1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#![allow(dead_code)]

use alloc::{string::String, vec, vec::Vec};
use core::fmt::Debug;

#[cfg(feature = "std")]
const DEBUG_ENABLED: bool = false;

macro_rules! debug {
    ($($args:expr),* $(,)*) => {
        #[cfg(feature = "std")]
        if DEBUG_ENABLED {
            eprintln!($($args),*);
        }
    }
}

pub trait ParserDefinition: Sized {
    /// Represents a location in the input text. If you are using the
    /// default tokenizer, this will be a `usize`.
    type Location: Clone + Debug;

    /// Represents a "user error" -- this can get produced by
    /// `reduce()` if the grammar includes `=>?` actions.
    type Error;

    /// The type emitted by the user's tokenizer (excluding the
    /// location information).
    type Token: Clone + Debug;

    /// We assign a unique index to each token in the grammar, which
    /// we call its *index*. When we pull in a new `Token` from the
    /// input, we then match against it to determine its index.  Note
    /// that the actual `Token` is retained too, as it may carry
    /// additional information (e.g., an `ID` terminal often has a
    /// string value associated with it; this is not important to the
    /// parser, but the semantic analyzer will want it).
    type TokenIndex: Copy + Clone + Debug;

    /// The type representing things on the LALRPOP stack. Represents
    /// the union of terminals and nonterminals.
    type Symbol;

    /// Type produced by reducing the start symbol.
    type Success;

    /// Identifies a state. Typically an i8, i16, or i32 (depending on
    /// how many states you have).
    type StateIndex: Copy + Clone + Debug;

    /// Identifies an action.
    type Action: ParserAction<Self>;

    /// Identifies a reduction.
    type ReduceIndex: Copy + Clone + Debug;

    /// Identifies a nonterminal.
    type NonterminalIndex: Copy + Clone + Debug;

    /// Returns a location representing the "start of the input".
    fn start_location(&self) -> Self::Location;

    /// Returns the initial state.
    fn start_state(&self) -> Self::StateIndex;

    /// Converts the user's tokens into an internal index; this index
    /// is then used to index into actions and the like. When using an
    /// internal tokenizer, these indices are directly produced. When
    /// using an **external** tokenier, however, this function matches
    /// against the patterns given by the user: it is fallible
    /// therefore as these patterns may not be exhaustive. If a token
    /// value is found that doesn't match any of the patterns the user
    /// supplied, then this function returns `None`, which is
    /// translated into a parse error by LALRPOP ("unrecognized
    /// token").
    fn token_to_index(&self, token: &Self::Token) -> Option<Self::TokenIndex>;

    /// Given the top-most state and the pending terminal, returns an
    /// action. This can be either SHIFT(state), REDUCE(action), or
    /// ERROR.
    fn action(&self, state: Self::StateIndex, token_index: Self::TokenIndex) -> Self::Action;

    /// Returns the action to take if an error occurs in the given
    /// state. This function is the same as the ordinary `action`,
    /// except that it applies not to the user's terminals but to the
    /// "special terminal" `!`.
    fn error_action(&self, state: Self::StateIndex) -> Self::Action;

    /// Action to take if EOF occurs in the given state. This function
    /// is the same as the ordinary `action`, except that it applies
    /// not to the user's terminals but to the "special terminal" `$`.
    fn eof_action(&self, state: Self::StateIndex) -> Self::Action;

    /// If we reduce to a nonterminal in the given state, what state
    /// do we go to? This is infallible due to the nature of LR(1)
    /// grammars.
    fn goto(&self, state: Self::StateIndex, nt: Self::NonterminalIndex) -> Self::StateIndex;

    /// "Upcast" a terminal into a symbol so we can push it onto the
    /// parser stack.
    fn token_to_symbol(&self, token_index: Self::TokenIndex, token: Self::Token) -> Self::Symbol;

    /// Returns the expected tokens in a given state. This is used for
    /// error reporting.
    fn expected_tokens(&self, state: Self::StateIndex) -> Vec<String>;

    /// True if this grammar supports error recovery.
    fn uses_error_recovery(&self) -> bool;

    /// Given error information, creates an error recovery symbol that
    /// we push onto the stack (and supply to user actions).
    fn error_recovery_symbol(&self, recovery: ErrorRecovery<Self>) -> Self::Symbol;

