lance_encoding/
encoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors
use std::{collections::HashMap, env, sync::Arc};

use arrow::array::AsArray;
use arrow::datatypes::UInt64Type;
use arrow_array::{Array, ArrayRef, RecordBatch, UInt8Array};
use arrow_schema::DataType;
use bytes::{Bytes, BytesMut};
use futures::future::BoxFuture;
use lance_core::datatypes::{
    Field, Schema, BLOB_DESC_FIELD, BLOB_META_KEY, COMPRESSION_LEVEL_META_KEY,
    COMPRESSION_META_KEY, PACKED_STRUCT_LEGACY_META_KEY, PACKED_STRUCT_META_KEY,
};
use lance_core::utils::bit::{is_pwr_two, pad_bytes_to};
use lance_core::{Error, Result};
use snafu::{location, Location};

use crate::buffer::LanceBuffer;
use crate::data::{DataBlock, FixedWidthDataBlock, VariableWidthBlock};
use crate::decoder::PageEncoding;
use crate::encodings::logical::blob::BlobFieldEncoder;
use crate::encodings::logical::primitive::PrimitiveStructuralEncoder;
use crate::encodings::logical::r#struct::StructFieldEncoder;
use crate::encodings::logical::r#struct::StructStructuralEncoder;
use crate::encodings::physical::binary::BinaryMiniBlockEncoder;
use crate::encodings::physical::bitpack_fastlanes::BitpackedForNonNegArrayEncoder;
use crate::encodings::physical::bitpack_fastlanes::{
    compute_compressed_bit_width_for_non_neg, BitpackMiniBlockEncoder,
};
use crate::encodings::physical::block_compress::{CompressionConfig, CompressionScheme};
use crate::encodings::physical::dictionary::AlreadyDictionaryEncoder;
use crate::encodings::physical::fixed_size_list::FslPerValueCompressor;
use crate::encodings::physical::fsst::{FsstArrayEncoder, FsstMiniBlockEncoder};
use crate::encodings::physical::packed_struct::PackedStructEncoder;
use crate::format::ProtobufUtils;
use crate::repdef::RepDefBuilder;
use crate::statistics::{GetStat, Stat};
use crate::version::LanceFileVersion;
use crate::{
    decoder::{ColumnInfo, PageInfo},
    encodings::{
        logical::{list::ListFieldEncoder, primitive::PrimitiveFieldEncoder},
        physical::{
            basic::BasicEncoder, binary::BinaryEncoder, dictionary::DictionaryEncoder,
            fixed_size_binary::FixedSizeBinaryEncoder, fixed_size_list::FslEncoder,
            value::ValueEncoder,
        },
    },
    format::pb,
};
use fsst::fsst::{FSST_LEAST_INPUT_MAX_LENGTH, FSST_LEAST_INPUT_SIZE};

use hyperloglogplus::{HyperLogLog, HyperLogLogPlus};
use std::collections::hash_map::RandomState;

/// The minimum alignment for a page buffer.  Writers must respect this.
pub const MIN_PAGE_BUFFER_ALIGNMENT: u64 = 8;

/// An encoded array
///
/// Maps to a single Arrow array
///
/// This contains the encoded data as well as a description of the encoding that was applied which
/// can be used to decode the data later.
#[derive(Debug)]
pub struct EncodedArray {
    /// The encoded buffers
    pub data: DataBlock,
    /// A description of the encoding used to encode the array
    pub encoding: pb::ArrayEncoding,
}

impl EncodedArray {
    pub fn new(data: DataBlock, encoding: pb::ArrayEncoding) -> Self {
        Self { data, encoding }
    }

    pub fn into_buffers(self) -> (Vec<LanceBuffer>, pb::ArrayEncoding) {
        let buffers = self.data.into_buffers();
        (buffers, self.encoding)
    }
}

/// An encoded page of data
///
/// Maps to a top-level array
///
/// For example, FixedSizeList<Int32> will have two EncodedArray instances and one EncodedPage
#[derive(Debug)]
pub struct EncodedPage {
    // The encoded page buffers
    pub data: Vec<LanceBuffer>,
    // A description of the encoding used to encode the page
    pub description: PageEncoding,
    /// The number of rows in the encoded page
    pub num_rows: u64,
    /// The top-level row number of the first row in the page
    ///
    /// Generally the number of "top-level" rows and the number of rows are the same.  However,
    /// when there is repetition (list/fixed-size-list) there will be more or less items than rows.
    ///
    /// A top-level row can never be split across a page boundary.
    pub row_number: u64,
    /// The index of the column
    pub column_idx: u32,
}

#[derive(Debug)]
pub struct EncodedBufferMeta {
    pub bits_per_value: u64,

    pub bitpacking: Option<BitpackingBufferMeta>,

    pub compression_scheme: Option<CompressionScheme>,
}

#[derive(Debug)]
pub struct BitpackingBufferMeta {
    pub bits_per_value: u64,

    pub signed: bool,
}

/// Encodes data from one format to another (hopefully more compact or useful) format
///
/// The array encoder must be Send + Sync.  Encoding is always done on its own
/// thread task in the background and there could potentially be multiple encode
/// tasks running for a column at once.
pub trait ArrayEncoder: std::fmt::Debug + Send + Sync {
    /// Encode data
    ///
    /// The result should contain a description of the encoding that was chosen.
    /// This can be used to decode the data later.
    fn encode(
        &self,
        data: DataBlock,
        data_type: &DataType,
        buffer_index: &mut u32,
    ) -> Result<EncodedArray>;
}

pub const MAX_MINIBLOCK_BYTES: u64 = 8 * 1024 - 6;
pub const MAX_MINIBLOCK_VALUES: u64 = 4096;

/// Page data that has been compressed into a series of chunks put into
/// a single buffer.
pub struct MiniBlockCompressed {
    /// The buffer of compressed data
    pub data: LanceBuffer,
    /// Describes the size of each chunk
    pub chunks: Vec<MiniBlockChunk>,
    /// The number of values in the entire page
    pub num_values: u64,
}

