use std::borrow::Cow;
use std::collections::{BTreeSet, VecDeque};
use std::sync::Arc;
use crate::expr::safe_coerce_scalar;
use crate::logical_expr::{coerce_filter_type_to_boolean, get_as_string_scalar_opt, resolve_expr};
use crate::sql::{parse_sql_expr, parse_sql_filter};
use arrow::compute::CastOptions;
use arrow_array::ListArray;
use arrow_buffer::OffsetBuffer;
use arrow_schema::{DataType as ArrowDataType, Field, SchemaRef, TimeUnit};
use arrow_select::concat::concat;
use datafusion::common::tree_node::{TreeNode, TreeNodeRecursion, TreeNodeVisitor};
use datafusion::common::DFSchema;
use datafusion::config::ConfigOptions;
use datafusion::error::Result as DFResult;
use datafusion::execution::config::SessionConfig;
use datafusion::execution::context::SessionState;
use datafusion::execution::runtime_env::{RuntimeConfig, RuntimeEnv};
use datafusion::execution::session_state::SessionStateBuilder;
use datafusion::logical_expr::expr::ScalarFunction;
use datafusion::logical_expr::planner::{ExprPlanner, PlannerResult, RawFieldAccessExpr};
use datafusion::logical_expr::{
AggregateUDF, ColumnarValue, GetFieldAccess, ScalarUDF, ScalarUDFImpl, Signature, Volatility,
WindowUDF,
};
use datafusion::optimizer::simplify_expressions::SimplifyContext;
use datafusion::sql::planner::{ContextProvider, ParserOptions, PlannerContext, SqlToRel};
use datafusion::sql::sqlparser::ast::{
Array as SQLArray, BinaryOperator, DataType as SQLDataType, ExactNumberInfo, Expr as SQLExpr,
Function, FunctionArg, FunctionArgExpr, FunctionArguments, Ident, Subscript, TimezoneInfo,
UnaryOperator, Value,
};
use datafusion::{
common::Column,
logical_expr::{col, BinaryExpr, Like, Operator},
physical_expr::execution_props::ExecutionProps,
physical_plan::PhysicalExpr,
prelude::Expr,
scalar::ScalarValue,
};
use datafusion_functions::core::getfield::GetFieldFunc;
use lance_arrow::cast::cast_with_options;
use lance_core::datatypes::Schema;
use snafu::{location, Location};
use lance_core::{Error, Result};
#[derive(Debug, Clone)]
struct CastListF16Udf {
signature: Signature,
}
impl CastListF16Udf {
pub fn new() -> Self {
Self {
signature: Signature::any(1, Volatility::Immutable),
}
}
}
impl ScalarUDFImpl for CastListF16Udf {
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn name(&self) -> &str {
"_cast_list_f16"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, arg_types: &[ArrowDataType]) -> DFResult<ArrowDataType> {
let input = &arg_types[0];
match input {
ArrowDataType::FixedSizeList(field, size) => {
if field.data_type() != &ArrowDataType::Float32
&& field.data_type() != &ArrowDataType::Float16
{
return Err(datafusion::error::DataFusionError::Execution(
"cast_list_f16 only supports list of float32 or float16".to_string(),
));
}
Ok(ArrowDataType::FixedSizeList(
Arc::new(Field::new(
field.name(),
ArrowDataType::Float16,
field.is_nullable(),
)),
*size,
))
}
ArrowDataType::List(field) => {
if field.data_type() != &ArrowDataType::Float32
&& field.data_type() != &ArrowDataType::Float16
{
return Err(datafusion::error::DataFusionError::Execution(
"cast_list_f16 only supports list of float32 or float16".to_string(),
));
}
Ok(ArrowDataType::List(Arc::new(Field::new(
field.name(),
ArrowDataType::Float16,
field.is_nullable(),
))))
}
_ => Err(datafusion::error::DataFusionError::Execution(
"cast_list_f16 only supports FixedSizeList/List arguments".to_string(),
)),
}
}
fn invoke(&self, args: &[ColumnarValue]) -> DFResult<ColumnarValue> {
let ColumnarValue::Array(arr) = &args[0] else {
return Err(datafusion::error::DataFusionError::Execution(
"cast_list_f16 only supports array arguments".to_string(),
));
};
let to_type = match arr.data_type() {
ArrowDataType::FixedSizeList(field, size) => ArrowDataType::FixedSizeList(
Arc::new(Field::new(
field.name(),
ArrowDataType::Float16,
field.is_nullable(),
)),
*size,
),
ArrowDataType::List(field) => ArrowDataType::List(Arc::new(Field::new(
field.name(),
ArrowDataType::Float16,
field.is_nullable(),
))),
_ => {
return Err(datafusion::error::DataFusionError::Execution(
"cast_list_f16 only supports array arguments".to_string(),
));
}
};
