lance_arrow/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
//! Extend Arrow Functionality
//!
//! To improve Arrow-RS ergonomic
use std::sync::Arc;
use std::{collections::HashMap, ptr::NonNull};
use arrow_array::{
cast::AsArray, Array, ArrayRef, ArrowNumericType, FixedSizeBinaryArray, FixedSizeListArray,
GenericListArray, OffsetSizeTrait, PrimitiveArray, RecordBatch, StructArray, UInt32Array,
UInt8Array,
};
use arrow_buffer::MutableBuffer;
use arrow_data::ArrayDataBuilder;
use arrow_schema::{ArrowError, DataType, Field, FieldRef, Fields, IntervalUnit, Schema};
use arrow_select::{interleave::interleave, take::take};
use rand::prelude::*;
pub mod deepcopy;
pub mod schema;
pub use schema::*;
pub mod bfloat16;
pub mod floats;
pub use floats::*;
pub mod cast;
pub mod list;
type Result<T> = std::result::Result<T, ArrowError>;
pub trait DataTypeExt {
/// Returns true if the data type is binary-like, such as (Large)Utf8 and (Large)Binary.
///
/// ```
/// use lance_arrow::*;
/// use arrow_schema::DataType;
///
/// assert!(DataType::Utf8.is_binary_like());
/// assert!(DataType::Binary.is_binary_like());
/// assert!(DataType::LargeUtf8.is_binary_like());
/// assert!(DataType::LargeBinary.is_binary_like());
/// assert!(!DataType::Int32.is_binary_like());
/// ```
fn is_binary_like(&self) -> bool;
/// Returns true if the data type is a struct.
fn is_struct(&self) -> bool;
/// Check whether the given Arrow DataType is fixed stride.
///
/// A fixed stride type has the same byte width for all array elements
/// This includes all PrimitiveType's Boolean, FixedSizeList, FixedSizeBinary, and Decimals
fn is_fixed_stride(&self) -> bool;
/// Returns true if the [DataType] is a dictionary type.
fn is_dictionary(&self) -> bool;
/// Returns the byte width of the data type
/// Panics if the data type is not fixed stride.
fn byte_width(&self) -> usize;
/// Returns the byte width of the data type, if it is fixed stride.
/// Returns None if the data type is not fixed stride.
fn byte_width_opt(&self) -> Option<usize>;
}
impl DataTypeExt for DataType {
fn is_binary_like(&self) -> bool {
use DataType::*;
matches!(self, Utf8 | Binary | LargeUtf8 | LargeBinary)
}
fn is_struct(&self) -> bool {
matches!(self, Self::Struct(_))
}
fn is_fixed_stride(&self) -> bool {
use DataType::*;
matches!(
self,
Boolean
| UInt8
| UInt16
| UInt32
| UInt64
| Int8
| Int16
| Int32
| Int64
| Float16
| Float32
| Float64
| Decimal128(_, _)
| Decimal256(_, _)
| FixedSizeList(_, _)
| FixedSizeBinary(_)
| Duration(_)
| Timestamp(_, _)
| Date32
| Date64
| Time32(_)
| Time64(_)
)
}
fn is_dictionary(&self) -> bool {
matches!(self, Self::Dictionary(_, _))
}
fn byte_width_opt(&self) -> Option<usize> {
match self {
Self::Int8 => Some(1),
Self::Int16 => Some(2),
Self::Int32 => Some(4),
Self::Int64 => Some(8),
Self::UInt8 => Some(1),
Self::UInt16 => Some(2),
Self::UInt32 => Some(4),
Self::UInt64 => Some(8),
Self::Float16 => Some(2),
Self::Float32 => Some(4),
Self::Float64 => Some(8),
Self::Date32 => Some(4),
Self::Date64 => Some(8),
Self::Time32(_) => Some(4),
Self::Time64(_) => Some(8),
Self::Timestamp(_, _) => Some(8),
Self::Duration(_) => Some(8),
Self::Decimal128(_, _) => Some(16),
Self::Decimal256(_, _) => Some(32),
Self::Interval(unit) => match unit {
IntervalUnit::YearMonth => Some(4),
IntervalUnit::DayTime => Some(8),
IntervalUnit::MonthDayNano => Some(16),
},
Self::FixedSizeBinary(s) => Some(*s as usize),
Self::FixedSizeList(dt, s) => Some(*s as usize * dt.data_type().byte_width()),
_ => None,
}
}
fn byte_width(&self) -> usize {
self.byte_width_opt()
.unwrap_or_else(|| panic!("Expecting fixed stride data type, found {:?}", self))
}
}
/// Create an [`GenericListArray`] from values and offsets.