/// Describes the size of a mini-block chunk of data
///
/// Mini-block chunks are designed to be small (just a few disk sectors)
/// and contain a power-of-two number of values (except for the last chunk)
///
/// To enforce this we limit a chunk to 4Ki values and slightly less than
/// 8KiB of compressed data.  This means that even in the extreme case
/// where we have 4 bytes of rep/def then we will have at most 24KiB of
/// data (values, repetition, and definition) per mini-block.
#[derive(Debug)]
pub struct MiniBlockChunk {
    // The number of bytes that make up the chunk
    //
    // This value must be less than or equal to 8Ki - 6 (8188)
    pub num_bytes: u16,
    // The log (base 2) of the number of values in the chunk.  If this is the final chunk
    // then this should be 0 (the number of values will be calculated by subtracting the
    // size of all other chunks from the total size of the page)
    //
    // For example, 1 would mean there are 2 values in the chunk and 12 would mean there
    // are 4Ki values in the chunk.
    //
    // This must be <= 12 (i.e. <= 4096 values)
    pub log_num_values: u8,
}

impl MiniBlockChunk {
    /// Gets the number of values in this block
    ///
    /// This requires `vals_in_prev_blocks` and `total_num_values` because the
    /// last block in a page is a special case which stores 0 for log_num_values
    /// and, in that case, the number of values is determined by subtracting
    /// `vals_in_prev_blocks` from `total_num_values`
    pub fn num_values(&self, vals_in_prev_blocks: u64, total_num_values: u64) -> u64 {
        if self.log_num_values == 0 {
            total_num_values - vals_in_prev_blocks
        } else {
            1 << self.log_num_values
        }
    }
}

/// Trait for compression algorithms that are suitable for use in the miniblock structural encoding
///
/// These compression algorithms should be capable of encoding the data into small chunks
/// where each chunk (except the last) has 2^N values (N can vary between chunks)
pub trait MiniBlockCompressor: std::fmt::Debug + Send + Sync {
    /// Compress a `page` of data into multiple chunks
    ///
    /// See [`MiniBlockCompressed`] for details on how chunks should be sized.
    ///
    /// This method also returns a description of the encoding applied that will be
    /// used at decode time to read the data.
    fn compress(&self, page: DataBlock) -> Result<(MiniBlockCompressed, pb::ArrayEncoding)>;
}

/// Per-value compression must either:
///
/// A single buffer of fixed-width values
/// A single buffer of value data and a buffer of offsets
///
/// TODO: In the future we may allow metadata buffers
pub enum PerValueDataBlock {
    Fixed(FixedWidthDataBlock),
    Variable(VariableWidthBlock),
}

/// Trait for compression algorithms that are suitable for use in the zipped structural encoding
///
/// This compression must return either a FixedWidthDataBlock or a VariableWidthBlock.  This is because
/// we need to zip the data and those are the only two blocks we know how to zip today.
///
/// In addition, the compressed data must be able to be decompressed in a random-access fashion.
/// This means that the decompression algorithm must be able to decompress any value without
/// decompressing all values before it.
pub trait PerValueCompressor: std::fmt::Debug + Send + Sync {
    /// Compress the data into a single buffer
    ///
    /// Also returns a description of the compression that can be used to decompress when reading the data back
    fn compress(&self, data: DataBlock) -> Result<(PerValueDataBlock, pb::ArrayEncoding)>;
}

/// Trait for compression algorithms that are suitable for use in the zipped structural encoding
///
/// This encoding is useful for non-short strings, binary, and variable length lists
/// (i.e. when the average value is >= 128 bytes)
///
/// These compressors can be extremely generic.  They only need to produce one buffer of bytes
/// and another buffer of offsets into the bytes, one offset for each value.  Both of these buffers
/// will be stored.
///
/// Note: It is perfectly legal for a value to have 0 bytes.  However, we still need to store the
/// offset itself.  This means that this compressor, when implemented by something like RLE will not
/// be as efficient (space-wise) as a block version (which could skip the offsets for runs).
///
/// Accessing this data will require 2 IOPS and accessing in a random-access fashion will require
/// a repetition index.
pub trait VariablePerValueCompressor: std::fmt::Debug + Send + Sync {
    /// Compress the data into a single buffer where each value is encoded with a different size
    ///
    /// Also returns a description of the compression that can be used to decompress when reading the data back
    fn compress(&self, data: DataBlock) -> Result<(VariableWidthBlock, pb::ArrayEncoding)>;
}

/// Trait for compression algorithms that compress an entire block of data into one opaque
/// and self-described chunk.
///
/// This is the most general type of compression.  There are no constraints on the method
/// of compression it is assumed that the entire block of data will be present at decompression.
///
/// This is the least appropriate strategy for random access because we must load the entire
/// block to access any single value.  This should only be used for cases where random access is never
/// required (e.g. when encoding metadata buffers like a dictionary or for encoding rep/def
/// mini-block chunks)
pub trait BlockCompressor: std::fmt::Debug + Send + Sync {
    /// Compress the data into a single buffer
    ///
    /// Also returns a description of the compression that can be used to decompress
    /// when reading the data back
    fn compress(&self, data: DataBlock) -> Result<LanceBuffer>;
}

pub fn values_column_encoding() -> pb::ColumnEncoding {
    pb::ColumnEncoding {
        column_encoding: Some(pb::column_encoding::ColumnEncoding::Values(())),
    }
}

pub struct EncodedColumn {
    pub column_buffers: Vec<LanceBuffer>,
    pub encoding: pb::ColumnEncoding,
    pub final_pages: Vec<EncodedPage>,
}

impl Default for EncodedColumn {
    fn default() -> Self {
        Self {
            column_buffers: Default::default(),
            encoding: pb::ColumnEncoding {
                column_encoding: Some(pb::column_encoding::ColumnEncoding::Values(())),
            },
            final_pages: Default::default(),
        }
    }
}

/// A tool to reserve space for buffers that are not in-line with the data
///
/// In most cases, buffers are stored in the page and referred to in the encoding
/// metadata by their index in the page.  This keeps all buffers within a page together.
/// As a result, most encoders should not need to use this structure.
///
/// In some cases (currently only the large binary encoding) there is a need to access
/// buffers that are not in the page (because storing the position / offset of every page
/// in the page metadata would be too expensive).
///
/// To do this you can add a buffer with `add_buffer` and then use the returned position
/// in some way (in the large binary encoding the returned position is stored in the page
/// data as a position / size array).
pub struct OutOfLineBuffers {
    position: u64,
    buffer_alignment: u64,
    buffers: Vec<LanceBuffer>,
}

impl OutOfLineBuffers {
    pub fn new(base_position: u64, buffer_alignment: u64) -> Self {
        Self {
            position: base_position,
            buffer_alignment,
            buffers: Vec::new(),
        }
    }

    pub fn add_buffer(&mut self, buffer: LanceBuffer) -> u64 {
        let position = self.position;
        self.position += buffer.len() as u64;
        self.position += pad_bytes_to(buffer.len(), self.buffer_alignment as usize) as u64;
        self.buffers.push(buffer);
        position
    }

    pub fn take_buffers(self) -> Vec<LanceBuffer> {
        self.buffers
    }

    pub fn reset_position(&mut self, position: u64) {
        self.position = position;
    }
}

