1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
use crate::{cyclic_group::IsGroup, unsigned_integer::element::UnsignedInteger};
use super::naive::MSMError;
use alloc::vec;
/// This function computes the multiscalar multiplication (MSM).
///
/// Assume a group G of order r is given.
/// Let `points = [g_1, ..., g_n]` be a tuple of group points in G and
/// let `cs = [k_1, ..., k_n]` be a tuple of scalars in the Galois field GF(r).
///
/// Then, with additive notation, `msm(cs, points)` computes k_1 * g_1 + .... + k_n * g_n.
///
/// If `points` and `cs` are empty, then `msm` returns the zero element of the group.
///
/// Panics if `cs` and `points` have different lengths.
pub fn msm<const NUM_LIMBS: usize, G>(
cs: &[UnsignedInteger<NUM_LIMBS>],
points: &[G],
) -> Result<G, MSMError>
where
G: IsGroup,
{
if cs.len() != points.len() {
return Err(MSMError::LengthMismatch(cs.len(), points.len()));
}
let window_size = optimum_window_size(cs.len());
Ok(msm_with(cs, points, window_size))
}
fn optimum_window_size(data_length: usize) -> usize {
const SCALE_FACTORS: (usize, usize) = (4, 5);
// We approximate the optimum window size with: f(n) = k * log2(n), where k is a scaling factor
let len_isqrt = data_length.checked_ilog2().unwrap_or(0);
(len_isqrt as usize * SCALE_FACTORS.0) / SCALE_FACTORS.1
}
pub fn msm_with<const NUM_LIMBS: usize, G>(
cs: &[UnsignedInteger<NUM_LIMBS>],
points: &[G],
window_size: usize,
) -> G
where
G: IsGroup,
{
// When input is small enough, windows of length 2 seem faster than 1.
const MIN_WINDOW_SIZE: usize = 2;
const MAX_WINDOW_SIZE: usize = 32;
let window_size = window_size.clamp(MIN_WINDOW_SIZE, MAX_WINDOW_SIZE);
// The number of windows of size `s` is ceil(lambda/s).
let num_windows = (64 * NUM_LIMBS - 1) / window_size + 1;
// We define `buckets` outside of the loop so we only have to allocate once, and reuse it.
//
// This line forces a heap allocation which might be undesired. We can define this buckets
// variable in the Pippenger struct to only allocate once, but use a bit of extra memory.
// If we accept a const window_size, we could make it an array instaed of a vector
// avoiding the heap allocation. We should be aware if that might be too agressive for
// the stack and cause a potential stack overflow.
let n_buckets = (1 << window_size) - 1;
let mut buckets = vec![G::neutral_element(); n_buckets];
(0..num_windows)
.rev()
.map(|window_idx| {
// Put in the right bucket the corresponding ps[i] for the current window.
cs.iter().zip(points).for_each(|(k, p)| {
// We truncate the number to the least significative limb.
// This is ok because window_size < usize::BITS.
let window_unmasked = (k >> (window_idx * window_size)).limbs[NUM_LIMBS - 1];
let m_ij = window_unmasked & n_buckets as u64;
if m_ij != 0 {
let idx = (m_ij - 1) as usize;
buckets[idx] = buckets[idx].operate_with(p);
}
});
// Do the reduction step for the buckets.
buckets
.iter_mut()
// This first part iterates buckets in descending order, generating an iterator with the sum of
// each bucket and all that came before as its items; i.e: (b_n, b_n + b_n-1, ..., b_n + ... + b_0)
.rev()
.scan(G::neutral_element(), |m, b| {
*m = m.operate_with(b); // Reduction step.
*b = G::neutral_element(); // Cleanup bucket slot to reuse in the next window.
Some(m.clone())
})
// This next part sums all elements of the iterator: (b_n) + (b_n + b_n-1) + ...
// This results in: (n + 1) * b_n + n * b_n-1 + ... + b_0
.reduce(|g, m| g.operate_with(&m))
.unwrap_or_else(G::neutral_element)
})
// NOTE: this operation is non-associative and strictly sequential
.reduce(|t, g| t.operate_with_self(1_u64 << window_size).operate_with(&g))
.unwrap_or_else(G::neutral_element)
}
#[cfg(feature = "parallel")]
// It has the following differences with the sequential one:
// 1. It uses one vec per thread to store buckets.