///
/// ```
/// use arrow_array::{Int32Array, Int64Array, ListArray};
/// use arrow_array::types::Int64Type;
/// use lance_arrow::try_new_generic_list_array;
///
/// let offsets = Int32Array::from_iter([0, 2, 7, 10]);
/// let int_values = Int64Array::from_iter(0..10);
/// let list_arr = try_new_generic_list_array(int_values, &offsets).unwrap();
/// assert_eq!(list_arr,
/// ListArray::from_iter_primitive::<Int64Type, _, _>(vec![
/// Some(vec![Some(0), Some(1)]),
/// Some(vec![Some(2), Some(3), Some(4), Some(5), Some(6)]),
/// Some(vec![Some(7), Some(8), Some(9)]),
/// ]))
/// ```
pub fn try_new_generic_list_array<T: Array, Offset: ArrowNumericType>(
values: T,
offsets: &PrimitiveArray<Offset>,
) -> Result<GenericListArray<Offset::Native>>
where
Offset::Native: OffsetSizeTrait,
{
let data_type = if Offset::Native::IS_LARGE {
DataType::LargeList(Arc::new(Field::new(
"item",
values.data_type().clone(),
true,
)))
} else {
DataType::List(Arc::new(Field::new(
"item",
values.data_type().clone(),
true,
)))
};
let data = ArrayDataBuilder::new(data_type)
.len(offsets.len() - 1)
.add_buffer(offsets.into_data().buffers()[0].clone())
.add_child_data(values.into_data())
.build()?;
Ok(GenericListArray::from(data))
}
pub fn fixed_size_list_type(list_width: i32, inner_type: DataType) -> DataType {
DataType::FixedSizeList(Arc::new(Field::new("item", inner_type, true)), list_width)
}
pub trait FixedSizeListArrayExt {
/// Create an [`FixedSizeListArray`] from values and list size.
///
/// ```
/// use arrow_array::{Int64Array, FixedSizeListArray};
/// use arrow_array::types::Int64Type;
/// use lance_arrow::FixedSizeListArrayExt;
///
/// let int_values = Int64Array::from_iter(0..10);
/// let fixed_size_list_arr = FixedSizeListArray::try_new_from_values(int_values, 2).unwrap();
/// assert_eq!(fixed_size_list_arr,
/// FixedSizeListArray::from_iter_primitive::<Int64Type, _, _>(vec![
/// Some(vec![Some(0), Some(1)]),
/// Some(vec![Some(2), Some(3)]),
/// Some(vec![Some(4), Some(5)]),
/// Some(vec![Some(6), Some(7)]),
/// Some(vec![Some(8), Some(9)])
/// ], 2))
/// ```
fn try_new_from_values<T: Array + 'static>(
values: T,
list_size: i32,
) -> Result<FixedSizeListArray>;
/// Sample `n` rows from the [FixedSizeListArray]
///
/// ```
/// use arrow_array::{Int64Array, FixedSizeListArray, Array};
/// use lance_arrow::FixedSizeListArrayExt;
///
/// let int_values = Int64Array::from_iter(0..256);
/// let fixed_size_list_arr = FixedSizeListArray::try_new_from_values(int_values, 16).unwrap();
/// let sampled = fixed_size_list_arr.sample(10).unwrap();
/// assert_eq!(sampled.len(), 10);
/// assert_eq!(sampled.value_length(), 16);
/// assert_eq!(sampled.values().len(), 160);
/// ```
fn sample(&self, n: usize) -> Result<FixedSizeListArray>;
}
impl FixedSizeListArrayExt for FixedSizeListArray {
fn try_new_from_values<T: Array + 'static>(values: T, list_size: i32) -> Result<Self> {
let field = Arc::new(Field::new("item", values.data_type().clone(), true));
let values = Arc::new(values);
Self::try_new(field, list_size, values, None)
}
fn sample(&self, n: usize) -> Result<FixedSizeListArray> {
if n >= self.len() {
return Ok(self.clone());
}
let mut rng = SmallRng::from_entropy();
let chosen = (0..self.len() as u32).choose_multiple(&mut rng, n);
take(self, &UInt32Array::from(chosen), None).map(|arr| arr.as_fixed_size_list().clone())
}
}
/// Force downcast of an [`Array`], such as an [`ArrayRef`], to
/// [`FixedSizeListArray`], panic'ing on failure.
pub fn as_fixed_size_list_array(arr: &dyn Array) -> &FixedSizeListArray {
arr.as_any().downcast_ref::<FixedSizeListArray>().unwrap()
}
pub trait FixedSizeBinaryArrayExt {
/// Create an [`FixedSizeBinaryArray`] from values and stride.