/// A task to create a page of data
pub type EncodeTask = BoxFuture<'static, Result<EncodedPage>>;

/// Top level encoding trait to code any Arrow array type into one or more pages.
///
/// The field encoder implements buffering and encoding of a single input column
/// but it may map to multiple output columns.  For example, a list array or struct
/// array will be encoded into multiple columns.
///
/// Also, fields may be encoded at different speeds.  For example, given a struct
/// column with three fields (a boolean field, an int32 field, and a 4096-dimension
/// tensor field) the tensor field is likely to emit encoded pages much more frequently
/// than the boolean field.
pub trait FieldEncoder: Send {
    /// Buffer the data and, if there is enough data in the buffer to form a page, return
    /// an encoding task to encode the data.
    ///
    /// This may return more than one task because a single column may be mapped to multiple
    /// output columns.  For example, if encoding a struct column with three children then
    /// up to three tasks may be returned from each call to maybe_encode.
    ///
    /// It may also return multiple tasks for a single column if the input array is larger
    /// than a single disk page.
    ///
    /// It could also return an empty Vec if there is not enough data yet to encode any pages.
    fn maybe_encode(
        &mut self,
        array: ArrayRef,
        external_buffers: &mut OutOfLineBuffers,
        repdef: RepDefBuilder,
        row_number: u64,
    ) -> Result<Vec<EncodeTask>>;
    /// Flush any remaining data from the buffers into encoding tasks
    ///
    /// Each encode task produces a single page.  The order of these pages will be maintained
    /// in the file (we do not worry about order between columns but all pages in the same
    /// column should maintain order)
    ///
    /// This may be called intermittently throughout encoding but will always be called
    /// once at the end of encoding just before calling finish
    fn flush(&mut self, external_buffers: &mut OutOfLineBuffers) -> Result<Vec<EncodeTask>>;
    /// Finish encoding and return column metadata
    ///
    /// This is called only once, after all encode tasks have completed
    ///
    /// This returns a Vec because a single field may have created multiple columns
    fn finish(
        &mut self,
        external_buffers: &mut OutOfLineBuffers,
    ) -> BoxFuture<'_, Result<Vec<EncodedColumn>>>;

    /// The number of output columns this encoding will create
    fn num_columns(&self) -> u32;
}

/// A trait to pick which encoding strategy to use for a single page
/// of data
///
/// Presumably, implementations will make encoding decisions based on
/// array statistics.
pub trait ArrayEncodingStrategy: Send + Sync + std::fmt::Debug {
    fn create_array_encoder(
        &self,
        arrays: &[ArrayRef],
        field: &Field,
    ) -> Result<Box<dyn ArrayEncoder>>;
}

/// A trait to pick which compression to use for given data
///
/// There are several different kinds of compression.
///
/// - Block compression is the most generic, but most difficult to use efficiently
/// - Per-value compression results in either a fixed width data block or a variable
///   width data block.  In other words, there is some number of bits per value.
///   In addition, each value should be independently decompressible.
/// - Mini-block compression results in a small block of opaque data for chunks
///     of rows.  Each block is somewhere between 0 and 16KiB in size.  This is
///     used for narrow data types (both fixed and variable length) where we can
///     fit many values into an 16KiB block.
pub trait CompressionStrategy: Send + Sync + std::fmt::Debug {
    /// Create a block compressor for the given data
    fn create_block_compressor(
        &self,
        field: &Field,
        data: &DataBlock,
    ) -> Result<(Box<dyn BlockCompressor>, pb::ArrayEncoding)>;

    /// Create a per-value compressor for the given data
    fn create_per_value(
        &self,
        field: &Field,
        data: &DataBlock,
    ) -> Result<Box<dyn PerValueCompressor>>;

    /// Create a mini-block compressor for the given data
    fn create_miniblock_compressor(
        &self,
        field: &Field,
        data: &DataBlock,
    ) -> Result<Box<dyn MiniBlockCompressor>>;
}

/// The core array encoding strategy is a set of basic encodings that
/// are generally applicable in most scenarios.
#[derive(Debug, Default)]
pub struct CoreArrayEncodingStrategy {
    pub version: LanceFileVersion,
}

const BINARY_DATATYPES: [DataType; 4] = [
    DataType::Binary,
    DataType::LargeBinary,
    DataType::Utf8,
    DataType::LargeUtf8,
];

impl CoreArrayEncodingStrategy {
    fn can_use_fsst(data_type: &DataType, data_size: u64, version: LanceFileVersion) -> bool {
        version >= LanceFileVersion::V2_1
            && matches!(data_type, DataType::Utf8 | DataType::Binary)
            && data_size > 4 * 1024 * 1024
    }

    fn get_field_compression(field_meta: &HashMap<String, String>) -> Option<CompressionConfig> {
        let compression = field_meta.get(COMPRESSION_META_KEY)?;
        let compression_scheme = compression.parse::<CompressionScheme>();
        match compression_scheme {
            Ok(compression_scheme) => Some(CompressionConfig::new(
                compression_scheme,
                field_meta
                    .get(COMPRESSION_LEVEL_META_KEY)
                    .and_then(|level| level.parse().ok()),
            )),
            Err(_) => None,
        }
    }

    fn default_binary_encoder(
        arrays: &[ArrayRef],
        data_type: &DataType,
        field_meta: Option<&HashMap<String, String>>,
        data_size: u64,
        version: LanceFileVersion,
    ) -> Result<Box<dyn ArrayEncoder>> {
        let bin_indices_encoder =
            Self::choose_array_encoder(arrays, &DataType::UInt64, data_size, false, version, None)?;

        let compression = field_meta.and_then(Self::get_field_compression);

        let bin_encoder = Box::new(BinaryEncoder::new(bin_indices_encoder, compression));
        if compression.is_none() && Self::can_use_fsst(data_type, data_size, version) {
            Ok(Box::new(FsstArrayEncoder::new(bin_encoder)))
        } else {
            Ok(bin_encoder)
        }
    }

    fn choose_array_encoder(
        arrays: &[ArrayRef],
        data_type: &DataType,
        data_size: u64,
        use_dict_encoding: bool,
        version: LanceFileVersion,
        field_meta: Option<&HashMap<String, String>>,
    ) -> Result<Box<dyn ArrayEncoder>> {
        match data_type {
            DataType::FixedSizeList(inner, dimension) => {
                Ok(Box::new(BasicEncoder::new(Box::new(FslEncoder::new(
                    Self::choose_array_encoder(
                        arrays,
                        inner.data_type(),
                        data_size,
                        use_dict_encoding,
                        version,
                        None,
                    )?,
                    *dimension as u32,
                )))))
            }
            DataType::Dictionary(key_type, value_type) => {
                let key_encoder =
                    Self::choose_array_encoder(arrays, key_type, data_size, false, version, None)?;
                let value_encoder = Self::choose_array_encoder(
                    arrays, value_type, data_size, false, version, None,
                )?;

