lance_core/utils/
futures.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use std::{
    collections::VecDeque,
    sync::{Arc, Mutex},
    task::Waker,
};

use futures::{stream::BoxStream, Stream, StreamExt};
use tokio::sync::Semaphore;
use tokio_util::sync::PollSemaphore;

#[derive(Clone, Copy, Debug, PartialEq)]
enum Side {
    Left,
    Right,
}

/// A potentially unbounded capacity
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Capacity {
    Bounded(u32),
    Unbounded,
}

struct InnerState<'a, T> {
    inner: Option<BoxStream<'a, T>>,
    buffer: VecDeque<T>,
    polling: Option<Side>,
    waker: Option<Waker>,
    exhausted: bool,
    left_buffered: u32,
    right_buffered: u32,
    available_buffer: Option<PollSemaphore>,
}

/// The stream returned by [`share`].
pub struct SharedStream<'a, T: Clone> {
    state: Arc<Mutex<InnerState<'a, T>>>,
    side: Side,
}

impl<'a, T: Clone> SharedStream<'a, T> {
    pub fn new(inner: BoxStream<'a, T>, capacity: Capacity) -> (Self, Self) {
        let available_buffer = match capacity {
            Capacity::Unbounded => None,
            Capacity::Bounded(capacity) => Some(PollSemaphore::new(Arc::new(Semaphore::new(
                capacity as usize,
            )))),
        };
        let state = InnerState {
            inner: Some(inner),
            buffer: VecDeque::new(),
            polling: None,
            waker: None,
            exhausted: false,
            left_buffered: 0,
            right_buffered: 0,
            available_buffer,
        };

        let state = Arc::new(Mutex::new(state));

        let left = Self {
            state: state.clone(),
            side: Side::Left,
        };
        let right = Self {
            state,
            side: Side::Right,
        };
        (left, right)
    }
}

impl<T: Clone> Stream for SharedStream<'_, T> {
    type Item = T;

    fn poll_next(
        self: std::pin::Pin<&mut Self>,
        cx: &mut std::task::Context<'_>,
    ) -> std::task::Poll<Option<Self::Item>> {
        let mut inner_state = self.state.lock().unwrap();
        let can_take_buffered = match self.side {
            Side::Left => inner_state.left_buffered > 0,
            Side::Right => inner_state.right_buffered > 0,
        };
        if can_take_buffered {
            // Easy case, there is an item in the buffer.  Grab it, decrement the count, and return it.
            let item = inner_state.buffer.pop_front();
            match self.side {
                Side::Left => {
                    inner_state.left_buffered -= 1;
                }
                Side::Right => {
                    inner_state.right_buffered -= 1;
                }
            }
            if let Some(available_buffer) = inner_state.available_buffer.as_mut() {
                available_buffer.add_permits(1);
            }
            std::task::Poll::Ready(item)
        } else {
            if inner_state.exhausted {
                return std::task::Poll::Ready(None);
            }
            // No buffered items, if we have room in the buffer, then try and poll for one
            let permit = if let Some(available_buffer) = inner_state.available_buffer.as_mut() {
                match available_buffer.poll_acquire(cx) {
                    // Can return None if the semaphore is closed but we never close the semaphore
                    // so its safe to unwrap here
                    std::task::Poll::Ready(permit) => Some(permit.unwrap()),
                    std::task::Poll::Pending => {
                        return std::task::Poll::Pending;
                    }
                }
            } else {
                None
            };
            if let Some(polling_side) = inner_state.polling.as_ref() {
                if *polling_side != self.side {
                    // Another task is already polling the inner stream, so we don't need to do anything

                    // Per rust docs:
                    //   Note that on multiple calls to poll, only the Waker from the Context
                    //   passed to the most recent call should be scheduled to receive a wakeup.
                    //
                    // So it is safe to replace a potentially stale waker here.
                    inner_state.waker = Some(cx.waker().clone());
                    return std::task::Poll::Pending;
                }
            }
            inner_state.polling = Some(self.side);
            // Release the mutex here as polling the inner stream is potentially expensive
            let mut to_poll = inner_state
                .inner
                .take()
                .expect("Other half of shared stream panic'd while polling inner stream");
            drop(inner_state);
            let res = to_poll.poll_next_unpin(cx);
            let mut inner_state = self.state.lock().unwrap();

            let mut should_wake = true;
            match &res {
                std::task::Poll::Ready(None) => {
                    inner_state.exhausted = true;
                    inner_state.polling = None;
                }
                std::task::Poll::Ready(Some(item)) => {
                    // We got an item, forget the permit to mark that we can take one fewer items
                    if let Some(permit) = permit {
                        permit.forget();
                    }
                    inner_state.polling = None;
                    // Let the other side know an item is available
                    match self.side {
                        Side::Left => {
                            inner_state.right_buffered += 1;
                        }
                        Side::Right => {
                            inner_state.left_buffered += 1;
                        }
                    };
                    inner_state.buffer.push_back(item.clone());
                }
                std::task::Poll::Pending => {
                    should_wake = false;
                }
            };

            inner_state.inner = Some(to_poll);