///
/// ```
/// use arrow_array::{UInt8Array, FixedSizeBinaryArray};
/// use arrow_array::types::UInt8Type;
/// use lance_arrow::FixedSizeBinaryArrayExt;
///
/// let int_values = UInt8Array::from_iter(0..10);
/// let fixed_size_list_arr = FixedSizeBinaryArray::try_new_from_values(&int_values, 2).unwrap();
/// assert_eq!(fixed_size_list_arr,
/// FixedSizeBinaryArray::from(vec![
/// Some(vec![0, 1].as_slice()),
/// Some(vec![2, 3].as_slice()),
/// Some(vec![4, 5].as_slice()),
/// Some(vec![6, 7].as_slice()),
/// Some(vec![8, 9].as_slice())
/// ]))
/// ```
fn try_new_from_values(values: &UInt8Array, stride: i32) -> Result<FixedSizeBinaryArray>;
}
impl FixedSizeBinaryArrayExt for FixedSizeBinaryArray {
fn try_new_from_values(values: &UInt8Array, stride: i32) -> Result<Self> {
let data_type = DataType::FixedSizeBinary(stride);
let data = ArrayDataBuilder::new(data_type)
.len(values.len() / stride as usize)
.add_buffer(values.into_data().buffers()[0].clone())
.build()?;
Ok(Self::from(data))
}
}
pub fn as_fixed_size_binary_array(arr: &dyn Array) -> &FixedSizeBinaryArray {
arr.as_any().downcast_ref::<FixedSizeBinaryArray>().unwrap()
}
pub fn iter_str_array(arr: &dyn Array) -> Box<dyn Iterator<Item = Option<&str>> + '_> {
match arr.data_type() {
DataType::Utf8 => Box::new(arr.as_string::<i32>().iter()),
DataType::LargeUtf8 => Box::new(arr.as_string::<i64>().iter()),
_ => panic!("Expecting Utf8 or LargeUtf8, found {:?}", arr.data_type()),
}
}
/// Extends Arrow's [RecordBatch].
pub trait RecordBatchExt {
/// Append a new column to this [`RecordBatch`] and returns a new RecordBatch.
///
/// ```
/// use std::sync::Arc;
/// use arrow_array::{RecordBatch, Int32Array, StringArray};
/// use arrow_schema::{Schema, Field, DataType};
/// use lance_arrow::*;
///
/// let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)]));
/// let int_arr = Arc::new(Int32Array::from(vec![1, 2, 3, 4]));
/// let record_batch = RecordBatch::try_new(schema, vec![int_arr.clone()]).unwrap();
///
/// let new_field = Field::new("s", DataType::Utf8, true);
/// let str_arr = Arc::new(StringArray::from(vec!["a", "b", "c", "d"]));
/// let new_record_batch = record_batch.try_with_column(new_field, str_arr.clone()).unwrap();
///
/// assert_eq!(
/// new_record_batch,
/// RecordBatch::try_new(
/// Arc::new(Schema::new(
/// vec![
/// Field::new("a", DataType::Int32, true),
/// Field::new("s", DataType::Utf8, true)
/// ])
/// ),
/// vec![int_arr, str_arr],
/// ).unwrap()
/// )
/// ```
fn try_with_column(&self, field: Field, arr: ArrayRef) -> Result<RecordBatch>;
/// Created a new RecordBatch with column at index.
fn try_with_column_at(&self, index: usize, field: Field, arr: ArrayRef) -> Result<RecordBatch>;
/// Creates a new [`RecordBatch`] from the provided [`StructArray`].
///
/// The fields on the [`StructArray`] need to match this [`RecordBatch`] schema
fn try_new_from_struct_array(&self, arr: StructArray) -> Result<RecordBatch>;
/// Merge with another [`RecordBatch`] and returns a new one.
///
/// Fields are merged based on name. First we iterate the left columns. If a matching
/// name is found in the right then we merge the two columns. If there is no match then
/// we add the left column to the output.
///
/// To merge two columns we consider the type. If both arrays are struct arrays we recurse.
/// Otherwise we use the left array.
///
/// Afterwards we add all non-matching right columns to the output.