                Ok(Box::new(AlreadyDictionaryEncoder::new(
                    key_encoder,
                    value_encoder,
                )))
            }
            DataType::Utf8 | DataType::LargeUtf8 | DataType::Binary | DataType::LargeBinary => {
                if use_dict_encoding {
                    let dict_indices_encoder = Self::choose_array_encoder(
                        // We need to pass arrays to this method to figure out what kind of compression to
                        // use but we haven't actually calculated the indices yet.  For now, we just assume
                        // worst case and use the full range.  In the future maybe we can pass in statistics
                        // instead of the actual data
                        &[Arc::new(UInt8Array::from_iter_values(0_u8..255_u8))],
                        &DataType::UInt8,
                        data_size,
                        false,
                        version,
                        None,
                    )?;
                    let dict_items_encoder = Self::choose_array_encoder(
                        arrays,
                        &DataType::Utf8,
                        data_size,
                        false,
                        version,
                        None,
                    )?;

                    Ok(Box::new(DictionaryEncoder::new(
                        dict_indices_encoder,
                        dict_items_encoder,
                    )))
                }
                // The parent datatype should be binary or utf8 to use the fixed size encoding
                // The variable 'data_type' is passed through recursion so comparing with it would be incorrect
                else if BINARY_DATATYPES.contains(arrays[0].data_type()) {
                    if let Some(byte_width) = check_fixed_size_encoding(arrays, version) {
                        // use FixedSizeBinaryEncoder
                        let bytes_encoder = Self::choose_array_encoder(
                            arrays,
                            &DataType::UInt8,
                            data_size,
                            false,
                            version,
                            None,
                        )?;

                        Ok(Box::new(BasicEncoder::new(Box::new(
                            FixedSizeBinaryEncoder::new(bytes_encoder, byte_width as usize),
                        ))))
                    } else {
                        Self::default_binary_encoder(
                            arrays, data_type, field_meta, data_size, version,
                        )
                    }
                } else {
                    Self::default_binary_encoder(arrays, data_type, field_meta, data_size, version)
                }
            }
            DataType::Struct(fields) => {
                let num_fields = fields.len();
                let mut inner_encoders = Vec::new();

                for i in 0..num_fields {
                    let inner_datatype = fields[i].data_type();
                    let inner_encoder = Self::choose_array_encoder(
                        arrays,
                        inner_datatype,
                        data_size,
                        use_dict_encoding,
                        version,
                        None,
                    )?;
                    inner_encoders.push(inner_encoder);
                }

                Ok(Box::new(PackedStructEncoder::new(inner_encoders)))
            }
            DataType::UInt8 | DataType::UInt16 | DataType::UInt32 | DataType::UInt64 => {
                if version >= LanceFileVersion::V2_1 && arrays[0].data_type() == data_type {
                    let compressed_bit_width = compute_compressed_bit_width_for_non_neg(arrays);
                    Ok(Box::new(BitpackedForNonNegArrayEncoder::new(
                        compressed_bit_width as usize,
                        data_type.clone(),
                    )))
                } else {
                    Ok(Box::new(BasicEncoder::new(Box::new(
                        ValueEncoder::default(),
                    ))))
                }
            }

            // TODO: for signed integers, I intend to make it a cascaded encoding, a sparse array for the negative values and very wide(bit-width) values,
            // then a bitpacked array for the narrow(bit-width) values, I need `BitpackedForNeg` to be merged first, I am
            // thinking about putting this sparse array in the metadata so bitpacking remain using one page buffer only.
            DataType::Int8 | DataType::Int16 | DataType::Int32 | DataType::Int64 => {
                if version >= LanceFileVersion::V2_1 && arrays[0].data_type() == data_type {
                    let compressed_bit_width = compute_compressed_bit_width_for_non_neg(arrays);
                    Ok(Box::new(BitpackedForNonNegArrayEncoder::new(
                        compressed_bit_width as usize,
                        data_type.clone(),
                    )))
                } else {
                    Ok(Box::new(BasicEncoder::new(Box::new(
                        ValueEncoder::default(),
                    ))))
                }
            }
            _ => Ok(Box::new(BasicEncoder::new(Box::new(
                ValueEncoder::default(),
            )))),
        }
    }
}

fn get_dict_encoding_threshold() -> u64 {
    env::var("LANCE_DICT_ENCODING_THRESHOLD")
        .ok()
        .and_then(|val| val.parse().ok())
        .unwrap_or(100)
}

// check whether we want to use dictionary encoding or not
// by applying a threshold on cardinality
// returns true if cardinality < threshold but false if the total number of rows is less than the threshold
// The choice to use 100 is just a heuristic for now
// hyperloglog is used for cardinality estimation
// error rate = 1.04 / sqrt(2^p), where p is the precision
// and error rate is 1.04 / sqrt(2^12) = 1.56%
fn check_dict_encoding(arrays: &[ArrayRef], threshold: u64) -> bool {
    let num_total_rows = arrays.iter().map(|arr| arr.len()).sum::<usize>();
    if num_total_rows < threshold as usize {
        return false;
    }
    const PRECISION: u8 = 12;

    let mut hll: HyperLogLogPlus<String, RandomState> =
        HyperLogLogPlus::new(PRECISION, RandomState::new()).unwrap();

    for arr in arrays {
        let string_array = arrow_array::cast::as_string_array(arr);
        for value in string_array.iter().flatten() {
            hll.insert(value);
            let estimated_cardinality = hll.count() as u64;
            if estimated_cardinality >= threshold {
                return false;
            }
        }
    }

    true
}

fn check_fixed_size_encoding(arrays: &[ArrayRef], version: LanceFileVersion) -> Option<u64> {
    if version < LanceFileVersion::V2_1 || arrays.is_empty() {
        return None;
    }