// 2. It reduces all window results via a different method.
pub fn parallel_msm_with<const NUM_LIMBS: usize, G>(
cs: &[UnsignedInteger<NUM_LIMBS>],
points: &[G],
window_size: usize,
) -> G
where
G: IsGroup + Send + Sync,
{
use rayon::prelude::*;
assert!(window_size < usize::BITS as usize); // Program would go OOM anyways
// The number of windows of size `s` is ceil(lambda/s).
let num_windows = (64 * NUM_LIMBS - 1) / window_size + 1;
let n_buckets = (1 << window_size) - 1;
// TODO: limit the number of threads, and reuse vecs
(0..num_windows)
.into_par_iter()
.map(|window_idx| {
let mut buckets = vec![G::neutral_element(); n_buckets];
// Put in the right bucket the corresponding ps[i] for the current window.
let shift = window_idx * window_size;
cs.iter().zip(points).for_each(|(k, p)| {
// We truncate the number to the least significative limb.
// This is ok because window_size < usize::BITS.
let window_unmasked = (k >> shift).limbs[NUM_LIMBS - 1];
let m_ij = window_unmasked & n_buckets as u64;
if m_ij != 0 {
let idx = (m_ij - 1) as usize;
buckets[idx] = buckets[idx].operate_with(p);
}
});
let mut m = G::neutral_element();
// Do the reduction step for the buckets.
let window_item = buckets
// NOTE: changing this into a parallel iter drops performance, because of the
// need to use multiplication in the `map` step
.into_iter()
.rev()
.map(|b| {
m = m.operate_with(&b); // Reduction step.
m.clone()
})
.reduce(|g, m| g.operate_with(&m))
.unwrap_or_else(G::neutral_element);
window_item.operate_with_self(UnsignedInteger::<NUM_LIMBS>::from_u64(1) << shift)
})
.reduce(G::neutral_element, |a, b| a.operate_with(&b))
}
#[cfg(test)]
mod tests {
use crate::cyclic_group::IsGroup;
use crate::msm::{naive, pippenger};
use crate::{
elliptic_curve::{
short_weierstrass::curves::bls12_381::curve::BLS12381Curve, traits::IsEllipticCurve,
},
unsigned_integer::element::UnsignedInteger,
};
use alloc::{format, vec::Vec};
use proptest::{collection, prelude::*, prop_assert_eq, prop_compose, proptest};
const _CASES: u32 = 20;
const _MAX_WSIZE: usize = 8;
const _MAX_LEN: usize = 30;
prop_compose! {
fn unsigned_integer()(limbs: [u64; 6]) -> UnsignedInteger<6> {
UnsignedInteger::from_limbs(limbs)
}
}
prop_compose! {
fn unsigned_integer_vec()(vec in collection::vec(unsigned_integer(), 0.._MAX_LEN)) -> Vec<UnsignedInteger<6>> {
vec
}
}
prop_compose! {
fn point()(power: u128) -> <BLS12381Curve as IsEllipticCurve>::PointRepresentation {
BLS12381Curve::generator().operate_with_self(power)
}
}
prop_compose! {
fn points_vec()(vec in collection::vec(point(), 0.._MAX_LEN)) -> Vec<<BLS12381Curve as IsEllipticCurve>::PointRepresentation> {
vec
}
}
proptest! {
#![proptest_config(ProptestConfig {
cases: _CASES, .. ProptestConfig::default()
})]
// Property-based test that ensures `pippenger::msm` gives same result as `naive::msm`.
#[test]
fn test_pippenger_matches_naive_msm(window_size in 1.._MAX_WSIZE, cs in unsigned_integer_vec(), points in points_vec()) {
let min_len = cs.len().min(points.len());
let cs = cs[..min_len].to_vec();
let points = points[..min_len].to_vec();
let pippenger = pippenger::msm_with(&cs, &points, window_size);
let naive = naive::msm(&cs, &points).unwrap();
prop_assert_eq!(naive, pippenger);
}
// Property-based test that ensures `pippenger::msm_with` gives same result as `pippenger::parallel_msm_with`.
#[test]
#[cfg(feature = "parallel")]
fn test_parallel_pippenger_matches_sequential(window_size in 1.._MAX_WSIZE, cs in unsigned_integer_vec(), points in points_vec()) {
let min_len = cs.len().min(points.len());
let cs = cs[..min_len].to_vec();
let points = points[..min_len].to_vec();
let sequential = pippenger::msm_with(&cs, &points, window_size);
let parallel = pippenger::parallel_msm_with(&cs, &points, window_size);
prop_assert_eq!(parallel, sequential);
}
}
}