///
/// Note: This method likely does not handle nested fields correctly and you may want to consider
/// using [`merge_with_schema`] instead.
/// ```
/// use std::sync::Arc;
/// use arrow_array::*;
/// use arrow_schema::{Schema, Field, DataType};
/// use lance_arrow::*;
///
/// let left_schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)]));
/// let int_arr = Arc::new(Int32Array::from(vec![1, 2, 3, 4]));
/// let left = RecordBatch::try_new(left_schema, vec![int_arr.clone()]).unwrap();
///
/// let right_schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
/// let str_arr = Arc::new(StringArray::from(vec!["a", "b", "c", "d"]));
/// let right = RecordBatch::try_new(right_schema, vec![str_arr.clone()]).unwrap();
///
/// let new_record_batch = left.merge(&right).unwrap();
///
/// assert_eq!(
/// new_record_batch,
/// RecordBatch::try_new(
/// Arc::new(Schema::new(
/// vec![
/// Field::new("a", DataType::Int32, true),
/// Field::new("s", DataType::Utf8, true)
/// ])
/// ),
/// vec![int_arr, str_arr],
/// ).unwrap()
/// )
/// ```
///
/// TODO: add merge nested fields support.
fn merge(&self, other: &RecordBatch) -> Result<RecordBatch>;
/// Create a batch by merging columns between two batches with a given schema.
///
/// A reference schema is used to determine the proper ordering of nested fields.
///
/// For each field in the reference schema we look for corresponding fields in
/// the left and right batches. If a field is found in both batches we recursively merge
/// it.
///
/// If a field is only in the left or right batch we take it as it is.
fn merge_with_schema(&self, other: &RecordBatch, schema: &Schema) -> Result<RecordBatch>;
/// Drop one column specified with the name and return the new [`RecordBatch`].
///
/// If the named column does not exist, it returns a copy of this [`RecordBatch`].
fn drop_column(&self, name: &str) -> Result<RecordBatch>;
/// Replace a column (specified by name) and return the new [`RecordBatch`].
fn replace_column_by_name(&self, name: &str, column: Arc<dyn Array>) -> Result<RecordBatch>;
/// Get (potentially nested) column by qualified name.
fn column_by_qualified_name(&self, name: &str) -> Option<&ArrayRef>;
/// Project the schema over the [RecordBatch].
fn project_by_schema(&self, schema: &Schema) -> Result<RecordBatch>;
/// metadata of the schema.
fn metadata(&self) -> &HashMap<String, String>;
/// Add metadata to the schema.
fn add_metadata(&self, key: String, value: String) -> Result<RecordBatch> {
let mut metadata = self.metadata().clone();
metadata.insert(key, value);
self.with_metadata(metadata)
}
/// Replace the schema metadata with the provided one.
fn with_metadata(&self, metadata: HashMap<String, String>) -> Result<RecordBatch>;
/// Take selected rows from the [RecordBatch].
fn take(&self, indices: &UInt32Array) -> Result<RecordBatch>;
}
impl RecordBatchExt for RecordBatch {
fn try_with_column(&self, field: Field, arr: ArrayRef) -> Result<Self> {
let new_schema = Arc::new(self.schema().as_ref().try_with_column(field)?);
let mut new_columns = self.columns().to_vec();
new_columns.push(arr);
Self::try_new(new_schema, new_columns)
}
fn try_with_column_at(&self, index: usize, field: Field, arr: ArrayRef) -> Result<Self> {
let new_schema = Arc::new(self.schema().as_ref().try_with_column_at(index, field)?);
let mut new_columns = self.columns().to_vec();
new_columns.insert(index, arr);
Self::try_new(new_schema, new_columns)
}
fn try_new_from_struct_array(&self, arr: StructArray) -> Result<Self> {
let schema = Arc::new(Schema::new_with_metadata(
arr.fields().to_vec(),
self.schema().metadata.clone(),
));
let batch = Self::from(arr);
batch.with_schema(schema)
}
fn merge(&self, other: &Self) -> Result<Self> {
if self.num_rows() != other.num_rows() {
return Err(ArrowError::InvalidArgumentError(format!(
"Attempt to merge two RecordBatch with different sizes: {} != {}",
self.num_rows(),
other.num_rows()
)));
}
let left_struct_array: StructArray = self.clone().into();
let right_struct_array: StructArray = other.clone().into();
self.try_new_from_struct_array(merge(&left_struct_array, &right_struct_array))
}
fn merge_with_schema(&self, other: &RecordBatch, schema: &Schema) -> Result<RecordBatch> {