    // make sure no array has an empty string
    if !arrays.iter().all(|arr| {
        if let Some(arr) = arr.as_string_opt::<i32>() {
            arr.iter().flatten().all(|s| !s.is_empty())
        } else if let Some(arr) = arr.as_binary_opt::<i32>() {
            arr.iter().flatten().all(|s| !s.is_empty())
        } else if let Some(arr) = arr.as_string_opt::<i64>() {
            arr.iter().flatten().all(|s| !s.is_empty())
        } else if let Some(arr) = arr.as_binary_opt::<i64>() {
            arr.iter().flatten().all(|s| !s.is_empty())
        } else {
            panic!("wrong dtype");
        }
    }) {
        return None;
    }

    let lengths = arrays
        .iter()
        .flat_map(|arr| {
            if let Some(arr) = arr.as_string_opt::<i32>() {
                let offsets = arr.offsets().inner();
                offsets
                    .windows(2)
                    .map(|w| (w[1] - w[0]) as u64)
                    .collect::<Vec<_>>()
            } else if let Some(arr) = arr.as_binary_opt::<i32>() {
                let offsets = arr.offsets().inner();
                offsets
                    .windows(2)
                    .map(|w| (w[1] - w[0]) as u64)
                    .collect::<Vec<_>>()
            } else if let Some(arr) = arr.as_string_opt::<i64>() {
                let offsets = arr.offsets().inner();
                offsets
                    .windows(2)
                    .map(|w| (w[1] - w[0]) as u64)
                    .collect::<Vec<_>>()
            } else if let Some(arr) = arr.as_binary_opt::<i64>() {
                let offsets = arr.offsets().inner();
                offsets
                    .windows(2)
                    .map(|w| (w[1] - w[0]) as u64)
                    .collect::<Vec<_>>()
            } else {
                panic!("wrong dtype");
            }
        })
        .collect::<Vec<_>>();

    // find first non-zero value in lengths
    let first_non_zero = lengths.iter().position(|&x| x != 0);
    if let Some(first_non_zero) = first_non_zero {
        // make sure all lengths are equal to first_non_zero length or zero
        if !lengths
            .iter()
            .all(|&x| x == 0 || x == lengths[first_non_zero])
        {
            return None;
        }

        // set the byte width
        Some(lengths[first_non_zero])
    } else {
        None
    }
}

impl ArrayEncodingStrategy for CoreArrayEncodingStrategy {
    fn create_array_encoder(
        &self,
        arrays: &[ArrayRef],
        field: &Field,
    ) -> Result<Box<dyn ArrayEncoder>> {
        let data_size = arrays
            .iter()
            .map(|arr| arr.get_buffer_memory_size() as u64)
            .sum::<u64>();
        let data_type = arrays[0].data_type();

        let use_dict_encoding = data_type == &DataType::Utf8
            && check_dict_encoding(arrays, get_dict_encoding_threshold());

        Self::choose_array_encoder(
            arrays,
            data_type,
            data_size,
            use_dict_encoding,
            self.version,
            Some(&field.metadata),
        )
    }
}

impl CompressionStrategy for CoreArrayEncodingStrategy {
    fn create_miniblock_compressor(
        &self,
        _field: &Field,
        data: &DataBlock,
    ) -> Result<Box<dyn MiniBlockCompressor>> {
        if let DataBlock::FixedWidth(ref fixed_width_data) = data {
            let bit_widths = data
                .get_stat(Stat::BitWidth)
                .expect("FixedWidthDataBlock should have valid `Stat::BitWidth` statistics");
            // Temporary hack to work around https://github.com/lancedb/lance/issues/3102
            // Ideally we should still be able to bit-pack here (either to 0 or 1 bit per value)
            let has_all_zeros = bit_widths
                .as_primitive::<UInt64Type>()
                .values()
                .iter()
                .any(|v| *v == 0);
            if !has_all_zeros
                && (fixed_width_data.bits_per_value == 8
                    || fixed_width_data.bits_per_value == 16
                    || fixed_width_data.bits_per_value == 32
                    || fixed_width_data.bits_per_value == 64)
            {
                return Ok(Box::new(BitpackMiniBlockEncoder::default()));
            }
        }
        if let DataBlock::VariableWidth(ref variable_width_data) = data {
            if variable_width_data.bits_per_offset == 32 {
                let data_size = variable_width_data.get_stat(Stat::DataSize).expect(
                    "VariableWidth DataBlock should have valid `Stat::DataSize` statistics",
                );
                let data_size = data_size.as_primitive::<UInt64Type>().value(0);

                let max_len = variable_width_data.get_stat(Stat::MaxLength).expect(
                    "VariableWidth DataBlock should have valid `Stat::DataSize` statistics",
                );
                let max_len = max_len.as_primitive::<UInt64Type>().value(0);

                if max_len >= FSST_LEAST_INPUT_MAX_LENGTH
                    && data_size >= FSST_LEAST_INPUT_SIZE as u64
                {
                    return Ok(Box::new(FsstMiniBlockEncoder::default()));
                }
                return Ok(Box::new(BinaryMiniBlockEncoder::default()));
            }
        }
        Ok(Box::new(ValueEncoder::default()))
    }

    fn create_per_value(
        &self,
        field: &Field,
        data: &DataBlock,
    ) -> Result<Box<dyn PerValueCompressor>> {
        match data {
            DataBlock::FixedWidth(_) => {
                let encoder = Box::new(ValueEncoder::default());
                Ok(encoder)
            }
            DataBlock::VariableWidth(_variable_width) => {
                todo!()
            }
            DataBlock::FixedSizeList(fsl) => {
                let DataType::FixedSizeList(inner_field, field_dim) = field.data_type() else {
                    panic!("FSL data block without FSL field")
                };
                debug_assert_eq!(fsl.dimension, field_dim as u64);
                let inner_compressor = self.create_per_value(
                    &inner_field.as_ref().try_into().unwrap(),
                    fsl.child.as_ref(),
                )?;
                let fsl_compressor = FslPerValueCompressor::new(inner_compressor, fsl.dimension);
                Ok(Box::new(fsl_compressor))
            }
            _ => unreachable!(),
        }
    }

    fn create_block_compressor(
        &self,
        _field: &Field,
        data: &DataBlock,
    ) -> Result<(Box<dyn BlockCompressor>, pb::ArrayEncoding)> {
        match data {
            // Right now we only need block compressors for rep/def which is u16.  Will need to expand
            // this if we need block compression of other types.
            DataBlock::FixedWidth(fixed_width) => {
                let encoder = Box::new(ValueEncoder::default());
                let encoding = ProtobufUtils::flat_encoding(fixed_width.bits_per_value, 0, None);
                Ok((encoder, encoding))
            }
            _ => unreachable!(),
        }
    }
}
/// Keeps track of the current column index and makes a mapping
/// from field id to column index
#[derive(Debug, Default)]
pub struct ColumnIndexSequence {
    current_index: u32,
    mapping: Vec<(u32, u32)>,
}