let res = cast_with_options(arr.as_ref(), &to_type, &CastOptions::default())?;
Ok(ColumnarValue::Array(res))
}
}
struct LanceContextProvider {
options: datafusion::config::ConfigOptions,
state: SessionState,
expr_planners: Vec<Arc<dyn ExprPlanner>>,
}
impl Default for LanceContextProvider {
fn default() -> Self {
let config = SessionConfig::new();
let runtime_config = RuntimeConfig::new();
let runtime = Arc::new(RuntimeEnv::new(runtime_config).unwrap());
let mut state_builder = SessionStateBuilder::new()
.with_config(config)
.with_runtime_env(runtime)
.with_default_features();
let expr_planners = state_builder.expr_planners().as_ref().unwrap().clone();
Self {
options: ConfigOptions::default(),
state: state_builder.build(),
expr_planners,
}
}
}
impl ContextProvider for LanceContextProvider {
fn get_table_source(
&self,
name: datafusion::sql::TableReference,
) -> DFResult<Arc<dyn datafusion::logical_expr::TableSource>> {
Err(datafusion::error::DataFusionError::NotImplemented(format!(
"Attempt to reference inner table {} not supported",
name
)))
}
fn get_aggregate_meta(&self, name: &str) -> Option<Arc<AggregateUDF>> {
self.state.aggregate_functions().get(name).cloned()
}
fn get_window_meta(&self, name: &str) -> Option<Arc<WindowUDF>> {
self.state.window_functions().get(name).cloned()
}
fn get_function_meta(&self, f: &str) -> Option<Arc<ScalarUDF>> {
match f {
"_cast_list_f16" => Some(Arc::new(ScalarUDF::new_from_impl(CastListF16Udf::new()))),
_ => self.state.scalar_functions().get(f).cloned(),
}
}
fn get_variable_type(&self, _: &[String]) -> Option<ArrowDataType> {
None
}
fn options(&self) -> &datafusion::config::ConfigOptions {
&self.options
}
fn udf_names(&self) -> Vec<String> {
self.state.scalar_functions().keys().cloned().collect()
}
fn udaf_names(&self) -> Vec<String> {
self.state.aggregate_functions().keys().cloned().collect()
}
fn udwf_names(&self) -> Vec<String> {
self.state.window_functions().keys().cloned().collect()
}
fn get_expr_planners(&self) -> &[Arc<dyn ExprPlanner>] {
&self.expr_planners
}
}
pub struct Planner {
schema: SchemaRef,
context_provider: LanceContextProvider,
}
impl Planner {
pub fn new(schema: SchemaRef) -> Self {
Self {
schema,
context_provider: LanceContextProvider::default(),
}
}
fn column(idents: &[Ident]) -> Expr {
let mut column = col(&idents[0].value);
for ident in &idents[1..] {
column = Expr::ScalarFunction(ScalarFunction {
args: vec![
column,
Expr::Literal(ScalarValue::Utf8(Some(ident.value.clone()))),
],
func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
});
}
column
}
fn binary_op(&self, op: &BinaryOperator) -> Result<Operator> {
Ok(match op {
BinaryOperator::Plus => Operator::Plus,
BinaryOperator::Minus => Operator::Minus,
BinaryOperator::Multiply => Operator::Multiply,
BinaryOperator::Divide => Operator::Divide,
BinaryOperator::Modulo => Operator::Modulo,
BinaryOperator::StringConcat => Operator::StringConcat,
BinaryOperator::Gt => Operator::Gt,
BinaryOperator::Lt => Operator::Lt,
BinaryOperator::GtEq => Operator::GtEq,
BinaryOperator::LtEq => Operator::LtEq,
BinaryOperator::Eq => Operator::Eq,
BinaryOperator::NotEq => Operator::NotEq,
BinaryOperator::And => Operator::And,
BinaryOperator::Or => Operator::Or,
_ => {
return Err(Error::invalid_input(
format!("Operator {op} is not supported"),
location!(),
));
}
})
}
fn binary_expr(&self, left: &SQLExpr, op: &BinaryOperator, right: &SQLExpr) -> Result<Expr> {
Ok(Expr::BinaryExpr(BinaryExpr::new(
Box::new(self.parse_sql_expr(left)?),
self.binary_op(op)?,
Box::new(self.parse_sql_expr(right)?),
)))
}
fn unary_expr(&self, op: &UnaryOperator, expr: &SQLExpr) -> Result<Expr> {
Ok(match op {
UnaryOperator::Not | UnaryOperator::PGBitwiseNot => {
Expr::Not(Box::new(self.parse_sql_expr(expr)?))
}
UnaryOperator::Minus => {
use datafusion::logical_expr::lit;
match expr {
SQLExpr::Value(Value::Number(n, _)) => match n.parse::<i64>() {
Ok(n) => lit(-n),
Err(_) => lit(-n
.parse::<f64>()
.map_err(|_e| {
Error::invalid_input(
format!("negative operator can be only applied to integer and float operands, got: {n}"),
location!(),
)
})?),
},
_ => {
Expr::Negative(Box::new(self.parse_sql_expr(expr)?))