if self.num_rows() != other.num_rows() {
return Err(ArrowError::InvalidArgumentError(format!(
"Attempt to merge two RecordBatch with different sizes: {} != {}",
self.num_rows(),
other.num_rows()
)));
}
let left_struct_array: StructArray = self.clone().into();
let right_struct_array: StructArray = other.clone().into();
self.try_new_from_struct_array(merge_with_schema(
&left_struct_array,
&right_struct_array,
schema.fields(),
))
}
fn drop_column(&self, name: &str) -> Result<Self> {
let mut fields = vec![];
let mut columns = vec![];
for i in 0..self.schema().fields.len() {
if self.schema().field(i).name() != name {
fields.push(self.schema().field(i).clone());
columns.push(self.column(i).clone());
}
}
Self::try_new(
Arc::new(Schema::new_with_metadata(
fields,
self.schema().metadata().clone(),
)),
columns,
)
}
fn replace_column_by_name(&self, name: &str, column: Arc<dyn Array>) -> Result<RecordBatch> {
let mut columns = self.columns().to_vec();
let field_i = self
.schema()
.fields()
.iter()
.position(|f| f.name() == name)
.ok_or_else(|| ArrowError::SchemaError(format!("Field {} does not exist", name)))?;
columns[field_i] = column;
Self::try_new(self.schema(), columns)
}
fn column_by_qualified_name(&self, name: &str) -> Option<&ArrayRef> {
let split = name.split('.').collect::<Vec<_>>();
if split.is_empty() {
return None;
}
self.column_by_name(split[0])
.and_then(|arr| get_sub_array(arr, &split[1..]))
}
fn project_by_schema(&self, schema: &Schema) -> Result<Self> {
let struct_array: StructArray = self.clone().into();
self.try_new_from_struct_array(project(&struct_array, schema.fields())?)
}
fn metadata(&self) -> &HashMap<String, String> {
self.schema_ref().metadata()
}
fn with_metadata(&self, metadata: HashMap<String, String>) -> Result<RecordBatch> {
let mut schema = self.schema_ref().as_ref().clone();
schema.metadata = metadata;
Self::try_new(schema.into(), self.columns().into())
}
fn take(&self, indices: &UInt32Array) -> Result<Self> {
let struct_array: StructArray = self.clone().into();
let taken = take(&struct_array, indices, None)?;
self.try_new_from_struct_array(taken.as_struct().clone())
}
}
fn project(struct_array: &StructArray, fields: &Fields) -> Result<StructArray> {
if fields.is_empty() {
return Ok(StructArray::new_empty_fields(
struct_array.len(),
struct_array.nulls().cloned(),
));
}
let mut columns: Vec<ArrayRef> = vec![];
for field in fields.iter() {
if let Some(col) = struct_array.column_by_name(field.name()) {
match field.data_type() {
// TODO handle list-of-struct
DataType::Struct(subfields) => {
let projected = project(col.as_struct(), subfields)?;
columns.push(Arc::new(projected));
}
_ => {
columns.push(col.clone());
}
}
} else {
return Err(ArrowError::SchemaError(format!(
"field {} does not exist in the RecordBatch",
field.name()
)));
}
}
StructArray::try_new(fields.clone(), columns, None)
}
fn merge(left_struct_array: &StructArray, right_struct_array: &StructArray) -> StructArray {
let mut fields: Vec<Field> = vec![];
let mut columns: Vec<ArrayRef> = vec![];
let right_fields = right_struct_array.fields();
let right_columns = right_struct_array.columns();
// iterate through the fields on the left hand side
for (left_field, left_column) in left_struct_array
.fields()
.iter()
.zip(left_struct_array.columns().iter())
{
match right_fields
.iter()
.position(|f| f.name() == left_field.name())
{
// if the field exists on the right hand side, merge them recursively if appropriate
Some(right_index) => {
let right_field = right_fields.get(right_index).unwrap();
let right_column = right_columns.get(right_index).unwrap();
// if both fields are struct, merge them recursively
match (left_field.data_type(), right_field.data_type()) {
(DataType::Struct(_), DataType::Struct(_)) => {
let left_sub_array = left_column.as_struct();
let right_sub_array = right_column.as_struct();
let merged_sub_array = merge(left_sub_array, right_sub_array);
fields.push(Field::new(
left_field.name(),
merged_sub_array.data_type().clone(),
left_field.is_nullable(),
));
columns.push(Arc::new(merged_sub_array) as ArrayRef);
}
// otherwise, just use the field on the left hand side
_ => {
// TODO handle list-of-struct and other types