impl ColumnIndexSequence {
    pub fn next_column_index(&mut self, field_id: u32) -> u32 {
        let idx = self.current_index;
        self.current_index += 1;
        self.mapping.push((field_id, idx));
        idx
    }

    pub fn skip(&mut self) {
        self.current_index += 1;
    }
}

/// Options that control the encoding process
pub struct EncodingOptions {
    /// How much data (in bytes) to cache in-memory before writing a page
    ///
    /// This cache is applied on a per-column basis
    pub cache_bytes_per_column: u64,
    /// The maximum size of a page in bytes, if a single array would create
    /// a page larger than this then it will be split into multiple pages
    pub max_page_bytes: u64,
    /// If false (the default) then arrays will be copied (deeply) before
    /// being cached.  This ensures any data kept alive by the array can
    /// be discarded safely and helps avoid writer accumulation.  However,
    /// there is an associated cost.
    pub keep_original_array: bool,
    /// The alignment that the writer is applying to buffers
    ///
    /// The encoder needs to know this so it figures the position of out-of-line
    /// buffers correctly
    pub buffer_alignment: u64,
}

/// A trait to pick which kind of field encoding to use for a field
///
/// Unlike the ArrayEncodingStrategy, the field encoding strategy is
/// chosen before any data is generated and the same field encoder is
/// used for all data in the field.
pub trait FieldEncodingStrategy: Send + Sync + std::fmt::Debug {
    /// Choose and create an appropriate field encoder for the given
    /// field.
    ///
    /// The field encoder can be chosen on the data type as well as
    /// any metadata that is attached to the field.
    ///
    /// The `encoding_strategy_root` is the encoder that should be
    /// used to encode any inner data in struct / list / etc. fields.
    ///
    /// Initially it is the same as `self` and generally should be
    /// forwarded to any inner encoding strategy.
    fn create_field_encoder(
        &self,
        encoding_strategy_root: &dyn FieldEncodingStrategy,
        field: &Field,
        column_index: &mut ColumnIndexSequence,
        options: &EncodingOptions,
    ) -> Result<Box<dyn FieldEncoder>>;
}

pub fn default_encoding_strategy(version: LanceFileVersion) -> Box<dyn FieldEncodingStrategy> {
    match version.resolve() {
        LanceFileVersion::Legacy => panic!(),
        LanceFileVersion::V2_0 => Box::new(CoreFieldEncodingStrategy::default()),
        _ => Box::new(StructuralEncodingStrategy::default()),
    }
}

/// The core field encoding strategy is a set of basic encodings that
/// are generally applicable in most scenarios.
#[derive(Debug)]
pub struct CoreFieldEncodingStrategy {
    pub array_encoding_strategy: Arc<dyn ArrayEncodingStrategy>,
    pub version: LanceFileVersion,
}

// For some reason clippy has a false negative and thinks this can be derived but
// it can't because ArrayEncodingStrategy has no default implementation
#[allow(clippy::derivable_impls)]
impl Default for CoreFieldEncodingStrategy {
    fn default() -> Self {
        Self {
            array_encoding_strategy: Arc::<CoreArrayEncodingStrategy>::default(),
            version: LanceFileVersion::default(),
        }
    }
}

impl CoreFieldEncodingStrategy {
    fn is_primitive_type(data_type: &DataType) -> bool {
        matches!(
            data_type,
            DataType::Boolean
                | DataType::Date32
                | DataType::Date64
                | DataType::Decimal128(_, _)
                | DataType::Decimal256(_, _)
                | DataType::Duration(_)
                | DataType::Float16
                | DataType::Float32
                | DataType::Float64
                | DataType::Int16
                | DataType::Int32
                | DataType::Int64
                | DataType::Int8
                | DataType::Interval(_)
                | DataType::Null
                | DataType::Time32(_)
                | DataType::Time64(_)
                | DataType::Timestamp(_, _)
                | DataType::UInt16
                | DataType::UInt32
                | DataType::UInt64
                | DataType::UInt8
                | DataType::FixedSizeBinary(_)
                | DataType::FixedSizeList(_, _)
                | DataType::Binary
                | DataType::LargeBinary
                | DataType::Utf8
                | DataType::LargeUtf8,
        )
    }
}

impl FieldEncodingStrategy for CoreFieldEncodingStrategy {
    fn create_field_encoder(
        &self,
        encoding_strategy_root: &dyn FieldEncodingStrategy,
        field: &Field,
        column_index: &mut ColumnIndexSequence,
        options: &EncodingOptions,
    ) -> Result<Box<dyn FieldEncoder>> {
        let data_type = field.data_type();
        if Self::is_primitive_type(&data_type) {
            let column_index = column_index.next_column_index(field.id as u32);
            if field.metadata.contains_key(BLOB_META_KEY) {
                let mut packed_meta = HashMap::new();
                packed_meta.insert(PACKED_STRUCT_META_KEY.to_string(), "true".to_string());
                let desc_field =
                    Field::try_from(BLOB_DESC_FIELD.clone().with_metadata(packed_meta)).unwrap();
                let desc_encoder = Box::new(PrimitiveFieldEncoder::try_new(
                    options,
                    self.array_encoding_strategy.clone(),
                    column_index,
                    desc_field,
                )?);
                Ok(Box::new(BlobFieldEncoder::new(desc_encoder)))
            } else {
                Ok(Box::new(PrimitiveFieldEncoder::try_new(
                    options,
                    self.array_encoding_strategy.clone(),
                    column_index,
                    field.clone(),
                )?))
            }
        } else {
            match data_type {
                DataType::List(_child) | DataType::LargeList(_child) => {
                    let list_idx = column_index.next_column_index(field.id as u32);
                    let inner_encoding = encoding_strategy_root.create_field_encoder(
                        encoding_strategy_root,
                        &field.children[0],
                        column_index,
                        options,
                    )?;
                    let offsets_encoder =
                        Arc::new(BasicEncoder::new(Box::new(ValueEncoder::default())));
                    Ok(Box::new(ListFieldEncoder::new(
                        inner_encoding,
                        offsets_encoder,
                        options.cache_bytes_per_column,
                        options.keep_original_array,
                        list_idx,
                    )))
                }
                DataType::Struct(_) => {
                    let field_metadata = &field.metadata;
                    if field_metadata
                        .get(PACKED_STRUCT_LEGACY_META_KEY)
                        .map(|v| v == "true")
                        .unwrap_or(field_metadata.contains_key(PACKED_STRUCT_META_KEY))
                    {
                        Ok(Box::new(PrimitiveFieldEncoder::try_new(
                            options,
                            self.array_encoding_strategy.clone(),
                            column_index.next_column_index(field.id as u32),
                            field.clone(),
                        )?))
                    } else {
                        let header_idx = column_index.next_column_index(field.id as u32);
                        let children_encoders = field
                            .children
                            .iter()
                            .map(|field| {
                                self.create_field_encoder(
                                    encoding_strategy_root,
                                    field,
                                    column_index,
                                    options,
                                )
                            })
                            .collect::<Result<Vec<_>>>()?;
                        Ok(Box::new(StructFieldEncoder::new(
                            children_encoders,
                            header_idx,
                        )))
                    }
                }
                DataType::Dictionary(_, value_type) => {
                    // A dictionary of primitive is, itself, primitive
                    if Self::is_primitive_type(&value_type) {
                        Ok(Box::new(PrimitiveFieldEncoder::try_new(
                            options,
                            self.array_encoding_strategy.clone(),
                            column_index.next_column_index(field.id as u32),
                            field.clone(),
                        )?))
                    } else {
                        // A dictionary of logical is, itself, logical and we don't support that today
                        // It could be possible (e.g. store indices in one column and values in remaining columns)
                        // but would be a significant amount of work
                        //
                        // An easier fallback implementation would be to decode-on-write and encode-on-read
                        Err(Error::NotSupported { source: format!("cannot encode a dictionary column whose value type is a logical type ({})", value_type).into(), location: location!() })
                    }
                }
                _ => todo!("Implement encoding for field {}", field),
            }
        }
    }
}