}
}
}
_ => {
return Err(Error::invalid_input(
format!("Unary operator '{:?}' is not supported", op),
location!(),
));
}
})
}
fn number(&self, value: &str, negative: bool) -> Result<Expr> {
use datafusion::logical_expr::lit;
let value: Cow<str> = if negative {
Cow::Owned(format!("-{}", value))
} else {
Cow::Borrowed(value)
};
if let Ok(n) = value.parse::<i64>() {
Ok(lit(n))
} else {
value.parse::<f64>().map(lit).map_err(|_| {
Error::invalid_input(
format!("'{value}' is not supported number value."),
location!(),
)
})
}
}
fn value(&self, value: &Value) -> Result<Expr> {
Ok(match value {
Value::Number(v, _) => self.number(v.as_str(), false)?,
Value::SingleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone()))),
Value::HexStringLiteral(hsl) => {
Expr::Literal(ScalarValue::Binary(Self::try_decode_hex_literal(hsl)))
}
Value::DoubleQuotedString(s) => Expr::Literal(ScalarValue::Utf8(Some(s.clone()))),
Value::Boolean(v) => Expr::Literal(ScalarValue::Boolean(Some(*v))),
Value::Null => Expr::Literal(ScalarValue::Null),
_ => todo!(),
})
}
fn parse_function_args(&self, func_args: &FunctionArg) -> Result<Expr> {
match func_args {
FunctionArg::Unnamed(FunctionArgExpr::Expr(expr)) => self.parse_sql_expr(expr),
_ => Err(Error::invalid_input(
format!("Unsupported function args: {:?}", func_args),
location!(),
)),
}
}
fn legacy_parse_function(&self, func: &Function) -> Result<Expr> {
match &func.args {
FunctionArguments::List(args) => {
if func.name.0.len() != 1 {
return Err(Error::invalid_input(
format!("Function name must have 1 part, got: {:?}", func.name.0),
location!(),
));
}
Ok(Expr::IsNotNull(Box::new(
self.parse_function_args(&args.args[0])?,
)))
}
_ => Err(Error::invalid_input(
format!("Unsupported function args: {:?}", &func.args),
location!(),
)),
}
}
fn parse_function(&self, function: SQLExpr) -> Result<Expr> {
if let SQLExpr::Function(function) = &function {
if !function.name.0.is_empty() && function.name.0[0].value == "is_valid" {
return self.legacy_parse_function(function);
}
}
let sql_to_rel = SqlToRel::new_with_options(
&self.context_provider,
ParserOptions {
parse_float_as_decimal: false,
enable_ident_normalization: false,
support_varchar_with_length: false,
enable_options_value_normalization: false,
},
);
let mut planner_context = PlannerContext::default();
let schema = DFSchema::try_from(self.schema.as_ref().clone())?;
Ok(sql_to_rel.sql_to_expr(function, &schema, &mut planner_context)?)
}
fn parse_type(&self, data_type: &SQLDataType) -> Result<ArrowDataType> {
const SUPPORTED_TYPES: [&str; 13] = [
"int [unsigned]",
"tinyint [unsigned]",
"smallint [unsigned]",
"bigint [unsigned]",
"float",
"double",
"string",
"binary",
"date",
"timestamp(precision)",
"datetime(precision)",
"decimal(precision,scale)",
"boolean",
];
match data_type {
SQLDataType::String(_) => Ok(ArrowDataType::Utf8),
SQLDataType::Binary(_) => Ok(ArrowDataType::Binary),
SQLDataType::Float(_) => Ok(ArrowDataType::Float32),
SQLDataType::Double => Ok(ArrowDataType::Float64),
SQLDataType::Boolean => Ok(ArrowDataType::Boolean),
SQLDataType::TinyInt(_) => Ok(ArrowDataType::Int8),
SQLDataType::SmallInt(_) => Ok(ArrowDataType::Int16),
SQLDataType::Int(_) | SQLDataType::Integer(_) => Ok(ArrowDataType::Int32),
SQLDataType::BigInt(_) => Ok(ArrowDataType::Int64),
SQLDataType::UnsignedTinyInt(_) => Ok(ArrowDataType::UInt8),
SQLDataType::UnsignedSmallInt(_) => Ok(ArrowDataType::UInt16),
SQLDataType::UnsignedInt(_) | SQLDataType::UnsignedInteger(_) => {
Ok(ArrowDataType::UInt32)
}
SQLDataType::UnsignedBigInt(_) => Ok(ArrowDataType::UInt64),
SQLDataType::Date => Ok(ArrowDataType::Date32),
SQLDataType::Timestamp(resolution, tz) => {
match tz {
TimezoneInfo::None => {}
_ => {
return Err(Error::invalid_input(
"Timezone not supported in timestamp".to_string(),
location!(),
));
}
};
let time_unit = match resolution {
None => TimeUnit::Microsecond,
Some(0) => TimeUnit::Second,
Some(3) => TimeUnit::Millisecond,
Some(6) => TimeUnit::Microsecond,
Some(9) => TimeUnit::Nanosecond,
_ => {
return Err(Error::invalid_input(
format!("Unsupported datetime resolution: {:?}", resolution),
location!(),
));
}
};
Ok(ArrowDataType::Timestamp(time_unit, None))
}
SQLDataType::Datetime(resolution) => {
let time_unit = match resolution {
None => TimeUnit::Microsecond,
Some(0) => TimeUnit::Second,
Some(3) => TimeUnit::Millisecond,
Some(6) => TimeUnit::Microsecond,
Some(9) => TimeUnit::Nanosecond,
_ => {
return Err(Error::invalid_input(
format!("Unsupported datetime resolution: {:?}", resolution),
location!(),
));
}
};
Ok(ArrowDataType::Timestamp(time_unit, None))
}
SQLDataType::Decimal(number_info) => match number_info {
ExactNumberInfo::PrecisionAndScale(precision, scale) => {
