1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use super::element::UnsignedInteger;

pub struct MontgomeryAlgorithms;
impl MontgomeryAlgorithms {
    /// Compute CIOS multiplication of `a` * `b`
    /// `q` is the modulus
    /// `mu` is the inverse of -q modulo 2^{64}
    /// Notice CIOS stands for Coarsely Integrated Operand Scanning
    /// For more information see section 2.3.2 of Tolga Acar's thesis
    /// https://www.microsoft.com/en-us/research/wp-content/uploads/1998/06/97Acar.pdf
    #[inline(always)]
    pub const fn cios<const NUM_LIMBS: usize>(
        a: &UnsignedInteger<NUM_LIMBS>,
        b: &UnsignedInteger<NUM_LIMBS>,
        q: &UnsignedInteger<NUM_LIMBS>,
        mu: &u64,
    ) -> UnsignedInteger<NUM_LIMBS> {
        let mut t = [0_u64; NUM_LIMBS];
        let mut t_extra = [0_u64; 2];
        let mut i: usize = NUM_LIMBS;
        while i > 0 {
            i -= 1;
            // C := 0
            let mut c: u128 = 0;

            // for j=N-1 to 0
            //    (C,t[j]) := t[j] + a[j]*b[i] + C
            let mut cs: u128;
            let mut j: usize = NUM_LIMBS;
            while j > 0 {
                j -= 1;
                cs = t[j] as u128 + (a.limbs[j] as u128) * (b.limbs[i] as u128) + c;
                c = cs >> 64;
                t[j] = cs as u64;
            }

            // (t_extra[0],t_extra[1]) := t_extra[1] + C
            cs = (t_extra[1] as u128) + c;
            t_extra[0] = (cs >> 64) as u64;
            t_extra[1] = cs as u64;

            let mut c: u128;

            // m := t[N-1]*q'[N-1] mod D
            let m = ((t[NUM_LIMBS - 1] as u128 * *mu as u128) << 64) >> 64;

            // (C,_) := t[N-1] + m*q[N-1]
            c = (t[NUM_LIMBS - 1] as u128 + m * (q.limbs[NUM_LIMBS - 1] as u128)) >> 64;

            // for j=N-1 to 1
            //    (C,t[j+1]) := t[j] + m*q[j] + C
            let mut j: usize = NUM_LIMBS - 1;
            while j > 0 {
                j -= 1;
                cs = t[j] as u128 + m * (q.limbs[j] as u128) + c;
                c = cs >> 64;
                t[j + 1] = ((cs << 64) >> 64) as u64;
            }

            // (C,t[0]) := t_extra[1] + C
            cs = (t_extra[1] as u128) + c;
            c = cs >> 64;
            t[0] = ((cs << 64) >> 64) as u64;

            // t_extra[1] := t_extra[0] + C
            t_extra[1] = t_extra[0] + c as u64;
        }
        let mut result = UnsignedInteger { limbs: t };

        let overflow = t_extra[1] > 0;

        if overflow || UnsignedInteger::const_le(q, &result) {
            (result, _) = UnsignedInteger::sub(&result, q);
        }
        result
    }

    /// Compute CIOS multiplication of `a` * `b`
    /// This is the Algorithm 2 described in the paper
    /// "EdMSM: Multi-Scalar-Multiplication for SNARKs and Faster Montgomery multiplication"
    /// https://eprint.iacr.org/2022/1400.pdf.
    /// It is only suited for moduli with `q[0]` smaller than `2^63 - 1`.
    /// `q` is the modulus
    /// `mu` is the inverse of -q modulo 2^{64}
    #[inline(always)]
    pub fn cios_optimized_for_moduli_with_one_spare_bit<const NUM_LIMBS: usize>(
        a: &UnsignedInteger<NUM_LIMBS>,
        b: &UnsignedInteger<NUM_LIMBS>,
        q: &UnsignedInteger<NUM_LIMBS>,
        mu: &u64,
    ) -> UnsignedInteger<NUM_LIMBS> {
        let mut t = [0_u64; NUM_LIMBS];
        let mut t_extra;
        let mut i: usize = NUM_LIMBS;
        while i > 0 {
            i -= 1;
            // C := 0
            let mut c: u128 = 0;

