.0;
        for (t0, t1, q) in self.to_quads(accuracy) {
            let nearest = q.nearest(p, accuracy);
            if best_r
                .map(|best_r| nearest.distance_sq < best_r)
                .unwrap_or(true)
            {
                best_t = t0 + nearest.t * (t1 - t0);
                best_r = Some(nearest.distance_sq);
            }
        }
        Nearest {
            t: best_t,
            distance_sq: best_r.unwrap(),
        }
    }
}

impl ParamCurveCurvature for CubicBez {}

impl ParamCurveExtrema for CubicBez {
    fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
        fn one_coord(result: &mut ArrayVec<f64, MAX_EXTREMA>, d0: f64, d1: f64, d2: f64) {
            let a = d0 - 2.0 * d1 + d2;
            let b = 2.0 * (d1 - d0);
            let c = d0;
            let roots = solve_quadratic(c, b, a);
            for &t in &roots {
                if t > 0.0 && t < 1.0 {
                    result.push(t);
                }
            }
        }
        let mut result = ArrayVec::new();
        let d0 = self.p1 - self.p0;
        let d1 = self.p2 - self.p1;
        let d2 = self.p3 - self.p2;
        one_coord(&mut result, d0.x, d1.x, d2.x);
        one_coord(&mut result, d0.y, d1.y, d2.y);
        result.sort_by(|a, b| a.partial_cmp(b).unwrap());
        result
    }
}

impl Mul<CubicBez> for Affine {
    type Output = CubicBez;

    #[inline]
    fn mul(self, c: CubicBez) -> CubicBez {
        CubicBez {
            p0: self * c.p0,
            p1: self * c.p1,
            p2: self * c.p2,
            p3: self * c.p3,
        }
    }
}

impl Iterator for ToQuads {
    type Item = (f64, f64, QuadBez);

    fn next(&mut self) -> Option<(f64, f64, QuadBez)> {
        if self.i == self.n {
            return None;
        }
        let t0 = self.i as f64 / self.n as f64;
        let t1 = (self.i + 1) as f64 / self.n as f64;
        let seg = self.c.subsegment(t0..t1);
        let p1x2 = 3.0 * seg.p1.to_vec2() - seg.p0.to_vec2();
        let p2x2 = 3.0 * seg.p2.to_vec2() - seg.p3.to_vec2();
        let result = QuadBez::new(seg.p0, ((p1x2 + p2x2) / 4.0).to_point(), seg.p3);
        self.i += 1;
        Some((t0, t1, result))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.n - self.i;
        (remaining, Some(remaining))
    }
}

/// Convert multiple cubic Bézier curves to quadratic splines.
///
/// Ensures that the resulting splines have the same number of control points.
///
/// Rust port of cu2qu [cubic_approx_quadratic](https://github.com/fonttools/fonttools/blob/3b9a73ff8379ab49d3ce35aaaaf04b3a7d9d1655/Lib/fontTools/cu2qu/cu2qu.py#L322)
pub fn cubics_to_quadratic_splines(curves: &[CubicBez], accuracy: f64) -> Option<Vec<QuadSpline>> {
    let mut result = Vec::new();
    let mut split_order = 0;

    while split_order <= MAX_SPLINE_SPLIT {
        split_order += 1;
        result.clear();

        for curve in curves {
            match curve.approx_spline_n(split_order, accuracy) {
                Some(spline) => result.push(spline),
                None => break,
            }
        }

        if result.len() == curves.len() {
            return Some(result);
        }
    }
    None
}
#[cfg(test)]
mod tests {
    use crate::{
        cubics_to_quadratic_splines, Affine, CubicBez, Nearest, ParamCurve, ParamCurveArclen,
        ParamCurveArea, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, Point, QuadBez,
        QuadSpline,
    };

    #[test]
    fn cubicbez_deriv() {
        // y = x^2
        let c = CubicBez::new(
            (0.0, 0.0),
            (1.0 / 3.0, 0.0),
            (2.0 / 3.0, 1.0 / 3.0),
            (1.0, 1.0),
        );
        let deriv = c.deriv();

        let n = 10;
        for i in 0..=n {
            let t = (i as f64) * (n as f64).recip();
            let delta = 1e-6;
            let p = c.eval(t);
            let p1 = c.eval(t + delta);
            let d_approx = (p1 - p) * delta.recip();
            let d = deriv.eval(t).to_vec2();
            assert!((d - d_approx).hypot() < delta * 2.0);
        }
    }