Ok(ArrowDataType::Decimal128(*precision as u8, *scale as i8))
}
_ => Err(Error::invalid_input(
format!(
"Must provide precision and scale for decimal: {:?}",
number_info
),
location!(),
)),
},
_ => Err(Error::invalid_input(
format!(
"Unsupported data type: {:?}. Supported types: {:?}",
data_type, SUPPORTED_TYPES
),
location!(),
)),
}
}
fn plan_field_access(&self, mut field_access_expr: RawFieldAccessExpr) -> Result<Expr> {
let df_schema = DFSchema::try_from(self.schema.as_ref().clone())?;
for planner in self.context_provider.get_expr_planners() {
match planner.plan_field_access(field_access_expr, &df_schema)? {
PlannerResult::Planned(expr) => return Ok(expr),
PlannerResult::Original(expr) => {
field_access_expr = expr;
}
}
}
Err(Error::invalid_input(
"Field access could not be planned",
location!(),
))
}
fn parse_sql_expr(&self, expr: &SQLExpr) -> Result<Expr> {
match expr {
SQLExpr::Identifier(id) => {
if id.quote_style == Some('"') {
Ok(Expr::Literal(ScalarValue::Utf8(Some(id.value.clone()))))
} else if id.quote_style == Some('`') {
Ok(Expr::Column(Column::from_name(id.value.clone())))
} else {
Ok(Self::column(vec![id.clone()].as_slice()))
}
}
SQLExpr::CompoundIdentifier(ids) => Ok(Self::column(ids.as_slice())),
SQLExpr::BinaryOp { left, op, right } => self.binary_expr(left, op, right),
SQLExpr::UnaryOp { op, expr } => self.unary_expr(op, expr),
SQLExpr::Value(value) => self.value(value),
SQLExpr::Array(SQLArray { elem, .. }) => {
let mut values = vec![];
let array_literal_error = |pos: usize, value: &_| {
Err(Error::invalid_input(
format!(
"Expected a literal value in array, instead got {} at position {}",
value, pos
),
location!(),
))
};
for (pos, expr) in elem.iter().enumerate() {
match expr {
SQLExpr::Value(value) => {
if let Expr::Literal(value) = self.value(value)? {
values.push(value);
} else {
return array_literal_error(pos, expr);
}
}
SQLExpr::UnaryOp {
op: UnaryOperator::Minus,
expr,
} => {
if let SQLExpr::Value(Value::Number(number, _)) = expr.as_ref() {
if let Expr::Literal(value) = self.number(number, true)? {
values.push(value);
} else {
return array_literal_error(pos, expr);
}
} else {
return array_literal_error(pos, expr);
}
}
_ => {
return array_literal_error(pos, expr);
}
}
}
let field = if !values.is_empty() {
let data_type = values[0].data_type();
for value in &mut values {
if value.data_type() != data_type {
*value = safe_coerce_scalar(value, &data_type).ok_or_else(|| Error::invalid_input(
format!("Array expressions must have a consistent datatype. Expected: {}, got: {}", data_type, value.data_type()),
location!()
))?;
}
}
Field::new("item", data_type, true)
} else {
Field::new("item", ArrowDataType::Null, true)
};
let values = values
.into_iter()
.map(|v| v.to_array().map_err(Error::from))
.collect::<Result<Vec<_>>>()?;
let array_refs = values.iter().map(|v| v.as_ref()).collect::<Vec<_>>();
let values = concat(&array_refs)?;
let values = ListArray::try_new(
field.into(),
OffsetBuffer::from_lengths([values.len()]),
values,
None,
)?;
Ok(Expr::Literal(ScalarValue::List(Arc::new(values))))
}
SQLExpr::TypedString { data_type, value } => {
Ok(Expr::Cast(datafusion::logical_expr::Cast {
expr: Box::new(Expr::Literal(ScalarValue::Utf8(Some(value.clone())))),
data_type: self.parse_type(data_type)?,
}))
}
SQLExpr::IsFalse(expr) => Ok(Expr::IsFalse(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::IsNotFalse(_) => Ok(Expr::IsNotFalse(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::IsTrue(expr) => Ok(Expr::IsTrue(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::IsNotTrue(expr) => Ok(Expr::IsNotTrue(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::IsNull(expr) => Ok(Expr::IsNull(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::IsNotNull(expr) => Ok(Expr::IsNotNull(Box::new(self.parse_sql_expr(expr)?))),
SQLExpr::InList {
expr,
list,
negated,
} => {
let value_expr = self.parse_sql_expr(expr)?;
let list_exprs = list
.iter()
.map(|e| self.parse_sql_expr(e))
.collect::<Result<Vec<_>>>()?;
Ok(value_expr.in_list(list_exprs, *negated))
}
SQLExpr::Nested(inner) => self.parse_sql_expr(inner.as_ref()),
SQLExpr::Function(_) => self.parse_function(expr.clone()),
SQLExpr::ILike {
negated,
expr,
pattern,
escape_char,
} => Ok(Expr::Like(Like::new(
*negated,
Box::new(self.parse_sql_expr(expr)?),
Box::new(self.parse_sql_expr(pattern)?),
escape_char.as_ref().and_then(|c| c.chars().next()),
true,
))),
SQLExpr::Like {
negated,
expr,
pattern,
escape_char,
} => Ok(Expr::Like(Like::new(
*negated,
Box::new(self.parse_sql_expr(expr)?),
Box::new(self.parse_sql_expr(pattern)?),
escape_char.as_ref().and_then(|c| c.chars().next()),
false,
))),
SQLExpr::Cast {
expr, data_type, ..