            // for j=N-1 to 0
            //    (C,t[j]) := t[j] + a[j]*b[i] + C
            let mut cs: u128;
            let mut j: usize = NUM_LIMBS;
            while j > 0 {
                j -= 1;
                cs = t[j] as u128 + (a.limbs[j] as u128) * (b.limbs[i] as u128) + c;
                c = cs >> 64;
                t[j] = cs as u64;
            }

            t_extra = c as u64;

            let mut c: u128;

            // m := t[N-1]*q'[N-1] mod D
            let m = ((t[NUM_LIMBS - 1] as u128 * *mu as u128) << 64) >> 64;

            // (C,_) := t[0] + m*q[0]
            c = (t[NUM_LIMBS - 1] as u128 + m * (q.limbs[NUM_LIMBS - 1] as u128)) >> 64;

            // for j=N-1 to 1
            //    (C,t[j+1]) := t[j] + m*q[j] + C
            let mut j: usize = NUM_LIMBS - 1;
            while j > 0 {
                j -= 1;
                cs = t[j] as u128 + m * (q.limbs[j] as u128) + c;
                c = cs >> 64;
                t[j + 1] = ((cs << 64) >> 64) as u64;
            }

            // (C,t[0]) := t_extra + C
            cs = (t_extra as u128) + c;
            t[0] = ((cs << 64) >> 64) as u64;
        }
        let mut result = UnsignedInteger { limbs: t };

        if UnsignedInteger::const_le(q, &result) {
            (result, _) = UnsignedInteger::sub(&result, q);
        }
        result
    }

    // Separated Operand Scanning Method (2.3.1)
    #[inline(always)]
    pub fn sos_square<const NUM_LIMBS: usize>(
        a: &UnsignedInteger<NUM_LIMBS>,
        q: &UnsignedInteger<NUM_LIMBS>,
        mu: &u64,
    ) -> UnsignedInteger<NUM_LIMBS> {
        // NOTE: we use explicit `while` loops in this function because profiling pointed
        // at iterators of the form `(<x>..<y>).rev()` as the main performance bottleneck.

        // Step 1: Compute `(hi, lo) = a * a`
        let (mut hi, mut lo) = UnsignedInteger::square(a);

        // Step 2: Add terms to `(hi, lo)` until multiple it
        // is a multiple of both `2^{NUM_LIMBS * 64}` and
        // `q`.
        let mut c: u128 = 0;
        let mut i = NUM_LIMBS;
        let mut overflow = false;
        while i > 0 {
            i -= 1;
            c = 0;
            let m = (lo.limbs[i] as u128 * *mu as u128) as u64;
            let mut j = NUM_LIMBS;
            while j > 0 {
                j -= 1;
                if i + j >= NUM_LIMBS - 1 {
                    let index = i + j - (NUM_LIMBS - 1);
                    let cs = lo.limbs[index] as u128 + m as u128 * (q.limbs[j] as u128) + c;
                    c = cs >> 64;
                    lo.limbs[index] = cs as u64;
                } else {
                    let index = i + j + 1;
                    let cs = hi.limbs[index] as u128 + m as u128 * (q.limbs[j] as u128) + c;
                    c = cs >> 64;
                    hi.limbs[index] = cs as u64;
                }
            }

            // Carry propagation to `hi`
            let mut t = 0;
            while c > 0 && i >= t {
                let cs = hi.limbs[i - t] as u128 + c;
                c = cs >> 64;
                hi.limbs[i - t] = cs as u64;
                t += 1;
            }
            overflow |= c > 0;
        }