fields.push(left_field.as_ref().clone());
columns.push(left_column.clone());
}
}
}
None => {
fields.push(left_field.as_ref().clone());
columns.push(left_column.clone());
}
}
}
// now iterate through the fields on the right hand side
right_fields
.iter()
.zip(right_columns.iter())
.for_each(|(field, column)| {
// add new columns on the right
if !left_struct_array
.fields()
.iter()
.any(|f| f.name() == field.name())
{
fields.push(field.as_ref().clone());
columns.push(column.clone() as ArrayRef);
}
});
let zipped: Vec<(FieldRef, ArrayRef)> = fields
.iter()
.cloned()
.map(Arc::new)
.zip(columns.iter().cloned())
.collect::<Vec<_>>();
StructArray::from(zipped)
}
fn merge_with_schema(
left_struct_array: &StructArray,
right_struct_array: &StructArray,
fields: &Fields,
) -> StructArray {
// Helper function that returns true if both types are struct or both are non-struct
fn same_type_kind(left: &DataType, right: &DataType) -> bool {
match (left, right) {
(DataType::Struct(_), DataType::Struct(_)) => true,
(DataType::Struct(_), _) => false,
(_, DataType::Struct(_)) => false,
_ => true,
}
}
let mut output_fields: Vec<Field> = Vec::with_capacity(fields.len());
let mut columns: Vec<ArrayRef> = Vec::with_capacity(fields.len());
let left_fields = left_struct_array.fields();
let left_columns = left_struct_array.columns();
let right_fields = right_struct_array.fields();
let right_columns = right_struct_array.columns();
for field in fields {
let left_match_idx = left_fields.iter().position(|f| {
f.name() == field.name() && same_type_kind(f.data_type(), field.data_type())
});
let right_match_idx = right_fields.iter().position(|f| {
f.name() == field.name() && same_type_kind(f.data_type(), field.data_type())
});
match (left_match_idx, right_match_idx) {
(None, Some(right_idx)) => {
output_fields.push(right_fields[right_idx].as_ref().clone());
columns.push(right_columns[right_idx].clone());
}
(Some(left_idx), None) => {
output_fields.push(left_fields[left_idx].as_ref().clone());
columns.push(left_columns[left_idx].clone());
}
(Some(left_idx), Some(right_idx)) => {
if let DataType::Struct(child_fields) = field.data_type() {
let left_sub_array = left_columns[left_idx].as_struct();
let right_sub_array = right_columns[right_idx].as_struct();
let merged_sub_array =
merge_with_schema(left_sub_array, right_sub_array, child_fields);
output_fields.push(Field::new(
field.name(),
merged_sub_array.data_type().clone(),
field.is_nullable(),
));
columns.push(Arc::new(merged_sub_array) as ArrayRef);
} else {
output_fields.push(left_fields[left_idx].as_ref().clone());
columns.push(left_columns[left_idx].clone());
}
}
(None, None) => {
// The field will not be included in the output
}
}
}
let zipped: Vec<(FieldRef, ArrayRef)> = output_fields
.into_iter()
.map(Arc::new)
.zip(columns)
.collect::<Vec<_>>();
StructArray::from(zipped)
}
fn get_sub_array<'a>(array: &'a ArrayRef, components: &[&str]) -> Option<&'a ArrayRef> {
if components.is_empty() {
return Some(array);
}
if !matches!(array.data_type(), DataType::Struct(_)) {
return None;
}
let struct_arr = array.as_struct();
struct_arr
.column_by_name(components[0])
.and_then(|arr| get_sub_array(arr, &components[1..]))
}
/// Interleave multiple RecordBatches into a single RecordBatch.
///
/// Behaves like [`arrow::compute::interleave`], but for RecordBatches.
pub fn interleave_batches(
batches: &[RecordBatch],
indices: &[(usize, usize)],
) -> Result<RecordBatch> {
let first_batch = batches.first().ok_or_else(|| {
ArrowError::InvalidArgumentError("Cannot interleave zero RecordBatches".to_string())
})?;
let schema = first_batch.schema();
let num_columns = first_batch.num_columns();
let mut columns = Vec::with_capacity(num_columns);
let mut chunks = Vec::with_capacity(batches.len());
for i in 0..num_columns {
for batch in batches {
chunks.push(batch.column(i).as_ref());
}
let new_column = interleave(&chunks, indices)?;
columns.push(new_column);
chunks.clear();
}
RecordBatch::try_new(schema, columns)
}
pub trait BufferExt {
/// Create an `arrow_buffer::Buffer`` from a `bytes::Bytes` object
///
/// The alignment must be specified (as `bytes_per_value`) since we want to make
/// sure we can safely reinterpret the buffer.