} => Ok(Expr::Cast(datafusion::logical_expr::Cast {
expr: Box::new(self.parse_sql_expr(expr)?),
data_type: self.parse_type(data_type)?,
})),
SQLExpr::MapAccess { column, keys } => {
let mut expr = self.parse_sql_expr(column)?;
for key in keys {
let field_access = match &key.key {
SQLExpr::Value(
Value::SingleQuotedString(s) | Value::DoubleQuotedString(s),
) => GetFieldAccess::NamedStructField {
name: ScalarValue::from(s.as_str()),
},
SQLExpr::JsonAccess { .. } => {
return Err(Error::invalid_input(
"JSON access is not supported",
location!(),
));
}
key => {
let key = Box::new(self.parse_sql_expr(key)?);
GetFieldAccess::ListIndex { key }
}
};
let field_access_expr = RawFieldAccessExpr { expr, field_access };
expr = self.plan_field_access(field_access_expr)?;
}
Ok(expr)
}
SQLExpr::Subscript { expr, subscript } => {
let expr = self.parse_sql_expr(expr)?;
let field_access = match subscript.as_ref() {
Subscript::Index { index } => match index {
SQLExpr::Value(
Value::SingleQuotedString(s) | Value::DoubleQuotedString(s),
) => GetFieldAccess::NamedStructField {
name: ScalarValue::from(s.as_str()),
},
SQLExpr::JsonAccess { .. } => {
return Err(Error::invalid_input(
"JSON access is not supported",
location!(),
));
}
_ => {
let key = Box::new(self.parse_sql_expr(index)?);
GetFieldAccess::ListIndex { key }
}
},
Subscript::Slice { .. } => {
return Err(Error::invalid_input(
"Slice subscript is not supported",
location!(),
));
}
};
let field_access_expr = RawFieldAccessExpr { expr, field_access };
self.plan_field_access(field_access_expr)
}
_ => Err(Error::invalid_input(
format!("Expression '{expr}' is not supported SQL in lance"),
location!(),
)),
}
}
pub fn parse_filter(&self, filter: &str) -> Result<Expr> {
let ast_expr = parse_sql_filter(filter)?;
let expr = self.parse_sql_expr(&ast_expr)?;
let schema = Schema::try_from(self.schema.as_ref())?;
let resolved = resolve_expr(&expr, &schema)?;
coerce_filter_type_to_boolean(resolved)
}
pub fn parse_expr(&self, expr: &str) -> Result<Expr> {
let ast_expr = parse_sql_expr(expr)?;
let expr = self.parse_sql_expr(&ast_expr)?;
let schema = Schema::try_from(self.schema.as_ref())?;
let resolved = resolve_expr(&expr, &schema)?;
Ok(resolved)
}
fn try_decode_hex_literal(s: &str) -> Option<Vec<u8>> {
let hex_bytes = s.as_bytes();
let mut decoded_bytes = Vec::with_capacity((hex_bytes.len() + 1) / 2);
let start_idx = hex_bytes.len() % 2;
if start_idx > 0 {
decoded_bytes.push(Self::try_decode_hex_char(hex_bytes[0])?);
}
for i in (start_idx..hex_bytes.len()).step_by(2) {
let high = Self::try_decode_hex_char(hex_bytes[i])?;
let low = Self::try_decode_hex_char(hex_bytes[i + 1])?;
decoded_bytes.push(high << 4 | low);
}
Some(decoded_bytes)
}
const fn try_decode_hex_char(c: u8) -> Option<u8> {
match c {
b'A'..=b'F' => Some(c - b'A' + 10),
b'a'..=b'f' => Some(c - b'a' + 10),
b'0'..=b'9' => Some(c - b'0'),
_ => None,
}
}
pub fn optimize_expr(&self, expr: Expr) -> Result<Expr> {
let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
let props = ExecutionProps::default();
let simplify_context = SimplifyContext::new(&props).with_schema(df_schema.clone());
let simplifier =
datafusion::optimizer::simplify_expressions::ExprSimplifier::new(simplify_context);
let expr = simplifier.simplify(expr)?;
let expr = simplifier.coerce(expr, &df_schema)?;
Ok(expr)
}
pub fn create_physical_expr(&self, expr: &Expr) -> Result<Arc<dyn PhysicalExpr>> {
let df_schema = Arc::new(DFSchema::try_from(self.schema.as_ref().clone())?);
Ok(datafusion::physical_expr::create_physical_expr(
expr,
df_schema.as_ref(),
&Default::default(),
)?)