        // Step 3: At this point `overflow * 2^{2 * NUM_LIMBS * 64} + (hi, lo)` is a multiple
        // of `2^{NUM_LIMBS * 64}` and the result is obtained by dividing it by `2^{NUM_LIMBS * 64}`.
        // In other words, `lo` is zero and the result is
        // `overflow * 2^{NUM_LIMBS * 64} + hi`.
        // That number is always strictly smaller than `2 * q`. To normalize it we substract
        // `q` whenever it is larger than `q`.
        // The easy case is when `overflow` is zero. We just use the `sub` function.
        // If `overflow` is 1, then `hi` is smaller than `q`. The function `sub(hi, q)` wraps
        // around `2^{NUM_LIMBS * 64}`. This is the result we need.
        overflow |= c > 0;
        if overflow || UnsignedInteger::const_le(q, &hi) {
            (hi, _) = UnsignedInteger::sub(&hi, q);
        }
        hi
    }
}

#[cfg(test)]
mod tests {
    use crate::unsigned_integer::{element::U384, montgomery::MontgomeryAlgorithms};

    use proptest::prelude::*;

    proptest! {
        #[test]
        fn cios_vs_cios_optimized(a in any::<[u64; 6]>(), b in any::<[u64; 6]>()) {
            let x = U384::from_limbs(a);
            let y = U384::from_limbs(b);
            let m = U384::from_hex_unchecked("cdb061954fdd36e5176f50dbdcfd349570a29ce1"); // this is prime
            let mu: u64 = 16085280245840369887; // negative of the inverse of `m` modulo 2^{64}
            assert_eq!(
                MontgomeryAlgorithms::cios(&x, &y, &m, &mu),
                MontgomeryAlgorithms::cios_optimized_for_moduli_with_one_spare_bit(&x, &y, &m, &mu)
            );
        }

        #[test]
        fn cios_vs_sos_square(a in any::<[u64; 6]>()) {
            let x = U384::from_limbs(a);
            let m = U384::from_hex_unchecked("cdb061954fdd36e5176f50dbdcfd349570a29ce1"); // this is prime
            let mu: u64 = 16085280245840369887; // negative of the inverse of `m` modulo 2^{64}
            assert_eq!(
                MontgomeryAlgorithms::cios(&x, &x, &m, &mu),
                MontgomeryAlgorithms::sos_square(&x, &m, &mu)
            );
        }
    }
    #[test]
    fn montgomery_multiplication_works_0() {
        let x = U384::from_u64(11_u64);
        let y = U384::from_u64(10_u64);
        let m = U384::from_u64(23_u64); //
        let mu: u64 = 3208129404123400281; // negative of the inverse of `m` modulo 2^{64}.
        let c = U384::from_u64(13_u64); // x * y * (r^{-1}) % m, where r = 2^{64 * 6} and r^{-1} mod m = 2.
        assert_eq!(MontgomeryAlgorithms::cios(&x, &y, &m, &mu), c);
    }

    #[test]
    fn montgomery_multiplication_works_1() {
        let x = U384::from_hex_unchecked("05ed176deb0e80b4deb7718cdaa075165f149c");
        let y = U384::from_hex_unchecked("5f103b0bd4397d4df560eb559f38353f80eeb6");
        let m = U384::from_hex_unchecked("cdb061954fdd36e5176f50dbdcfd349570a29ce1"); // this is prime
        let mu: u64 = 16085280245840369887; // negative of the inverse of `m` modulo 2^{64}
        let c = U384::from_hex_unchecked("8d65cdee621682815d59f465d2641eea8a1274dc"); // x * y * (r^{-1}) % m, where r = 2^{64 * 6}
        assert_eq!(MontgomeryAlgorithms::cios(&x, &y, &m, &mu), c);
    }

    #[test]
    fn montgomery_multiplication_works_2() {
        let x = U384::from_hex_unchecked("8d65cdee621682815d59f465d2641eea8a1274dc");
        let m = U384::from_hex_unchecked("cdb061954fdd36e5176f50dbdcfd349570a29ce1"); // this is prime
        let r_mod_m = U384::from_hex_unchecked("58dfb0e1b3dd5e674bdcde4f42eb5533b8759d33");
        let mu: u64 = 16085280245840369887; // negative of the inverse of `m` modulo 2^{64}
        let c = U384::from_hex_unchecked("8d65cdee621682815d59f465d2641eea8a1274dc");
        assert_eq!(MontgomeryAlgorithms::cios(&x, &r_mod_m, &m, &mu), c);
    }
}