    #[test]
    fn cubicbez_arclen() {
        // y = x^2
        let c = CubicBez::new(
            (0.0, 0.0),
            (1.0 / 3.0, 0.0),
            (2.0 / 3.0, 1.0 / 3.0),
            (1.0, 1.0),
        );
        let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln();
        for i in 0..12 {
            let accuracy = 0.1f64.powi(i);
            let error = c.arclen(accuracy) - true_arclen;
            assert!(error.abs() < accuracy);
        }
    }

    #[test]
    fn cubicbez_inv_arclen() {
        // y = x^2 / 100
        let c = CubicBez::new(
            (0.0, 0.0),
            (100.0 / 3.0, 0.0),
            (200.0 / 3.0, 100.0 / 3.0),
            (100.0, 100.0),
        );
        let true_arclen = 100.0 * (0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln());
        for i in 0..12 {
            let accuracy = 0.1f64.powi(i);
            let n = 10;
            for j in 0..=n {
                let arc = (j as f64) * ((n as f64).recip() * true_arclen);
                let t = c.inv_arclen(arc, accuracy * 0.5);
                let actual_arc = c.subsegment(0.0..t).arclen(accuracy * 0.5);
                assert!(
                    (arc - actual_arc).abs() < accuracy,
                    "at accuracy {accuracy:e}, wanted {actual_arc} got {arc}"
                );
            }
        }
        // corner case: user passes accuracy larger than total arc length
        let accuracy = true_arclen * 1.1;
        let arc = true_arclen * 0.5;
        let t = c.inv_arclen(arc, accuracy);
        let actual_arc = c.subsegment(0.0..t).arclen(accuracy);
        assert!(
            (arc - actual_arc).abs() < 2.0 * accuracy,
            "at accuracy {accuracy:e}, want {actual_arc} got {arc}"
        );
    }

    #[test]
    fn cubicbez_inv_arclen_accuracy() {
        let c = CubicBez::new((0.2, 0.73), (0.35, 1.08), (0.85, 1.08), (1.0, 0.73));
        let true_t = c.inv_arclen(0.5, 1e-12);
        for i in 1..12 {
            let accuracy = (0.1f64).powi(i);
            let approx_t = c.inv_arclen(0.5, accuracy);
            assert!((approx_t - true_t).abs() <= accuracy);
        }
    }

    #[test]
    #[allow(clippy::float_cmp)]
    fn cubicbez_signed_area_linear() {
        // y = 1 - x
        let c = CubicBez::new(
            (1.0, 0.0),
            (2.0 / 3.0, 1.0 / 3.0),
            (1.0 / 3.0, 2.0 / 3.0),
            (0.0, 1.0),
        );
        let epsilon = 1e-12;
        assert_eq!((Affine::rotate(0.5) * c).signed_area(), 0.5);
        assert!(((Affine::rotate(0.5) * c).signed_area() - 0.5).abs() < epsilon);
        assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.0).abs() < epsilon);
        assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.0).abs() < epsilon);
    }

    #[test]
    fn cubicbez_signed_area() {
        // y = 1 - x^3
        let c = CubicBez::new((1.0, 0.0), (2.0 / 3.0, 1.0), (1.0 / 3.0, 1.0), (0.0, 1.0));
        let epsilon = 1e-12;
        assert!((c.signed_area() - 0.75).abs() < epsilon);
        assert!(((Affine::rotate(0.5) * c).signed_area() - 0.75).abs() < epsilon);
        assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.25).abs() < epsilon);
        assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.25).abs() < epsilon);
    }

    #[test]
    fn cubicbez_nearest() {
        fn verify(result: Nearest, expected: f64) {
            assert!(
                (result.t - expected).abs() < 1e-6,
                "got {result:?} expected {expected}"
            );
        }
        // y = x^3
        let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
        verify(c.nearest((0.1, 0.001).into(), 1e-6), 0.1);
        verify(c.nearest((0.2, 0.008).into(), 1e-6), 0.2);
        verify(c.nearest((0.3, 0.027).into(), 1e-6), 0.3);
        verify(c.nearest((0.4, 0.064).into(), 1e-6), 0.4);
        verify(c.nearest((0.5, 0.125).into(), 1e-6), 0.5);
        verify(c.nearest((0.6, 0.216).into(), 1e-6), 0.6);
        verify(c.nearest((0.7, 0.343).into(), 1e-6), 0.7);
        verify(c.nearest((0.8, 0.512).into(), 1e-6), 0.8);
        verify(c.nearest((0.9, 0.729).into(), 1e-6), 0.9);
        verify(c.nearest((1.0, 1.0).into(), 1e-6), 1.0);
        verify(c.nearest((1.1, 1.1).into(), 1e-6), 1.0);
        verify(c.nearest((-0.1, 0.0).into(), 1e-6), 0.0);
        let a = Affine::rotate(0.5);
        verify((a * c).nearest(a * Point::new(0.1, 0.001), 1e-6), 0.1);
    }