}
pub fn column_names_in_expr(expr: &Expr) -> Vec<String> {
let mut visitor = ColumnCapturingVisitor {
current_path: VecDeque::new(),
columns: BTreeSet::new(),
};
expr.visit(&mut visitor).unwrap();
visitor.columns.into_iter().collect()
}
}
struct ColumnCapturingVisitor {
current_path: VecDeque<String>,
columns: BTreeSet<String>,
}
impl TreeNodeVisitor<'_> for ColumnCapturingVisitor {
type Node = Expr;
fn f_down(&mut self, node: &Self::Node) -> DFResult<TreeNodeRecursion> {
match node {
Expr::Column(Column { name, .. }) => {
let mut path = name.clone();
for part in self.current_path.drain(..) {
path.push('.');
path.push_str(&part);
}
self.columns.insert(path);
self.current_path.clear();
}
Expr::ScalarFunction(udf) => {
if udf.name() == GetFieldFunc::default().name() {
if let Some(name) = get_as_string_scalar_opt(&udf.args[1]) {
self.current_path.push_front(name.to_string())
} else {
self.current_path.clear();
}
} else {
self.current_path.clear();
}
}
_ => {
self.current_path.clear();
}
}
Ok(TreeNodeRecursion::Continue)
}
}
#[cfg(test)]
mod tests {
use crate::logical_expr::ExprExt;
use super::*;
use arrow::datatypes::Float64Type;
use arrow_array::{
ArrayRef, BooleanArray, Float32Array, Int32Array, Int64Array, RecordBatch, StringArray,
StructArray, TimestampMicrosecondArray, TimestampMillisecondArray,
TimestampNanosecondArray, TimestampSecondArray,
};
use arrow_schema::{DataType, Fields, Schema};
use datafusion::{
logical_expr::{lit, Cast},
prelude::{array_element, get_field},
};
use datafusion_functions::core::expr_ext::FieldAccessor;
#[test]
fn test_parse_filter_simple() {
let schema = Arc::new(Schema::new(vec![
Field::new("i", DataType::Int32, false),
Field::new("s", DataType::Utf8, true),
Field::new(
"st",
DataType::Struct(Fields::from(vec![
Field::new("x", DataType::Float32, false),
Field::new("y", DataType::Float32, false),
])),
true,
),
]));
let planner = Planner::new(schema.clone());
let expected = col("i")
.gt(lit(3_i32))
.and(col("st").field_newstyle("x").lt_eq(lit(5.0_f32)))
.and(
col("s")
.eq(lit("str-4"))
.or(col("s").in_list(vec![lit("str-4"), lit("str-5")], false)),
);
let expr = planner
.parse_filter("i > 3 AND st.x <= 5.0 AND (s == 'str-4' OR s in ('str-4', 'str-5'))")
.unwrap();
assert_eq!(expr, expected);
let expr = planner
.parse_filter("i > 3 AND st.x <= 5.0 AND (s = 'str-4' OR s in ('str-4', 'str-5'))")
.unwrap();
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![
Arc::new(Int32Array::from_iter_values(0..10)) as ArrayRef,
Arc::new(StringArray::from_iter_values(
(0..10).map(|v| format!("str-{}", v)),
)),
Arc::new(StructArray::from(vec![
(
Arc::new(Field::new("x", DataType::Float32, false)),
Arc::new(Float32Array::from_iter_values((0..10).map(|v| v as f32)))
as ArrayRef,
),
(
Arc::new(Field::new("y", DataType::Float32, false)),
Arc::new(Float32Array::from_iter_values(
(0..10).map(|v| (v * 10) as f32),
)),
),
])),
],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, false, false, false, true, true, false, false, false, false
])
);
}
#[test]
fn test_nested_col_refs() {
let schema = Arc::new(Schema::new(vec![
Field::new("s0", DataType::Utf8, true),
Field::new(
"st",
DataType::Struct(Fields::from(vec![
Field::new("s1", DataType::Utf8, true),
Field::new(
"st",
DataType::Struct(Fields::from(vec![Field::new(
"s2",
DataType::Utf8,
true,
)])),
true,
),
])),
true,
),
]));
let planner = Planner::new(schema);
fn assert_column_eq(planner: &Planner, expr: &str, expected: &Expr) {
let expr = planner.parse_filter(&format!("{expr} = 'val'")).unwrap();
assert!(matches!(
expr,
Expr::BinaryExpr(BinaryExpr {
left: _,
op: Operator::Eq,
right: _
})
));
if let Expr::BinaryExpr(BinaryExpr { left, .. }) = expr {
assert_eq!(left.as_ref(), expected);
}
}
let expected = Expr::Column(Column {
relation: None,
name: "s0".to_string(),
});
assert_column_eq(&planner, "s0", &expected);
assert_column_eq(&planner, "`s0`", &expected);
let expected = Expr::ScalarFunction(ScalarFunction {
func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
args: vec![
Expr::Column(Column {
relation: None,
name: "st".to_string(),
}),
Expr::Literal(ScalarValue::Utf8(Some("s1".to_string()))),
],
});
assert_column_eq(&planner, "st.s1", &expected);
assert_column_eq(&planner, "`st`.`s1`", &expected);
assert_column_eq(&planner, "st.`s1`", &expected);
let expected = Expr::ScalarFunction(ScalarFunction {
func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
args: vec![
Expr::ScalarFunction(ScalarFunction {
func: Arc::new(ScalarUDF::new_from_impl(GetFieldFunc::default())),
args: vec![
Expr::Column(Column {
relation: None,
name: "st".to_string(),
}),
Expr::Literal(ScalarValue::Utf8(Some("st".to_string()))),
],
}),
Expr::Literal(ScalarValue::Utf8(Some("s2".to_string()))),
],
});
assert_column_eq(&planner, "st.st.s2", &expected);
assert_column_eq(&planner, "`st`.`st`.`s2`", &expected);
assert_column_eq(&planner, "st.st.`s2`", &expected);
assert_column_eq(&planner, "st['st'][\"s2\"]", &expected);
}
#[test]
fn test_nested_list_refs() {
let schema = Arc::new(Schema::new(vec![Field::new(
"l",
DataType::List(Arc::new(Field::new(
"item",
DataType::Struct(Fields::from(vec![Field::new("f1", DataType::Utf8, true)])),
true,
))),
true,
)]));
let planner = Planner::new(schema);
let expected = array_element(col("l"), lit(0_i64));