/// An encoding strategy used for 2.1+ files
#[derive(Debug)]
pub struct StructuralEncodingStrategy {
    pub compression_strategy: Arc<dyn CompressionStrategy>,
    pub version: LanceFileVersion,
}

// For some reason, clippy thinks we can add Default to the above derive but
// rustc doesn't agree (no default for Arc<dyn Trait>)
#[allow(clippy::derivable_impls)]
impl Default for StructuralEncodingStrategy {
    fn default() -> Self {
        Self {
            compression_strategy: Arc::<CoreArrayEncodingStrategy>::default(),
            version: LanceFileVersion::default(),
        }
    }
}

impl StructuralEncodingStrategy {
    fn is_primitive_type(data_type: &DataType) -> bool {
        matches!(
            data_type,
            DataType::Boolean
                | DataType::Date32
                | DataType::Date64
                | DataType::Decimal128(_, _)
                | DataType::Decimal256(_, _)
                | DataType::Duration(_)
                | DataType::Float16
                | DataType::Float32
                | DataType::Float64
                | DataType::Int16
                | DataType::Int32
                | DataType::Int64
                | DataType::Int8
                | DataType::Interval(_)
                | DataType::Null
                | DataType::Time32(_)
                | DataType::Time64(_)
                | DataType::Timestamp(_, _)
                | DataType::UInt16
                | DataType::UInt32
                | DataType::UInt64
                | DataType::UInt8
                | DataType::FixedSizeBinary(_)
                | DataType::FixedSizeList(_, _)
                | DataType::Binary
                | DataType::LargeBinary
                | DataType::Utf8
                | DataType::LargeUtf8,
        )
    }
}

impl FieldEncodingStrategy for StructuralEncodingStrategy {
    fn create_field_encoder(
        &self,
        _encoding_strategy_root: &dyn FieldEncodingStrategy,
        field: &Field,
        column_index: &mut ColumnIndexSequence,
        options: &EncodingOptions,
    ) -> Result<Box<dyn FieldEncoder>> {
        let data_type = field.data_type();
        if Self::is_primitive_type(&data_type) {
            Ok(Box::new(PrimitiveStructuralEncoder::try_new(
                options,
                self.compression_strategy.clone(),
                column_index.next_column_index(field.id as u32),
                field.clone(),
            )?))
        } else {
            match data_type {
                DataType::List(_child) | DataType::LargeList(_child) => {
                    todo!()
                }
                DataType::Struct(_) => {
                    let field_metadata = &field.metadata;
                    if field_metadata
                        .get("packed")
                        .map(|v| v == "true")
                        .unwrap_or(false)
                    {
                        Ok(Box::new(PrimitiveStructuralEncoder::try_new(
                            options,
                            self.compression_strategy.clone(),
                            column_index.next_column_index(field.id as u32),
                            field.clone(),
                        )?))
                    } else {
                        let children_encoders = field
                            .children
                            .iter()
                            .map(|field| {
                                self.create_field_encoder(
                                    _encoding_strategy_root,
                                    field,
                                    column_index,
                                    options,
                                )
                            })
                            .collect::<Result<Vec<_>>>()?;
                        Ok(Box::new(StructStructuralEncoder::new(children_encoders)))
                    }
                }
                DataType::Dictionary(_, value_type) => {
                    // A dictionary of primitive is, itself, primitive
                    if Self::is_primitive_type(&value_type) {
                        Ok(Box::new(PrimitiveStructuralEncoder::try_new(
                            options,
                            self.compression_strategy.clone(),
                            column_index.next_column_index(field.id as u32),
                            field.clone(),
                        )?))
                    } else {
                        // A dictionary of logical is, itself, logical and we don't support that today
                        // It could be possible (e.g. store indices in one column and values in remaining columns)
                        // but would be a significant amount of work
                        //
                        // An easier fallback implementation would be to decode-on-write and encode-on-read
                        Err(Error::NotSupported { source: format!("cannot encode a dictionary column whose value type is a logical type ({})", value_type).into(), location: location!() })
                    }
                }
                _ => todo!("Implement encoding for field {}", field),
            }
        }
    }
}

/// A batch encoder that encodes RecordBatch objects by delegating
/// to field encoders for each top-level field in the batch.
pub struct BatchEncoder {
    pub field_encoders: Vec<Box<dyn FieldEncoder>>,
    pub field_id_to_column_index: Vec<(u32, u32)>,
}

impl BatchEncoder {
    pub fn try_new(
        schema: &Schema,
        strategy: &dyn FieldEncodingStrategy,
        options: &EncodingOptions,
    ) -> Result<Self> {
        let mut col_idx = 0;
        let mut col_idx_sequence = ColumnIndexSequence::default();
        let field_encoders = schema
            .fields
            .iter()
            .map(|field| {
                let encoder = strategy.create_field_encoder(
                    strategy,
                    field,
                    &mut col_idx_sequence,
                    options,
                )?;
                col_idx += encoder.as_ref().num_columns();
                Ok(encoder)
            })
            .collect::<Result<Vec<_>>>()?;
        Ok(Self {
            field_encoders,
            field_id_to_column_index: col_idx_sequence.mapping,
        })
    }

    pub fn num_columns(&self) -> u32 {
        self.field_encoders
            .iter()
            .map(|field_encoder| field_encoder.num_columns())
            .sum::<u32>()
    }
}