///
/// If the buffer is properly aligned this will be zero-copy. If not, a copy
/// will be made and an owned buffer returned.
///
/// If `bytes_per_value` is not a power of two, then we assume the buffer is
/// never going to be reinterpreted into another type and we can safely
/// ignore the alignment.
///
/// Yes, the method name is odd. It's because there is already a `from_bytes`
/// which converts from `arrow_buffer::bytes::Bytes` (not `bytes::Bytes`)
fn from_bytes_bytes(bytes: bytes::Bytes, bytes_per_value: u64) -> Self;
/// Allocates a new properly aligned arrow buffer and copies `bytes` into it
///
/// `size_bytes` can be larger than `bytes` and, if so, the trailing bytes will
/// be zeroed out.
///
/// # Panics
///
/// Panics if `size_bytes` is less than `bytes.len()`
fn copy_bytes_bytes(bytes: bytes::Bytes, size_bytes: usize) -> Self;
}
fn is_pwr_two(n: u64) -> bool {
n & (n - 1) == 0
}
impl BufferExt for arrow_buffer::Buffer {
fn from_bytes_bytes(bytes: bytes::Bytes, bytes_per_value: u64) -> Self {
if is_pwr_two(bytes_per_value) && bytes.as_ptr().align_offset(bytes_per_value as usize) != 0
{
// The original buffer is not aligned, cannot zero-copy
let size_bytes = bytes.len();
Self::copy_bytes_bytes(bytes, size_bytes)
} else {
// The original buffer is aligned, can zero-copy
// SAFETY: the alignment is correct we can make this conversion
unsafe {
Self::from_custom_allocation(
NonNull::new(bytes.as_ptr() as _).expect("should be a valid pointer"),
bytes.len(),
Arc::new(bytes),
)
}
}
}
fn copy_bytes_bytes(bytes: bytes::Bytes, size_bytes: usize) -> Self {
assert!(size_bytes >= bytes.len());
let mut buf = MutableBuffer::with_capacity(size_bytes);
let to_fill = size_bytes - bytes.len();
buf.extend(bytes);
buf.extend(std::iter::repeat(0).take(to_fill));
Self::from(buf)
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::{new_empty_array, Int32Array, StringArray};
#[test]
fn test_merge_recursive() {
let a_array = Int32Array::from(vec![Some(1), Some(2), Some(3)]);
let e_array = Int32Array::from(vec![Some(4), Some(5), Some(6)]);
let c_array = Int32Array::from(vec![Some(7), Some(8), Some(9)]);
let d_array = StringArray::from(vec![Some("a"), Some("b"), Some("c")]);
let left_schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new(
"b",
DataType::Struct(vec![Field::new("c", DataType::Int32, true)].into()),
true,
),
]);
let left_batch = RecordBatch::try_new(
Arc::new(left_schema),
vec![
Arc::new(a_array.clone()),
Arc::new(StructArray::from(vec![(
Arc::new(Field::new("c", DataType::Int32, true)),
Arc::new(c_array.clone()) as ArrayRef,
)])),
],
)
.unwrap();
let right_schema = Schema::new(vec![
Field::new("e", DataType::Int32, true),
Field::new(
"b",
DataType::Struct(vec![Field::new("d", DataType::Utf8, true)].into()),
true,
),
]);
let right_batch = RecordBatch::try_new(
Arc::new(right_schema),
vec![
Arc::new(e_array.clone()),
Arc::new(StructArray::from(vec![(
Arc::new(Field::new("d", DataType::Utf8, true)),
Arc::new(d_array.clone()) as ArrayRef,
)])) as ArrayRef,
],
)
.unwrap();
let merged_schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new(
"b",
DataType::Struct(
vec![
Field::new("c", DataType::Int32, true),
Field::new("d", DataType::Utf8, true),
]
.into(),
),
true,
),
Field::new("e", DataType::Int32, true),
]);
let merged_batch = RecordBatch::try_new(
Arc::new(merged_schema),
vec![
Arc::new(a_array) as ArrayRef,
Arc::new(StructArray::from(vec![
(
Arc::new(Field::new("c", DataType::Int32, true)),
Arc::new(c_array) as ArrayRef,
),
(
Arc::new(Field::new("d", DataType::Utf8, true)),
Arc::new(d_array) as ArrayRef,
),
])) as ArrayRef,
Arc::new(e_array) as ArrayRef,
],
)
.unwrap();