    /// Execute a reduction in the given state: that is, execute user
    /// code. The start location indicates the "starting point" of the
    /// current lookahead that is triggering the reduction (it is
    /// `None` for EOF).
    ///
    /// The `states` and `symbols` vectors represent the internal
    /// state machine vectors; they are given to `reduce` so that it
    /// can pop off states that no longer apply (and consume their
    /// symbols). At the end, it should also push the new state and
    /// symbol produced.
    ///
    /// Returns a `Some` if we reduced the start state and hence
    /// parsing is complete, or if we encountered an irrecoverable
    /// error.
    ///
    /// FIXME. It would be nice to not have so much logic live in
    /// reduce.  It should just be given an iterator of popped symbols
    /// and return the newly produced symbol (or error). We can use
    /// `simulate_reduce` and our own information to drive the rest,
    /// right? This would also allow us -- I think -- to extend error
    /// recovery to cover user-produced errors.
    fn reduce(
        &mut self,
        reduce_index: Self::ReduceIndex,
        start_location: Option<&Self::Location>,
        states: &mut Vec<Self::StateIndex>,
        symbols: &mut Vec<SymbolTriple<Self>>,
    ) -> Option<ParseResult<Self>>;

    /// Returns information about how many states will be popped
    /// during a reduction, and what nonterminal would be produced as
    /// a result.
    fn simulate_reduce(&self, action: Self::ReduceIndex) -> SimulatedReduce<Self>;
}

pub trait ParserAction<D: ParserDefinition>: Copy + Clone + Debug {
    fn as_shift(self) -> Option<D::StateIndex>;
    fn as_reduce(self) -> Option<D::ReduceIndex>;
    fn is_shift(self) -> bool;
    fn is_reduce(self) -> bool;
    fn is_error(self) -> bool;
}

pub enum SimulatedReduce<D: ParserDefinition> {
    Reduce {
        states_to_pop: usize,
        nonterminal_produced: D::NonterminalIndex,
    },

    // This reduce is the "start" fn, so the parse is done.
    Accept,
}

// These aliases are an elaborate hack to get around
// the warnings when you define a type alias like `type Foo<D: Trait>`
#[doc(hidden)]
pub type Location<D> = <D as ParserDefinition>::Location;
#[doc(hidden)]
pub type Token<D> = <D as ParserDefinition>::Token;
#[doc(hidden)]
pub type Error<D> = <D as ParserDefinition>::Error;
#[doc(hidden)]
pub type Success<D> = <D as ParserDefinition>::Success;
#[doc(hidden)]
pub type Symbol<D> = <D as ParserDefinition>::Symbol;

pub type ParseError<D> = crate::ParseError<Location<D>, Token<D>, Error<D>>;
pub type ParseResult<D> = Result<Success<D>, ParseError<D>>;
pub type TokenTriple<D> = (Location<D>, Token<D>, Location<D>);
pub type SymbolTriple<D> = (Location<D>, Symbol<D>, Location<D>);
pub type ErrorRecovery<D> = crate::ErrorRecovery<Location<D>, Token<D>, Error<D>>;

pub struct Parser<D, I>
where
    D: ParserDefinition,
    I: Iterator<Item = Result<TokenTriple<D>, ParseError<D>>>,
{
    definition: D,
    tokens: I,
    states: Vec<D::StateIndex>,
    symbols: Vec<SymbolTriple<D>>,
    last_location: D::Location,
}

enum NextToken<D: ParserDefinition> {
    FoundToken(TokenTriple<D>, D::TokenIndex),
    EOF,
    Done(ParseResult<D>),
}

impl<D, I> Parser<D, I>
where
    D: ParserDefinition,
    I: Iterator<Item = Result<TokenTriple<D>, ParseError<D>>>,
{
    pub fn drive(definition: D, tokens: I) -> ParseResult<D> {
        let last_location = definition.start_location();
        let start_state = definition.start_state();
        Parser {
            definition,
            tokens,
            states: vec![start_state],
            symbols: vec![],
            last_location,
        }
        .parse()
    }

    fn top_state(&self) -> D::StateIndex {
        *self.states.last().unwrap()
    }

    fn parse(&mut self) -> ParseResult<D> {
        // Outer loop: each time we continue around this loop, we
        // shift a new token from the input. We break from the loop
        // when the end of the input is reached (we return early if an
        // error occurs).
        'shift: loop {
            let (mut lookahead, mut token_index) = match self.next_token() {
                NextToken::FoundToken(l, i) => (l, i),
                NextToken::EOF => return self.parse_eof(),
                NextToken::Done(e) => return e,
            };

            debug!("+ SHIFT: {:?}", lookahead);

            debug!("\\ token_index: {:?}", token_index);