            // If the other side was waiting for us to poll, wake them up, but only after we release the mutex
            let to_wake = if should_wake {
                inner_state.waker.take()
            } else {
                // If the inner stream is pending then the inner stream will wake us up and we will wake the
                // other side up then.
                None
            };
            drop(inner_state);
            if let Some(waker) = to_wake {
                waker.wake();
            }
            res
        }
    }
}

pub trait SharedStreamExt<'a>: Stream + Send
where
    Self::Item: Clone,
{
    /// Split a stream into two shared streams
    ///
    /// Each shared stream will return the full set of items from the underlying stream.
    /// This works by buffering the items from the underlying stream and then replaying
    /// them to the other side.
    ///
    /// The capacity parameter controls how many items can be buffered at once.  Be careful
    /// with the capacity parameter as it can lead to deadlock if the two streams are not
    /// polled evenly.
    ///
    /// If the capacity is unbounded then the stream could potentially buffer the entire
    /// input stream in memory.
    fn share(
        self,
        capacity: Capacity,
    ) -> (SharedStream<'a, Self::Item>, SharedStream<'a, Self::Item>);
}

impl<'a, T: Clone> SharedStreamExt<'a> for BoxStream<'a, T> {
    fn share(self, capacity: Capacity) -> (SharedStream<'a, T>, SharedStream<'a, T>) {
        SharedStream::new(self, capacity)
    }
}

#[cfg(test)]
mod tests {

    use futures::{FutureExt, StreamExt};
    use tokio_stream::wrappers::ReceiverStream;

    use crate::utils::futures::{Capacity, SharedStreamExt};

    fn is_pending(fut: &mut (impl std::future::Future + Unpin)) -> bool {
        let noop_waker = futures::task::noop_waker();
        let mut context = std::task::Context::from_waker(&noop_waker);
        fut.poll_unpin(&mut context).is_pending()
    }

    #[tokio::test]
    async fn test_shared_stream() {
        let (tx, rx) = tokio::sync::mpsc::channel::<u32>(10);
        let inner_stream = ReceiverStream::new(rx);

        // Feed in a few items
        for i in 0..3 {
            tx.send(i).await.unwrap();
        }

        let (mut left, mut right) = inner_stream.boxed().share(Capacity::Bounded(2));

        // We should be able to immediately poll 2 items
        assert_eq!(left.next().await.unwrap(), 0);
        assert_eq!(left.next().await.unwrap(), 1);

        // Polling again should block because the right side has fallen behind
        let mut left_fut = left.next();

        assert!(is_pending(&mut left_fut));

        // Polling the right side should yield the first cached item and unblock the left
        assert_eq!(right.next().await.unwrap(), 0);
        assert_eq!(left_fut.await.unwrap(), 2);

        // Drain the rest of the stream from the right
        assert_eq!(right.next().await.unwrap(), 1);
        assert_eq!(right.next().await.unwrap(), 2);

        // The channel isn't closed yet so we should get pending on both sides
        let mut right_fut = right.next();
        let mut left_fut = left.next();
        assert!(is_pending(&mut right_fut));
        assert!(is_pending(&mut left_fut));

        // Send one more item
        tx.send(3).await.unwrap();

        // Should be received by both
        assert_eq!(right_fut.await.unwrap(), 3);
        assert_eq!(left_fut.await.unwrap(), 3);

        drop(tx);

        // Now we should be able to poll the end from either side
        assert_eq!(left.next().await, None);
        assert_eq!(right.next().await, None);

        // We should be self-fused
        assert_eq!(left.next().await, None);
        assert_eq!(right.next().await, None);
    }

    #[tokio::test]
    async fn test_unbounded_shared_stream() {
        let (tx, rx) = tokio::sync::mpsc::channel::<u32>(10);
        let inner_stream = ReceiverStream::new(rx);

        // Feed in a few items
        for i in 0..10 {
            tx.send(i).await.unwrap();
        }
        drop(tx);

        let (mut left, mut right) = inner_stream.boxed().share(Capacity::Unbounded);

        // We should be able to completely drain one side
        for i in 0..10 {
            assert_eq!(left.next().await.unwrap(), i);
        }
        assert_eq!(left.next().await, None);

        // And still drain the other side from the buffer
        for i in 0..10 {
            assert_eq!(right.next().await.unwrap(), i);
        }
        assert_eq!(right.next().await, None);
    }

    #[tokio::test(flavor = "multi_thread")]
    async fn stress_shared_stream() {
        for _ in 0..100 {
            let (tx, rx) = tokio::sync::mpsc::channel::<u32>(10);
            let inner_stream = ReceiverStream::new(rx);
            let (mut left, mut right) = inner_stream.boxed().share(Capacity::Bounded(2));

            let left_handle = tokio::spawn(async move {
                let mut counter = 0;
                while let Some(item) = left.next().await {
                    assert_eq!(item, counter);
                    counter += 1;
                }
            });

            let right_handle = tokio::spawn(async move {
                let mut counter = 0;
                while let Some(item) = right.next().await {
                    assert_eq!(item, counter);
                    counter += 1;
                }
            });

            for i in 0..1000 {
                tx.send(i).await.unwrap();
            }
            drop(tx);
            left_handle.await.unwrap();
            right_handle.await.unwrap();
        }
    }
}