1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use crate::{
    cyclic_group::IsGroup,
    elliptic_curve::{
        point::ProjectivePoint,
        traits::{EllipticCurveError, FromAffine, IsEllipticCurve},
    },
    field::element::FieldElement,
};

use super::traits::IsMontgomery;

#[derive(Clone, Debug)]
pub struct MontgomeryProjectivePoint<E: IsEllipticCurve>(ProjectivePoint<E>);

impl<E: IsEllipticCurve> MontgomeryProjectivePoint<E> {
    /// Creates an elliptic curve point giving the projective [x: y: z] coordinates.
    pub fn new(value: [FieldElement<E::BaseField>; 3]) -> Self {
        Self(ProjectivePoint::new(value))
    }

    /// Returns the `x` coordinate of the point.
    pub fn x(&self) -> &FieldElement<E::BaseField> {
        self.0.x()
    }

    /// Returns the `y` coordinate of the point.
    pub fn y(&self) -> &FieldElement<E::BaseField> {
        self.0.y()
    }

    /// Returns the `z` coordinate of the point.
    pub fn z(&self) -> &FieldElement<E::BaseField> {
        self.0.z()
    }

    /// Returns a tuple [x, y, z] with the coordinates of the point.
    pub fn coordinates(&self) -> &[FieldElement<E::BaseField>; 3] {
        self.0.coordinates()
    }

    /// Creates the same point in affine coordinates. That is,
    /// returns [x / z: y / z: 1] where `self` is [x: y: z].
    /// Panics if `self` is the point at infinity.
    pub fn to_affine(&self) -> Self {
        Self(self.0.to_affine())
    }
}

impl<E: IsEllipticCurve> PartialEq for MontgomeryProjectivePoint<E> {
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<E: IsMontgomery> FromAffine<E::BaseField> for MontgomeryProjectivePoint<E> {
    fn from_affine(
        x: FieldElement<E::BaseField>,
        y: FieldElement<E::BaseField>,
    ) -> Result<Self, crate::elliptic_curve::traits::EllipticCurveError> {
        if E::defining_equation(&x, &y) != FieldElement::zero() {
            Err(EllipticCurveError::InvalidPoint)
        } else {
            let coordinates = [x, y, FieldElement::one()];
            Ok(MontgomeryProjectivePoint::new(coordinates))
        }
    }
}

impl<E: IsEllipticCurve> Eq for MontgomeryProjectivePoint<E> {}

impl<E: IsMontgomery> IsGroup for MontgomeryProjectivePoint<E> {
    /// The point at infinity.
    fn neutral_element() -> Self {
        Self::new([
            FieldElement::zero(),
            FieldElement::one(),
            FieldElement::zero(),
        ])
    }

    fn is_neutral_element(&self) -> bool {
        let pz = self.z();
        pz == &FieldElement::zero()
    }

    /// Computes the addition of `self` and `other`.
    /// Taken from "Moonmath" (Definition 5.2.2.1, page 94)
    fn operate_with(&self, other: &Self) -> Self {
        // One of them is the neutral element.
        if self.is_neutral_element() {
            other.clone()
        } else if other.is_neutral_element() {
            self.clone()
        } else {
            let [x1, y1, _] = self.to_affine().coordinates().clone();
            let [x2, y2, _] = other.to_affine().coordinates().clone();
            // In this case P == -Q
            if x2 == x1 && &y2 + &y1 == FieldElement::zero() {
                Self::neutral_element()
            // The points are the same P == Q
            } else if self == other {
                // P = Q = (x, y)
                // y cant be zero here because if y = 0 then
                // P = Q = (x, 0) and P = -Q, which is the
                // previous case.
                let one = FieldElement::from(1);
                let (a, b) = (E::a(), E::b());

                let x1a = &a * &x1;
                let x1_square = &x1 * &x1;
                let num = &x1_square + &x1_square + x1_square + &x1a + x1a + &one;
                let den = (&b + &b) * &y1;
                let div = num / den;

                let new_x = &div * &div * &b - (&x1 + x2) - a;
                let new_y = div * (x1 - &new_x) - y1;

                Self::new([new_x, new_y, one])
            // In the rest of the cases we have x1 != x2
            } else {
                let num = &y2 - &y1;
                let den = &x2 - &x1;
                let div = num / den;

                let new_x = &div * &div * E::b() - (&x1 + &x2) - E::a();
                let new_y = div * (x1 - &new_x) - y1;