            'inner: loop {
                let top_state = self.top_state();
                let action = self.definition.action(top_state, token_index);
                debug!("\\ action: {:?}", action);

                if let Some(target_state) = action.as_shift() {
                    debug!("\\ shift to: {:?}", target_state);

                    // Shift and transition to state `action - 1`
                    let symbol = self.definition.token_to_symbol(token_index, lookahead.1);
                    self.states.push(target_state);
                    self.symbols.push((lookahead.0, symbol, lookahead.2));
                    continue 'shift;
                } else if let Some(reduce_index) = action.as_reduce() {
                    debug!("\\ reduce to: {:?}", reduce_index);

                    if let Some(r) = self.reduce(reduce_index, Some(&lookahead.0)) {
                        return match r {
                            // we reached eof, but still have lookahead
                            Ok(_) => Err(crate::ParseError::ExtraToken { token: lookahead }),
                            Err(e) => Err(e),
                        };
                    }
                } else {
                    debug!("\\ error -- initiating error recovery!");

                    match self.error_recovery(Some(lookahead), Some(token_index)) {
                        NextToken::FoundToken(l, i) => {
                            lookahead = l;
                            token_index = i;
                            continue 'inner;
                        }
                        NextToken::EOF => return self.parse_eof(),
                        NextToken::Done(e) => return e,
                    }
                }
            }
        }
    }

    /// Invoked when we have no more tokens to consume.
    fn parse_eof(&mut self) -> ParseResult<D> {
        loop {
            let top_state = self.top_state();
            let action = self.definition.eof_action(top_state);
            if let Some(reduce_index) = action.as_reduce() {
                if let Some(result) =
                    self.definition
                        .reduce(reduce_index, None, &mut self.states, &mut self.symbols)
                {
                    return result;
                }
            } else {
                match self.error_recovery(None, None) {
                    NextToken::FoundToken(..) => panic!("cannot find token at EOF"),
                    NextToken::Done(e) => return e,
                    NextToken::EOF => continue,
                }
            }
        }
    }

    fn error_recovery(
        &mut self,
        mut opt_lookahead: Option<TokenTriple<D>>,
        mut opt_token_index: Option<D::TokenIndex>,
    ) -> NextToken<D> {
        debug!(
            "\\+ error_recovery(opt_lookahead={:?}, opt_token_index={:?})",
            opt_lookahead, opt_token_index,
        );

        if !self.definition.uses_error_recovery() {
            debug!("\\ error -- no error recovery!");

            return NextToken::Done(Err(
                self.unrecognized_token_error(opt_lookahead, self.top_state())
            ));
        }

        let error = self.unrecognized_token_error(opt_lookahead.clone(), self.top_state());

        let mut dropped_tokens = vec![];

        // We are going to insert ERROR into the lookahead. So, first,
        // perform all reductions from current state triggered by having
        // ERROR in the lookahead.
        loop {
            let state = self.top_state();
            let action = self.definition.error_action(state);
            if let Some(reduce_index) = action.as_reduce() {
                debug!("\\\\ reducing: {:?}", reduce_index);

                if let Some(result) =
                    self.reduce(reduce_index, opt_lookahead.as_ref().map(|l| &l.0))
                {
                    debug!("\\\\ reduced to a result");

                    return NextToken::Done(result);
                }
            } else {
                break;
            }
        }

        // Now try to find the recovery state.
        let states_len = self.states.len();
        let top = 'find_state: loop {
            // Go backwards through the states...
            debug!(
                "\\\\+ error_recovery: find_state loop, {:?} states = {:?}",
                self.states.len(),
                self.states,
            );

            for top in (0..states_len).rev() {
                let state = self.states[top];
                debug!("\\\\\\ top = {:?}, state = {:?}", top, state);

                // ...fetch action for error token...
                let action = self.definition.error_action(state);
                debug!("\\\\\\ action = {:?}", action);
                if let Some(error_state) = action.as_shift() {
                    // If action is a shift that takes us into `error_state`,
                    // and `error_state` can accept this lookahead, we are done.
                    if self.accepts(error_state, &self.states[..=top], opt_token_index) {
                        debug!("\\\\\\ accepted!");
                        break 'find_state top;
                    }
                } else {
                    // ...else, if action is error or reduce, go to next state.
                    continue;
                }
            }

