1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use crate::{
    cyclic_group::IsGroup,
    elliptic_curve::{
        point::ProjectivePoint,
        traits::{EllipticCurveError, FromAffine, IsEllipticCurve},
    },
    field::element::FieldElement,
};

use super::traits::IsEdwards;

#[derive(Clone, Debug)]
pub struct EdwardsProjectivePoint<E: IsEllipticCurve>(ProjectivePoint<E>);

impl<E: IsEllipticCurve> EdwardsProjectivePoint<E> {
    /// Creates an elliptic curve point giving the projective [x: y: z] coordinates.
    pub fn new(value: [FieldElement<E::BaseField>; 3]) -> Self {
        Self(ProjectivePoint::new(value))
    }

    /// Returns the `x` coordinate of the point.
    pub fn x(&self) -> &FieldElement<E::BaseField> {
        self.0.x()
    }

    /// Returns the `y` coordinate of the point.
    pub fn y(&self) -> &FieldElement<E::BaseField> {
        self.0.y()
    }

    /// Returns the `z` coordinate of the point.
    pub fn z(&self) -> &FieldElement<E::BaseField> {
        self.0.z()
    }

    /// Returns a tuple [x, y, z] with the coordinates of the point.
    pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
        self.0.coordinates()
    }

    /// Creates the same point in affine coordinates. That is,
    /// returns [x / z: y / z: 1] where `self` is [x: y: z].
    /// Panics if `self` is the point at infinity.
    pub fn to_affine(&self) -> Self {
        Self(self.0.to_affine())
    }
}

impl<E: IsEllipticCurve> PartialEq for EdwardsProjectivePoint<E> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<E: IsEdwards> FromAffine<E::BaseField> for EdwardsProjectivePoint<E> {
    fn from_affine(
        x: FieldElement<E::BaseField>,
        y: FieldElement<E::BaseField>,
    ) -> Result<Self, crate::elliptic_curve::traits::EllipticCurveError> {
        if E::defining_equation(&x, &y) != FieldElement::zero() {
            Err(EllipticCurveError::InvalidPoint)
        } else {
            let coordinates = [x, y, FieldElement::one()];
            Ok(EdwardsProjectivePoint::new(coordinates))
        }
    }
}

impl<E: IsEllipticCurve> Eq for EdwardsProjectivePoint<E> {}

impl<E: IsEdwards> IsGroup for EdwardsProjectivePoint<E> {
    /// The point at infinity.
    fn neutral_element() -> Self {
        Self::new([
            FieldElement::zero(),
            FieldElement::one(),
            FieldElement::one(),
        ])
    }

    fn is_neutral_element(&self) -> bool {
        let [px, py, pz] = self.coordinates();
        px == &FieldElement::zero() && py == pz
    }

    /// Computes the addition of `self` and `other`.
    /// Taken from "Moonmath" (Eq 5.38, page 97)
    fn operate_with(&self, other: &Self) -> Self {
        // This avoids dropping, which in turn saves us from having to clone the coordinates.
        let (s_affine, o_affine) = (self.to_affine(), other.to_affine());

        let [x1, y1, _] = s_affine.coordinates();
        let [x2, y2, _] = o_affine.coordinates();

        let one = FieldElement::one();
        let (x1y2, y1x2) = (x1 * y2, y1 * x2);
        let (x1x2, y1y2) = (x1 * x2, y1 * y2);
        let dx1x2y1y2 = E::d() * &x1x2 * &y1y2;

        let num_s1 = &x1y2 + &y1x2;
        let den_s1 = &one + &dx1x2y1y2;

        let num_s2 = &y1y2 - E::a() * &x1x2;
        let den_s2 = &one - &dx1x2y1y2;

