use crate::{
cyclic_group::IsGroup,
elliptic_curve::{
point::ProjectivePoint,
traits::{EllipticCurveError, FromAffine, IsEllipticCurve},
},
field::element::FieldElement,
};
use super::traits::IsMontgomery;
#[derive(Clone, Debug)]
pub struct MontgomeryProjectivePoint<E: IsEllipticCurve>(ProjectivePoint<E>);
impl<E: IsEllipticCurve> MontgomeryProjectivePoint<E> {
pub fn new(value: [FieldElement<E::BaseField>; 3]) -> Self {
Self(ProjectivePoint::new(value))
}
pub fn x(&self) -> &FieldElement<E::BaseField> {
self.0.x()
}
pub fn y(&self) -> &FieldElement<E::BaseField> {
self.0.y()
}
pub fn z(&self) -> &FieldElement<E::BaseField> {
self.0.z()
}
pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
self.0.coordinates()
}
pub fn to_affine(&self) -> Self {
Self(self.0.to_affine())
}
}
impl<E: IsEllipticCurve> PartialEq for MontgomeryProjectivePoint<E> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<E: IsMontgomery> FromAffine<E::BaseField> for MontgomeryProjectivePoint<E> {
fn from_affine(
x: FieldElement<E::BaseField>,
y: FieldElement<E::BaseField>,
) -> Result<Self, crate::elliptic_curve::traits::EllipticCurveError> {
if E::defining_equation(&x, &y) != FieldElement::zero() {
Err(EllipticCurveError::InvalidPoint)
} else {
let coordinates = [x, y, FieldElement::one()];
Ok(MontgomeryProjectivePoint::new(coordinates))
}
}
}
impl<E: IsEllipticCurve> Eq for MontgomeryProjectivePoint<E> {}
impl<E: IsMontgomery> IsGroup for MontgomeryProjectivePoint<E> {
fn neutral_element() -> Self {
Self::new([
FieldElement::zero(),
FieldElement::one(),
FieldElement::zero(),
])
}
fn is_neutral_element(&self) -> bool {
let pz = self.z();
pz == &FieldElement::zero()
}
fn operate_with(&self, other: &Self) -> Self {
if self.is_neutral_element() {
other.clone()
} else if other.is_neutral_element() {
self.clone()
} else {
let [x1, y1, _] = self.to_affine().coordinates().clone();
let [x2, y2, _] = other.to_affine().coordinates().clone();
if x2 == x1 && &y2 + &y1 == FieldElement::zero() {
Self::neutral_element()
} else if self == other {
let one = FieldElement::from(1);
let (a, b) = (E::a(), E::b());
let x1a = &a * &x1;
let x1_square = &x1 * &x1;
let num = &x1_square + &x1_square + x1_square + &x1a + x1a + &one;
let den = (&b + &b) * &y1;
let div = num / den;
let new_x = &div * &div * &b - (&x1 + x2) - a;
let new_y = div * (x1 - &new_x) - y1;
Self::new([new_x, new_y, one])
} else {
let num = &y2 - &y1;
let den = &x2 - &x1;
let div = num / den;
let new_x = &div * &div * E::b() - (&x1 + &x2) - E::a();
let new_y = div * (x1 - &new_x) - y1;
Self::new([new_x, new_y, FieldElement::one()])
}
}
}
fn neg(&self) -> Self {
let [px, py, pz] = self.coordinates();
Self::new([px.clone(), -py, pz.clone()])
}
}
#[cfg(test)]
mod tests {
use crate::{
cyclic_group::IsGroup,
elliptic_curve::{
montgomery::{
curves::tiny_jub_jub::TinyJubJubMontgomery, point::MontgomeryProjectivePoint,
},
traits::{EllipticCurveError, IsEllipticCurve},
},
field::element::FieldElement,
};
fn create_point(x: u64, y: u64) -> MontgomeryProjectivePoint<TinyJubJubMontgomery> {
TinyJubJubMontgomery::create_point_from_affine(FieldElement::from(x), FieldElement::from(y))
.unwrap()
}
#[test]
fn create_valid_point_works() {
let p = TinyJubJubMontgomery::create_point_from_affine(
FieldElement::from(9),
FieldElement::from(2),
)
.unwrap();
assert_eq!(p.x(), &FieldElement::from(9));
assert_eq!(p.y(), &FieldElement::from(2));
assert_eq!(p.z(), &FieldElement::from(1));
}
#[test]
fn create_invalid_point_returns_invalid_point_error() {
let result = TinyJubJubMontgomery::create_point_from_affine(
FieldElement::from(5),
FieldElement::from(4),
);
assert_eq!(result.unwrap_err(), EllipticCurveError::InvalidPoint);
}
#[test]
fn operate_with_works_for_points_in_tiny_jub_jub() {
let p = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
FieldElement::from(9),
FieldElement::from(2),
FieldElement::from(1),
]);
let q = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
FieldElement::from(7),
FieldElement::from(12),
FieldElement::from(1),
]);
let expected = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
FieldElement::from(10),
FieldElement::from(3),
FieldElement::from(1),
]);
assert_eq!(p.operate_with(&q), expected);
}
#[test]
fn test_negation_in_montgomery() {
let a = create_point(9, 2);
let b = create_point(9, 13 - 2);
assert_eq!(a.neg(), b);
assert!(a.operate_with(&b).is_neutral_element());
}
#[test]
fn operate_with_works_and_cycles_in_tiny_jub_jub() {
let g = create_point(9, 2);
assert_eq!(
g.operate_with_self(0_u16),
MontgomeryProjectivePoint::neutral_element()
);
assert_eq!(g.operate_with_self(1_u16), create_point(9, 2));
assert_eq!(g.operate_with_self(2_u16), create_point(7, 12));
assert_eq!(g.operate_with_self(3_u16), create_point(10, 3));
assert_eq!(g.operate_with_self(4_u16), create_point(8, 12));
assert_eq!(g.operate_with_self(5_u16), create_point(1, 9));
assert_eq!(g.operate_with_self(6_u16), create_point(5, 1));
assert_eq!(g.operate_with_self(7_u16), create_point(4, 9));
assert_eq!(g.operate_with_self(8_u16), create_point(2, 9));
assert_eq!(g.operate_with_self(9_u16), create_point(3, 5));
assert_eq!(g.operate_with_self(10_u16), create_point(0, 0));
assert_eq!(g.operate_with_self(11_u16), create_point(3, 8));
assert_eq!(g.operate_with_self(12_u16), create_point(2, 4));
assert_eq!(g.operate_with_self(13_u16), create_point(4, 4));
assert_eq!(g.operate_with_self(14_u16), create_point(5, 12));
assert_eq!(g.operate_with_self(15_u16), create_point(1, 4));
assert_eq!(g.operate_with_self(16_u16), create_point(8, 1));
assert_eq!(g.operate_with_self(17_u16), create_point(10, 10));
assert_eq!(g.operate_with_self(18_u16), create_point(7, 1));
assert_eq!(g.operate_with_self(19_u16), create_point(9, 11));
assert_eq!(
g.operate_with_self(20_u16),
MontgomeryProjectivePoint::neutral_element()
);
}
}