            // Otherwise, if we couldn't find a state that would --
            // after shifting the error token -- accept the lookahead,
            // then drop the lookahead and advance to next token in
            // the input.
            match opt_lookahead.take() {
                // If the lookahead is EOF, we can't drop any more
                // tokens, abort error recovery and just report the
                // original error (it might be nice if we would
                // propagate back the dropped tokens, though).
                None => {
                    debug!("\\\\\\ no more lookahead, report error");
                    return NextToken::Done(Err(error));
                }

                // Else, drop the current token and shift to the
                // next. If there is a next token, we will `continue`
                // to the start of the `'find_state` loop.
                Some(lookahead) => {
                    debug!("\\\\\\ dropping lookahead token");

                    dropped_tokens.push(lookahead);
                    match self.next_token() {
                        NextToken::FoundToken(next_lookahead, next_token_index) => {
                            opt_lookahead = Some(next_lookahead);
                            opt_token_index = Some(next_token_index);
                        }
                        NextToken::EOF => {
                            debug!("\\\\\\ reached EOF");
                            opt_lookahead = None;
                            opt_token_index = None;
                        }
                        NextToken::Done(e) => {
                            debug!("\\\\\\ no more tokens");
                            return NextToken::Done(e);
                        }
                    }
                }
            }
        };

        // If we get here, we are ready to push the error recovery state.

        // We have to compute the span for the error recovery
        // token. We do this first, before we pop any symbols off the
        // stack. There are several possibilities, in order of
        // preference.
        //
        // For the **start** of the message, we prefer to use the start of any
        // popped states. This represents parts of the input we had consumed but
        // had to roll back and ignore.
        //
        // Example:
        //
        //       a + (b + /)
        //              ^ start point is here, since this `+` will be popped off
        //
        // If there are no popped states, but there *are* dropped tokens, we can use
        // the start of those.
        //
        // Example:
        //
        //       a + (b + c e)
        //                  ^ start point would be here
        //
        // Finally, if there are no popped states *nor* dropped tokens, we can use
        // the end of the top-most state.

        let start = if let Some(popped_sym) = self.symbols.get(top) {
            popped_sym.0.clone()
        } else if let Some(dropped_token) = dropped_tokens.first() {
            dropped_token.0.clone()
        } else if top > 0 {
            self.symbols[top - 1].2.clone()
        } else {
            self.definition.start_location()
        };

        // For the end span, here are the possibilities:
        //
        // We prefer to use the end of the last dropped token.
        //
        // Examples:
        //
        //       a + (b + /)
        //              ---
        //       a + (b c)
        //              -
        //
        // But, if there are no dropped tokens, we will use the end of the popped states,
        // if any:
        //
        //       a + /
        //         -
        //
        // If there are neither dropped tokens *or* popped states,
        // then the user is simulating insertion of an operator. In
        // this case, we prefer the start of the lookahead, but
        // fallback to the start if we are at EOF.
        //
        // Examples:
        //
        //       a + (b c)
        //             -

        let end = if let Some(dropped_token) = dropped_tokens.last() {
            dropped_token.2.clone()
        } else if states_len - 1 > top {
            self.symbols.last().unwrap().2.clone()
        } else if let Some(lookahead) = opt_lookahead.as_ref() {
            lookahead.0.clone()
        } else {
            start.clone()
        };

        self.states.truncate(top + 1);
        self.symbols.truncate(top);

        let recover_state = self.states[top];
        let error_action = self.definition.error_action(recover_state);
        let error_state = error_action.as_shift().unwrap();
        self.states.push(error_state);
        let recovery = self.definition.error_recovery_symbol(crate::ErrorRecovery {
            error,
            dropped_tokens,
        });
        self.symbols.push((start, recovery, end));

        match (opt_lookahead, opt_token_index) {
            (Some(l), Some(i)) => NextToken::FoundToken(l, i),
            (None, None) => NextToken::EOF,
            (l, i) => panic!("lookahead and token_index mismatched: {:?}, {:?}", l, i),
        }
    }