                Self::new([new_x, new_y, FieldElement::one()])
            }
        }
    }

    /// Returns the additive inverse of the projective point `p`
    fn neg(&self) -> Self {
        let [px, py, pz] = self.coordinates();
        Self::new([px.clone(), -py, pz.clone()])
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        cyclic_group::IsGroup,
        elliptic_curve::{
            montgomery::{
                curves::tiny_jub_jub::TinyJubJubMontgomery, point::MontgomeryProjectivePoint,
            },
            traits::{EllipticCurveError, IsEllipticCurve},
        },
        field::element::FieldElement,
    };

    fn create_point(x: u64, y: u64) -> MontgomeryProjectivePoint<TinyJubJubMontgomery> {
        TinyJubJubMontgomery::create_point_from_affine(FieldElement::from(x), FieldElement::from(y))
            .unwrap()
    }

    #[test]
    fn create_valid_point_works() {
        let p = TinyJubJubMontgomery::create_point_from_affine(
            FieldElement::from(9),
            FieldElement::from(2),
        )
        .unwrap();
        assert_eq!(p.x(), &FieldElement::from(9));
        assert_eq!(p.y(), &FieldElement::from(2));
        assert_eq!(p.z(), &FieldElement::from(1));
    }

    #[test]
    fn create_invalid_point_returns_invalid_point_error() {
        let result = TinyJubJubMontgomery::create_point_from_affine(
            FieldElement::from(5),
            FieldElement::from(4),
        );
        assert_eq!(result.unwrap_err(), EllipticCurveError::InvalidPoint);
    }

    #[test]
    fn operate_with_works_for_points_in_tiny_jub_jub() {
        let p = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
            FieldElement::from(9),
            FieldElement::from(2),
            FieldElement::from(1),
        ]);
        let q = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
            FieldElement::from(7),
            FieldElement::from(12),
            FieldElement::from(1),
        ]);
        let expected = MontgomeryProjectivePoint::<TinyJubJubMontgomery>::new([
            FieldElement::from(10),
            FieldElement::from(3),
            FieldElement::from(1),
        ]);
        assert_eq!(p.operate_with(&q), expected);
    }

    #[test]
    fn test_negation_in_montgomery() {
        let a = create_point(9, 2);
        let b = create_point(9, 13 - 2);

        assert_eq!(a.neg(), b);
        assert!(a.operate_with(&b).is_neutral_element());
    }

    #[test]
    fn operate_with_works_and_cycles_in_tiny_jub_jub() {
        let g = create_point(9, 2);
        assert_eq!(
            g.operate_with_self(0_u16),
            MontgomeryProjectivePoint::neutral_element()
        );
        assert_eq!(g.operate_with_self(1_u16), create_point(9, 2));
        assert_eq!(g.operate_with_self(2_u16), create_point(7, 12));
        assert_eq!(g.operate_with_self(3_u16), create_point(10, 3));
        assert_eq!(g.operate_with_self(4_u16), create_point(8, 12));
        assert_eq!(g.operate_with_self(5_u16), create_point(1, 9));
        assert_eq!(g.operate_with_self(6_u16), create_point(5, 1));
        assert_eq!(g.operate_with_self(7_u16), create_point(4, 9));
        assert_eq!(g.operate_with_self(8_u16), create_point(2, 9));
        assert_eq!(g.operate_with_self(9_u16), create_point(3, 5));
        assert_eq!(g.operate_with_self(10_u16), create_point(0, 0));
        assert_eq!(g.operate_with_self(11_u16), create_point(3, 8));
        assert_eq!(g.operate_with_self(12_u16), create_point(2, 4));
        assert_eq!(g.operate_with_self(13_u16), create_point(4, 4));
        assert_eq!(g.operate_with_self(14_u16), create_point(5, 12));
        assert_eq!(g.operate_with_self(15_u16), create_point(1, 4));
        assert_eq!(g.operate_with_self(16_u16), create_point(8, 1));
        assert_eq!(g.operate_with_self(17_u16), create_point(10, 10));
        assert_eq!(g.operate_with_self(18_u16), create_point(7, 1));
        assert_eq!(g.operate_with_self(19_u16), create_point(9, 11));
        assert_eq!(
            g.operate_with_self(20_u16),
            MontgomeryProjectivePoint::neutral_element()
        );
    }
}