let expr = planner.parse_expr("l[0]").unwrap();
assert_eq!(expr, expected);
let expected = get_field(array_element(col("l"), lit(0_i64)), "f1");
let expr = planner.parse_expr("l[0]['f1']").unwrap();
assert_eq!(expr, expected);
}
#[test]
fn test_negative_expressions() {
let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
let planner = Planner::new(schema.clone());
let expected = col("x")
.gt(lit(-3_i64))
.and(col("x").lt(-(lit(-5_i64) + lit(3_i64))));
let expr = planner.parse_filter("x > -3 AND x < -(-5 + 3)").unwrap();
assert_eq!(expr, expected);
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(Int64Array::from_iter_values(-5..5)) as ArrayRef],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, false, false, true, true, true, true, false, false, false
])
);
}
#[test]
fn test_negative_array_expressions() {
let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int64, false)]));
let planner = Planner::new(schema);
let expected = Expr::Literal(ScalarValue::List(Arc::new(
ListArray::from_iter_primitive::<Float64Type, _, _>(vec![Some(
[-1_f64, -2.0, -3.0, -4.0, -5.0].map(Some),
)]),
)));
let expr = planner
.parse_expr("[-1.0, -2.0, -3.0, -4.0, -5.0]")
.unwrap();
assert_eq!(expr, expected);
}
#[test]
fn test_sql_like() {
let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
let planner = Planner::new(schema.clone());
let expected = col("s").like(lit("str-4"));
let expr = planner.parse_filter("s LIKE 'str-4'").unwrap();
assert_eq!(expr, expected);
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from_iter_values(
(0..10).map(|v| format!("str-{}", v)),
))],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, false, false, false, true, false, false, false, false, false
])
);
}
#[test]
fn test_not_like() {
let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
let planner = Planner::new(schema.clone());
let expected = col("s").not_like(lit("str-4"));
let expr = planner.parse_filter("s NOT LIKE 'str-4'").unwrap();
assert_eq!(expr, expected);
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from_iter_values(
(0..10).map(|v| format!("str-{}", v)),
))],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
true, true, true, true, false, true, true, true, true, true
])
);
}
#[test]
fn test_sql_is_in() {
let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
let planner = Planner::new(schema.clone());
let expected = col("s").in_list(vec![lit("str-4"), lit("str-5")], false);
let expr = planner.parse_filter("s IN ('str-4', 'str-5')").unwrap();
assert_eq!(expr, expected);
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from_iter_values(
(0..10).map(|v| format!("str-{}", v)),
))],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, false, false, false, true, true, false, false, false, false
])
);
}
#[test]
fn test_sql_is_null() {
let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Utf8, true)]));
let planner = Planner::new(schema.clone());
let expected = col("s").is_null();
let expr = planner.parse_filter("s IS NULL").unwrap();
assert_eq!(expr, expected);
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(StringArray::from_iter((0..10).map(|v| {
if v % 3 == 0 {
Some(format!("str-{}", v))
} else {
None
}
})))],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, true, true, false, true, true, false, true, true, false
])
);
let expr = planner.parse_filter("s IS NOT NULL").unwrap();
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
true, false, false, true, false, false, true, false, false, true,
])
);
}
#[test]
fn test_sql_invert() {
let schema = Arc::new(Schema::new(vec![Field::new("s", DataType::Boolean, true)]));
let planner = Planner::new(schema.clone());
let expr = planner.parse_filter("NOT s").unwrap();
let physical_expr = planner.create_physical_expr(&expr).unwrap();
let batch = RecordBatch::try_new(
schema,
vec![Arc::new(BooleanArray::from_iter(
(0..10).map(|v| Some(v % 3 == 0)),
))],
)
.unwrap();
let predicates = physical_expr.evaluate(&batch).unwrap();
assert_eq!(
predicates.into_array(0).unwrap().as_ref(),
&BooleanArray::from(vec![
false, true, true, false, true, true, false, true, true, false
])
);
}
#[test]
fn test_sql_cast() {
let cases = &[
(
"x = cast('2021-01-01 00:00:00' as timestamp)",
ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
),
(
"x = cast('2021-01-01 00:00:00' as timestamp(0))",
ArrowDataType::Timestamp(TimeUnit::Second, None),
),
(
"x = cast('2021-01-01 00:00:00.123' as timestamp(9))",
ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
),
(
"x = cast('2021-01-01 00:00:00.123' as datetime(9))",
ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
),
("x = cast('2021-01-01' as date)", ArrowDataType::Date32),
(
"x = cast('1.238' as decimal(9,3))",
ArrowDataType::Decimal128(9, 3),
),
("x = cast(1 as float)", ArrowDataType::Float32),
("x = cast(1 as double)", ArrowDataType::Float64),
("x = cast(1 as tinyint)", ArrowDataType::Int8),
("x = cast(1 as smallint)", ArrowDataType::Int16),
("x = cast(1 as int)", ArrowDataType::Int32),
("x = cast(1 as integer)", ArrowDataType::Int32),
("x = cast(1 as bigint)", ArrowDataType::Int64),
("x = cast(1 as tinyint unsigned)", ArrowDataType::UInt8),
("x = cast(1 as smallint unsigned)", ArrowDataType::UInt16),
("x = cast(1 as int unsigned)", ArrowDataType::UInt32),