let result = left_batch.merge(&right_batch).unwrap();
assert_eq!(result, merged_batch);
}
#[test]
fn test_merge_with_schema() {
fn test_batch(names: &[&str], types: &[DataType]) -> (Schema, RecordBatch) {
let fields: Fields = names
.iter()
.zip(types)
.map(|(name, ty)| Field::new(name.to_string(), ty.clone(), false))
.collect();
let schema = Schema::new(vec![Field::new(
"struct",
DataType::Struct(fields.clone()),
false,
)]);
let children = types
.iter()
.map(|ty| new_empty_array(ty))
.collect::<Vec<_>>();
let batch = RecordBatch::try_new(
Arc::new(schema.clone()),
vec![Arc::new(StructArray::new(fields, children, None)) as ArrayRef],
);
(schema, batch.unwrap())
}
let (_, left_batch) = test_batch(&["a", "b"], &[DataType::Int32, DataType::Int64]);
let (_, right_batch) = test_batch(&["c", "b"], &[DataType::Int32, DataType::Int64]);
let (output_schema, _) = test_batch(
&["b", "a", "c"],
&[DataType::Int64, DataType::Int32, DataType::Int32],
);
// If we use merge_with_schema the schema is respected
let merged = left_batch
.merge_with_schema(&right_batch, &output_schema)
.unwrap();
assert_eq!(merged.schema().as_ref(), &output_schema);
// If we use merge we get first-come first-serve based on the left batch
let (naive_schema, _) = test_batch(
&["a", "b", "c"],
&[DataType::Int32, DataType::Int64, DataType::Int32],
);
let merged = left_batch.merge(&right_batch).unwrap();
assert_eq!(merged.schema().as_ref(), &naive_schema);
}
#[test]
fn test_take_record_batch() {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Utf8, true),
]));
let batch = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..20)),
Arc::new(StringArray::from_iter_values(
(0..20).map(|i| format!("str-{}", i)),
)),
],
)
.unwrap();
let taken = batch.take(&(vec![1_u32, 5_u32, 10_u32].into())).unwrap();
assert_eq!(
taken,
RecordBatch::try_new(
schema,
vec![
Arc::new(Int32Array::from(vec![1, 5, 10])),
Arc::new(StringArray::from(vec!["str-1", "str-5", "str-10"])),
],
)
.unwrap()
)
}
#[test]
fn test_schema_project_by_schema() {
let metadata = [("key".to_string(), "value".to_string())];
let schema = Arc::new(
Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Utf8, true),
])
.with_metadata(metadata.clone().into()),
);
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(Int32Array::from_iter_values(0..20)),
Arc::new(StringArray::from_iter_values(
(0..20).map(|i| format!("str-{}", i)),
)),
],
)
.unwrap();
// Empty schema
let empty_schema = Schema::empty();
let empty_projected = batch.project_by_schema(&empty_schema).unwrap();
let expected_schema = empty_schema.with_metadata(metadata.clone().into());
assert_eq!(
empty_projected,
RecordBatch::from(StructArray::new_empty_fields(batch.num_rows(), None))
.with_schema(Arc::new(expected_schema))
.unwrap()
);
// Re-ordered schema
let reordered_schema = Schema::new(vec![
Field::new("b", DataType::Utf8, true),
Field::new("a", DataType::Int32, true),
]);
let reordered_projected = batch.project_by_schema(&reordered_schema).unwrap();
let expected_schema = Arc::new(reordered_schema.with_metadata(metadata.clone().into()));
assert_eq!(
reordered_projected,
RecordBatch::try_new(
expected_schema,
vec![
Arc::new(StringArray::from_iter_values(
(0..20).map(|i| format!("str-{}", i)),
)),
Arc::new(Int32Array::from_iter_values(0..20)),
],
)
.unwrap()
);
// Sub schema
let sub_schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
let sub_projected = batch.project_by_schema(&sub_schema).unwrap();
let expected_schema = Arc::new(sub_schema.with_metadata(metadata.into()));
assert_eq!(
sub_projected,
RecordBatch::try_new(
expected_schema,
vec![Arc::new(Int32Array::from_iter_values(0..20))],
)
.unwrap()
);
}
}