    // ensure to_quads returns something given colinear points
    #[test]
    fn degenerate_to_quads() {
        let c = CubicBez::new((0., 9.), (6., 6.), (12., 3.0), (18., 0.0));
        let quads = c.to_quads(1e-6).collect::<Vec<_>>();
        assert_eq!(quads.len(), 1, "{:?}", &quads);
    }

    #[test]
    fn cubicbez_extrema() {
        // y = x^2
        let q = CubicBez::new((0.0, 0.0), (0.0, 1.0), (1.0, 1.0), (1.0, 0.0));
        let extrema = q.extrema();
        assert_eq!(extrema.len(), 1);
        assert!((extrema[0] - 0.5).abs() < 1e-6);

        let q = CubicBez::new((0.4, 0.5), (0.0, 1.0), (1.0, 0.0), (0.5, 0.4));
        let extrema = q.extrema();
        assert_eq!(extrema.len(), 4);
    }

    #[test]
    fn cubicbez_toquads() {
        // y = x^3
        let c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0));
        for i in 0..10 {
            let accuracy = 0.1f64.powi(i);
            let mut worst: f64 = 0.0;
            for (_count, (t0, t1, q)) in c.to_quads(accuracy).enumerate() {
                let epsilon = 1e-12;
                assert!((q.start() - c.eval(t0)).hypot() < epsilon);
                assert!((q.end() - c.eval(t1)).hypot() < epsilon);
                let n = 4;
                for j in 0..=n {
                    let t = (j as f64) * (n as f64).recip();
                    let p = q.eval(t);
                    let err = (p.y - p.x.powi(3)).abs();
                    worst = worst.max(err);
                    assert!(err < accuracy, "got {err} wanted {accuracy}");
                }
            }
        }
    }

    #[test]
    fn cubicbez_approx_spline() {
        let c1 = CubicBez::new(
            (550.0, 258.0),
            (1044.0, 482.0),
            (2029.0, 1841.0),
            (1934.0, 1554.0),
        );

        let quad = c1.try_approx_quadratic(344.0);
        let expected = QuadBez::new(
            Point::new(550.0, 258.0),
            Point::new(1673.665720592873, 767.5164401068898),
            Point::new(1934.0, 1554.0),
        );
        assert!(quad.is_some());
        assert_eq!(quad.unwrap(), expected);

        let quad = c1.try_approx_quadratic(343.0);
        assert!(quad.is_none());

        let spline = c1.approx_spline_n(2, 343.0);
        assert!(spline.is_some());
        let spline = spline.unwrap();
        let expected = vec![
            Point::new(550.0, 258.0),
            Point::new(920.5, 426.0),
            Point::new(2005.25, 1769.25),
            Point::new(1934.0, 1554.0),
        ];
        assert_eq!(spline.points().len(), expected.len());
        for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
            assert!(got.distance(wanted) < 5.0)
        }

        let spline = c1.approx_spline(5.0);
        let expected = vec![
            Point::new(550.0, 258.0),
            Point::new(673.5, 314.0),
            Point::new(984.8777777777776, 584.2666666666667),
            Point::new(1312.6305555555557, 927.825),
            Point::new(1613.1194444444443, 1267.425),
            Point::new(1842.7055555555555, 1525.8166666666666),
            Point::new(1957.75, 1625.75),
            Point::new(1934.0, 1554.0),
        ];
        assert!(spline.is_some());
        let spline = spline.unwrap();
        assert_eq!(spline.points().len(), expected.len());
        for (got, &wanted) in spline.points().iter().zip(expected.iter()) {
            assert!(got.distance(wanted) < 5.0)
        }
    }