("x = cast(1 as integer unsigned)", ArrowDataType::UInt32),
("x = cast(1 as bigint unsigned)", ArrowDataType::UInt64),
("x = cast(1 as boolean)", ArrowDataType::Boolean),
("x = cast(1 as string)", ArrowDataType::Utf8),
];
for (sql, expected_data_type) in cases {
let schema = Arc::new(Schema::new(vec![Field::new(
"x",
expected_data_type.clone(),
true,
)]));
let planner = Planner::new(schema.clone());
let expr = planner.parse_filter(sql).unwrap();
let expected_value_str = sql
.split("cast(")
.nth(1)
.unwrap()
.split(" as")
.next()
.unwrap();
let expected_value_str = expected_value_str.trim_matches('\'');
match expr {
Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
Expr::Cast(Cast { expr, data_type }) => {
match expr.as_ref() {
Expr::Literal(ScalarValue::Utf8(Some(value_str))) => {
assert_eq!(value_str, expected_value_str);
}
Expr::Literal(ScalarValue::Int64(Some(value))) => {
assert_eq!(*value, 1);
}
_ => panic!("Expected cast to be applied to literal"),
}
assert_eq!(data_type, expected_data_type);
}
_ => panic!("Expected right to be a cast"),
},
_ => panic!("Expected binary expression"),
}
}
}
#[test]
fn test_sql_literals() {
let cases = &[
(
"x = timestamp '2021-01-01 00:00:00'",
ArrowDataType::Timestamp(TimeUnit::Microsecond, None),
),
(
"x = timestamp(0) '2021-01-01 00:00:00'",
ArrowDataType::Timestamp(TimeUnit::Second, None),
),
(
"x = timestamp(9) '2021-01-01 00:00:00.123'",
ArrowDataType::Timestamp(TimeUnit::Nanosecond, None),
),
("x = date '2021-01-01'", ArrowDataType::Date32),
("x = decimal(9,3) '1.238'", ArrowDataType::Decimal128(9, 3)),
];
for (sql, expected_data_type) in cases {
let schema = Arc::new(Schema::new(vec![Field::new(
"x",
expected_data_type.clone(),
true,
)]));
let planner = Planner::new(schema.clone());
let expr = planner.parse_filter(sql).unwrap();
let expected_value_str = sql.split('\'').nth(1).unwrap();
match expr {
Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
Expr::Cast(Cast { expr, data_type }) => {
match expr.as_ref() {
Expr::Literal(ScalarValue::Utf8(Some(value_str))) => {
assert_eq!(value_str, expected_value_str);
}
_ => panic!("Expected cast to be applied to literal"),
}
assert_eq!(data_type, expected_data_type);
}
_ => panic!("Expected right to be a cast"),
},
_ => panic!("Expected binary expression"),
}
}
}
#[test]
fn test_sql_array_literals() {
let cases = [
(
"x = [1, 2, 3]",
ArrowDataType::List(Arc::new(Field::new("item", ArrowDataType::Int64, true))),
),
(
"x = [1, 2, 3]",
ArrowDataType::FixedSizeList(
Arc::new(Field::new("item", ArrowDataType::Int64, true)),
3,
),
),
];
for (sql, expected_data_type) in cases {
let schema = Arc::new(Schema::new(vec![Field::new(
"x",
expected_data_type.clone(),
true,
)]));
let planner = Planner::new(schema.clone());
let expr = planner.parse_filter(sql).unwrap();
let expr = planner.optimize_expr(expr).unwrap();
match expr {
Expr::BinaryExpr(BinaryExpr { right, .. }) => match right.as_ref() {
Expr::Literal(value) => {
assert_eq!(&value.data_type(), &expected_data_type);
}
_ => panic!("Expected right to be a literal"),
},
_ => panic!("Expected binary expression"),
}
}
}
#[test]
fn test_sql_comparison() {
let batch: Vec<(&str, ArrayRef)> = vec![
(
"timestamp_s",
Arc::new(TimestampSecondArray::from_iter_values(0..10)),
),
(
"timestamp_ms",
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
),
(
"timestamp_us",
Arc::new(TimestampMicrosecondArray::from_iter_values(0..10)),
),
(
"timestamp_ns",
Arc::new(TimestampNanosecondArray::from_iter_values(4995..5005)),
),
];
let batch = RecordBatch::try_from_iter(batch).unwrap();
let planner = Planner::new(batch.schema());
let expressions = &[
"timestamp_s >= TIMESTAMP '1970-01-01 00:00:05'",
"timestamp_ms >= TIMESTAMP '1970-01-01 00:00:00.005'",
"timestamp_us >= TIMESTAMP '1970-01-01 00:00:00.000005'",
"timestamp_ns >= TIMESTAMP '1970-01-01 00:00:00.000005'",
];
let expected: ArrayRef = Arc::new(BooleanArray::from_iter(
std::iter::repeat(Some(false))
.take(5)
.chain(std::iter::repeat(Some(true)).take(5)),
));
for expression in expressions {
let logical_expr = planner.parse_filter(expression).unwrap();
let logical_expr = planner.optimize_expr(logical_expr).unwrap();
let physical_expr = planner.create_physical_expr(&logical_expr).unwrap();
let result = physical_expr.evaluate(&batch).unwrap();
let result = result.into_array(batch.num_rows()).unwrap();
assert_eq!(&expected, &result, "unexpected result for {}", expression);
}
}
#[test]
fn test_columns_in_expr() {
let expr = col("s0").gt(lit("value")).and(
col("st")
.field("st")
.field("s2")
.eq(lit("value"))
.or(col("st")
.field("s1")
.in_list(vec![lit("value 1"), lit("value 2")], false)),
);
let columns = Planner::column_names_in_expr(&expr);
assert_eq!(columns, vec!["s0", "st.s1", "st.st.s2"]);
}
#[test]
fn test_parse_binary_expr() {
let bin_str = "x'616263'";
let schema = Arc::new(Schema::new(vec![Field::new(
"binary",
DataType::Binary,
true,
)]));
let planner = Planner::new(schema);
let expr = planner.parse_expr(bin_str).unwrap();
assert_eq!(
expr,
Expr::Literal(ScalarValue::Binary(Some(vec![b'a', b'b', b'c'])))
);
}
#[test]
fn test_lance_context_provider_expr_planners() {
let ctx_provider = LanceContextProvider::default();
assert!(!ctx_provider.get_expr_planners().is_empty());
}
}