    /// The `accepts` function has the job of figuring out whether the
    /// given error state would "accept" the given lookahead. We
    /// basically trace through the LR automaton looking for one of
    /// two outcomes:
    ///
    /// - the lookahead is eventually shifted
    /// - we reduce to the end state successfully (in the case of EOF).
    ///
    /// If we used the pure LR(1) algorithm, we wouldn't need this
    /// function, because we would be guaranteed to error immediately
    /// (and not after some number of reductions). But with an LALR
    /// (or Lane Table) generated automaton, it is possible to reduce
    /// some number of times before encountering an error. Failing to
    /// take this into account can lead error recovery into an
    /// infinite loop (see the `error_recovery_lalr_loop` test) or
    /// produce crappy results (see `error_recovery_lock_in`).
    fn accepts(
        &self,
        error_state: D::StateIndex,
        states: &[D::StateIndex],
        opt_token_index: Option<D::TokenIndex>,
    ) -> bool {
        debug!(
            "\\\\\\+ accepts(error_state={:?}, states={:?}, opt_token_index={:?})",
            error_state, states, opt_token_index,
        );

        let mut states = states.to_vec();
        states.push(error_state);
        loop {
            let mut states_len = states.len();
            let top = states[states_len - 1];
            let action = match opt_token_index {
                None => self.definition.eof_action(top),
                Some(i) => self.definition.action(top, i),
            };

            // If we encounter an error action, we do **not** accept.
            if action.is_error() {
                debug!("\\\\\\\\ accepts: error");
                return false;
            }

            // If we encounter a reduce action, we need to simulate its
            // effect on the state stack.
            if let Some(reduce_action) = action.as_reduce() {
                match self.definition.simulate_reduce(reduce_action) {
                    SimulatedReduce::Reduce {
                        states_to_pop,
                        nonterminal_produced,
                    } => {
                        states_len -= states_to_pop;
                        states.truncate(states_len);
                        let top = states[states_len - 1];
                        let next_state = self.definition.goto(top, nonterminal_produced);
                        states.push(next_state);
                    }

                    SimulatedReduce::Accept => {
                        debug!("\\\\\\\\ accepts: reduce accepts!");
                        return true;
                    }
                }
            } else {
                // If we encounter a shift action, we DO accept.
                debug!("\\\\\\\\ accepts: shift accepts!");
                assert!(action.is_shift());
                return true;
            }
        }
    }

    fn reduce(
        &mut self,
        action: D::ReduceIndex,
        lookahead_start: Option<&D::Location>,
    ) -> Option<ParseResult<D>> {
        self.definition
            .reduce(action, lookahead_start, &mut self.states, &mut self.symbols)
    }

    fn unrecognized_token_error(
        &self,
        token: Option<TokenTriple<D>>,
        top_state: D::StateIndex,
    ) -> ParseError<D> {
        match token {
            Some(token) => crate::ParseError::UnrecognizedToken {
                token,
                expected: self.definition.expected_tokens(top_state),
            },
            None => crate::ParseError::UnrecognizedEOF {
                location: self.last_location.clone(),
                expected: self.definition.expected_tokens(top_state),
            },
        }
    }

    /// Consume the next token from the input and classify it into a
    /// token index. Classification can fail with an error. If there
    /// are no more tokens, signal EOF.
    fn next_token(&mut self) -> NextToken<D> {
        let token = match self.tokens.next() {
            Some(Ok(v)) => v,
            Some(Err(e)) => return NextToken::Done(Err(e)),
            None => return NextToken::EOF,
        };

        self.last_location = token.2.clone();

        let token_index = match self.definition.token_to_index(&token.1) {
            Some(i) => i,
            None => {
                return NextToken::Done(Err(
                    self.unrecognized_token_error(Some(token), self.top_state())
                ))
            }
        };

        NextToken::FoundToken(token, token_index)
    }
}

/// In LALRPOP generated rules, we actually use `i32`, `i16`, or `i8`
/// to represent all of the various indices (we use the smallest one
/// that will fit). So implement `ParserAction` for each of those.
macro_rules! integral_indices {
    ($t:ty) => {
        impl<D: ParserDefinition<StateIndex = $t, ReduceIndex = $t>> ParserAction<D> for $t {
            fn as_shift(self) -> Option<D::StateIndex> {
                if self > 0 {
                    Some(self - 1)
                } else {
                    None
                }
            }

            fn as_reduce(self) -> Option<D::ReduceIndex> {
                if self < 0 {
                    Some(-(self + 1))
                } else {
                    None
                }
            }

            fn is_shift(self) -> bool {
                self > 0
            }

            fn is_reduce(self) -> bool {
                self < 0
            }

            fn is_error(self) -> bool {
                self == 0
            }
        }
    };
}

integral_indices!(i32);
integral_indices!(i16);
integral_indices!(i8);