    #[test]
    fn cubicbez_cubics_to_quadratic_splines() {
        let curves = vec![
            CubicBez::new(
                (550.0, 258.0),
                (1044.0, 482.0),
                (2029.0, 1841.0),
                (1934.0, 1554.0),
            ),
            CubicBez::new(
                (859.0, 384.0),
                (1998.0, 116.0),
                (1596.0, 1772.0),
                (8.0, 1824.0),
            ),
            CubicBez::new(
                (1090.0, 937.0),
                (418.0, 1300.0),
                (125.0, 91.0),
                (104.0, 37.0),
            ),
        ];
        let converted = cubics_to_quadratic_splines(&curves, 5.0);
        assert!(converted.is_some());
        let converted = converted.unwrap();
        assert_eq!(converted[0].points().len(), 8);
        assert_eq!(converted[1].points().len(), 8);
        assert_eq!(converted[2].points().len(), 8);
        assert!(converted[0].points()[1].distance(Point::new(673.5, 314.0)) < 0.0001);
        assert!(
            converted[0].points()[2].distance(Point::new(88639.0 / 90.0, 52584.0 / 90.0)) < 0.0001
        );
    }

    #[test]
    fn cubicbez_approx_spline_div_exact() {
        // Ensure rounding behavior for division matches fonttools
        // cu2qu.
        // See <https://github.com/linebender/kurbo/issues/272>
        let cubic = CubicBez::new(
            Point::new(408.0, 321.0),
            Point::new(408.0, 452.0),
            Point::new(342.0, 560.0),
            Point::new(260.0, 560.0),
        );
        let spline = cubic.approx_spline(1.0).unwrap();
        assert_eq!(
            spline.points(),
            &[
                Point::new(408.0, 321.0),
                // Previous behavior produced 386.49999999999994 for the
                // y coordinate leading to inconsistent rounding.
                Point::new(408.0, 386.5),
                Point::new(368.16666666666663, 495.0833333333333),
                Point::new(301.0, 560.0),
                Point::new(260.0, 560.0)
            ]
        )
    }

    #[test]
    fn cubicbez_inflections() {
        let c = CubicBez::new((0., 0.), (0.8, 1.), (0.2, 1.), (1., 0.));
        let inflections = c.inflections();
        assert_eq!(inflections.len(), 2);
        assert!((inflections[0] - 0.311018).abs() < 1e-6);
        assert!((inflections[1] - 0.688982).abs() < 1e-6);
        let c = CubicBez::new((0., 0.), (1., 1.), (2., -1.), (3., 0.));
        let inflections = c.inflections();
        assert_eq!(inflections.len(), 1);
        assert!((inflections[0] - 0.5).abs() < 1e-6);
        let c = CubicBez::new((0., 0.), (1., 1.), (2., 1.), (3., 0.));
        let inflections = c.inflections();
        assert_eq!(inflections.len(), 0);
    }

    #[test]
    fn cubic_to_quadratic_matches_python() {
        // from https://github.com/googlefonts/fontmake-rs/issues/217
        let cubic = CubicBez {
            p0: (796.0, 319.0).into(),
            p1: (727.0, 314.0).into(),
            p2: (242.0, 303.0).into(),
            p3: (106.0, 303.0).into(),
        };

        // FontTools can approximate this curve successfully in 7 splits, we can too
        assert!(cubic.approx_spline_n(7, 1.0).is_some());

        // FontTools can solve this with accuracy 0.001, we can too
        assert!(cubics_to_quadratic_splines(&[cubic], 0.001).is_some());
    }

    #[test]
    fn cubics_to_quadratic_splines_matches_python() {
        // https://github.com/linebender/kurbo/pull/273
        let light = CubicBez::new((378., 608.), (378., 524.), (355., 455.), (266., 455.));
        let regular = CubicBez::new((367., 607.), (367., 511.), (338., 472.), (243., 472.));
        let bold = CubicBez::new(
            (372.425, 593.05),
            (372.425, 524.95),
            (355.05, 485.95),
            (274., 485.95),
        );
        let qsplines = cubics_to_quadratic_splines(&[light, regular, bold], 1.0).unwrap();
        assert_eq!(
            qsplines,
            [
                QuadSpline::new(vec![
                    (378.0, 608.0).into(),
                    (378.0, 566.0).into(),
                    (359.0833333333333, 496.5).into(),
                    (310.5, 455.0).into(),
                    (266.0, 455.0).into(),
                ]),
                QuadSpline::new(vec![
                    (367.0, 607.0).into(),
                    (367.0, 559.0).into(),
                    // Previous behavior produced 496.5 for the y coordinate
                    (344.5833333333333, 499.49999999999994).into(),
                    (290.5, 472.0).into(),
                    (243.0, 472.0).into(),
                ]),
                QuadSpline::new(vec![
                    (372.425, 593.05).into(),
                    (372.425, 559.0).into(),
                    (356.98333333333335, 511.125).into(),
                    (314.525, 485.95).into(),
                    (274.0, 485.95).into(),
                ]),
            ]
        )
    }
}