        Self::new([&num_s1 / &den_s1, &num_s2 / &den_s2, one])
    }

    /// Returns the additive inverse of the projective point `p`
    fn neg(&self) -> Self {
        let [px, py, pz] = self.coordinates();
        Self::new([-px, py.clone(), pz.clone()])
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        cyclic_group::IsGroup,
        elliptic_curve::{
            edwards::{curves::tiny_jub_jub::TinyJubJubEdwards, point::EdwardsProjectivePoint},
            traits::{EllipticCurveError, IsEllipticCurve},
        },
        field::element::FieldElement,
    };

    fn create_point(x: u64, y: u64) -> EdwardsProjectivePoint<TinyJubJubEdwards> {
        TinyJubJubEdwards::create_point_from_affine(FieldElement::from(x), FieldElement::from(y))
            .unwrap()
    }

    #[test]
    fn create_valid_point_works() {
        let p = TinyJubJubEdwards::create_point_from_affine(
            FieldElement::from(5),
            FieldElement::from(5),
        )
        .unwrap();
        assert_eq!(p.x(), &FieldElement::from(5));
        assert_eq!(p.y(), &FieldElement::from(5));
        assert_eq!(p.z(), &FieldElement::from(1));
    }

    #[test]
    fn create_invalid_point_returns_invalid_point_error() {
        let result = TinyJubJubEdwards::create_point_from_affine(
            FieldElement::from(5),
            FieldElement::from(4),
        );
        assert_eq!(result.unwrap_err(), EllipticCurveError::InvalidPoint);
    }

    #[test]
    fn operate_with_works_for_points_in_tiny_jub_jub() {
        let p = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
            FieldElement::from(5),
            FieldElement::from(5),
            FieldElement::from(1),
        ]);
        let q = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
            FieldElement::from(8),
            FieldElement::from(5),
            FieldElement::from(1),
        ]);
        let expected = EdwardsProjectivePoint::<TinyJubJubEdwards>::new([
            FieldElement::from(0),
            FieldElement::from(1),
            FieldElement::from(1),
        ]);
        assert_eq!(p.operate_with(&q), expected);
    }

    #[test]
    fn test_negation_in_edwards() {
        let a = create_point(5, 5);
        let b = create_point(13 - 5, 5);

        assert_eq!(a.neg(), b);
        assert!(a.operate_with(&b).is_neutral_element());
    }

    #[test]
    fn operate_with_works_and_cycles_in_tiny_jub_jub() {
        let g = create_point(12, 11);
        assert_eq!(g.operate_with_self(0_u16), create_point(0, 1));
        assert_eq!(g.operate_with_self(1_u16), create_point(12, 11));
        assert_eq!(g.operate_with_self(2_u16), create_point(8, 5));
        assert_eq!(g.operate_with_self(3_u16), create_point(11, 6));
        assert_eq!(g.operate_with_self(4_u16), create_point(6, 9));
        assert_eq!(g.operate_with_self(5_u16), create_point(10, 0));
        assert_eq!(g.operate_with_self(6_u16), create_point(6, 4));
        assert_eq!(g.operate_with_self(7_u16), create_point(11, 7));
        assert_eq!(g.operate_with_self(8_u16), create_point(8, 8));
        assert_eq!(g.operate_with_self(9_u16), create_point(12, 2));
        assert_eq!(g.operate_with_self(10_u16), create_point(0, 12));
        assert_eq!(g.operate_with_self(11_u16), create_point(1, 2));
        assert_eq!(g.operate_with_self(12_u16), create_point(5, 8));
        assert_eq!(g.operate_with_self(13_u16), create_point(2, 7));
        assert_eq!(g.operate_with_self(14_u16), create_point(7, 4));
        assert_eq!(g.operate_with_self(15_u16), create_point(3, 0));
        assert_eq!(g.operate_with_self(16_u16), create_point(7, 9));
        assert_eq!(g.operate_with_self(17_u16), create_point(2, 6));
        assert_eq!(g.operate_with_self(18_u16), create_point(5, 5));
        assert_eq!(g.operate_with_self(19_u16), create_point(1, 11));
        assert_eq!(g.operate_with_self(20_u16), create_point(0, 1));
    }
}