/// An encoded batch of data and a page table describing it
///
/// This is returned by [`crate::encoder::encode_batch`]
#[derive(Debug)]
pub struct EncodedBatch {
    pub data: Bytes,
    pub page_table: Vec<Arc<ColumnInfo>>,
    pub schema: Arc<Schema>,
    pub top_level_columns: Vec<u32>,
    pub num_rows: u64,
}

fn write_page_to_data_buffer(page: EncodedPage, data_buffer: &mut BytesMut) -> PageInfo {
    let buffers = page.data;
    let mut buffer_offsets_and_sizes = Vec::with_capacity(buffers.len());
    for buffer in buffers {
        let buffer_offset = data_buffer.len() as u64;
        data_buffer.extend_from_slice(&buffer);
        let size = data_buffer.len() as u64 - buffer_offset;
        buffer_offsets_and_sizes.push((buffer_offset, size));
    }

    PageInfo {
        buffer_offsets_and_sizes: Arc::from(buffer_offsets_and_sizes),
        encoding: page.description,
        num_rows: page.num_rows,
        priority: page.row_number,
    }
}

/// Helper method to encode a batch of data into memory
///
/// This is primarily for testing and benchmarking but could be useful in other
/// niche situations like IPC.
pub async fn encode_batch(
    batch: &RecordBatch,
    schema: Arc<Schema>,
    encoding_strategy: &dyn FieldEncodingStrategy,
    options: &EncodingOptions,
) -> Result<EncodedBatch> {
    if !is_pwr_two(options.buffer_alignment) || options.buffer_alignment < MIN_PAGE_BUFFER_ALIGNMENT
    {
        return Err(Error::InvalidInput {
            source: format!(
                "buffer_alignment must be a power of two and at least {}",
                MIN_PAGE_BUFFER_ALIGNMENT
            )
            .into(),
            location: location!(),
        });
    }

    let mut data_buffer = BytesMut::new();
    let lance_schema = Schema::try_from(batch.schema().as_ref())?;
    let options = EncodingOptions {
        keep_original_array: true,
        ..*options
    };
    let batch_encoder = BatchEncoder::try_new(&lance_schema, encoding_strategy, &options)?;
    let mut page_table = Vec::new();
    let mut col_idx_offset = 0;
    for (arr, mut encoder) in batch.columns().iter().zip(batch_encoder.field_encoders) {
        let mut external_buffers =
            OutOfLineBuffers::new(data_buffer.len() as u64, options.buffer_alignment);
        let repdef = RepDefBuilder::default();
        let encoder = encoder.as_mut();
        let mut tasks = encoder.maybe_encode(arr.clone(), &mut external_buffers, repdef, 0)?;
        tasks.extend(encoder.flush(&mut external_buffers)?);
        for buffer in external_buffers.take_buffers() {
            data_buffer.extend_from_slice(&buffer);
        }
        let mut pages = HashMap::<u32, Vec<PageInfo>>::new();
        for task in tasks {
            let encoded_page = task.await?;
            // Write external buffers first
            pages
                .entry(encoded_page.column_idx)
                .or_default()
                .push(write_page_to_data_buffer(encoded_page, &mut data_buffer));
        }
        let mut external_buffers =
            OutOfLineBuffers::new(data_buffer.len() as u64, options.buffer_alignment);
        let encoded_columns = encoder.finish(&mut external_buffers).await?;
        for buffer in external_buffers.take_buffers() {
            data_buffer.extend_from_slice(&buffer);
        }
        let num_columns = encoded_columns.len();
        for (col_idx, encoded_column) in encoded_columns.into_iter().enumerate() {
            let col_idx = col_idx + col_idx_offset;
            let mut col_buffer_offsets_and_sizes = Vec::new();
            for buffer in encoded_column.column_buffers {
                let buffer_offset = data_buffer.len() as u64;
                data_buffer.extend_from_slice(&buffer);
                let size = data_buffer.len() as u64 - buffer_offset;
                col_buffer_offsets_and_sizes.push((buffer_offset, size));
            }
            for page in encoded_column.final_pages {
                pages
                    .entry(page.column_idx)
                    .or_default()
                    .push(write_page_to_data_buffer(page, &mut data_buffer));
            }
            let col_pages = std::mem::take(pages.entry(col_idx as u32).or_default());
            page_table.push(Arc::new(ColumnInfo {
                index: col_idx as u32,
                buffer_offsets_and_sizes: Arc::from(
                    col_buffer_offsets_and_sizes.into_boxed_slice(),
                ),
                page_infos: Arc::from(col_pages.into_boxed_slice()),
                encoding: encoded_column.encoding,
            }))
        }
        col_idx_offset += num_columns;
    }
    let top_level_columns = batch_encoder
        .field_id_to_column_index
        .iter()
        .map(|(_, idx)| *idx)
        .collect();
    Ok(EncodedBatch {
        data: data_buffer.freeze(),
        top_level_columns,
        page_table,
        schema,
        num_rows: batch.num_rows() as u64,
    })
}

#[cfg(test)]
pub mod tests {
    use crate::version::LanceFileVersion;
    use arrow_array::{ArrayRef, StringArray};
    use arrow_schema::Field;
    use lance_core::datatypes::{COMPRESSION_LEVEL_META_KEY, COMPRESSION_META_KEY};
    use std::collections::HashMap;
    use std::sync::Arc;

    use super::check_fixed_size_encoding;
    use super::{check_dict_encoding, ArrayEncodingStrategy, CoreArrayEncodingStrategy};

    fn is_dict_encoding_applicable(arr: Vec<Option<&str>>, threshold: u64) -> bool {
        let arr = StringArray::from(arr);
        let arr = Arc::new(arr) as ArrayRef;
        check_dict_encoding(&[arr], threshold)
    }

    #[test]
    fn test_dict_encoding_should_be_applied_if_cardinality_less_than_threshold() {
        assert!(is_dict_encoding_applicable(
            vec![Some("a"), Some("b"), Some("a"), Some("b")],
            3,
        ));
    }

    #[test]
    fn test_dict_encoding_should_not_be_applied_if_cardinality_larger_than_threshold() {
        assert!(!is_dict_encoding_applicable(
            vec![Some("a"), Some("b"), Some("c"), Some("d")],
            3,
        ));
    }

    #[test]
    fn test_dict_encoding_should_not_be_applied_if_cardinality_equal_to_threshold() {
        assert!(!is_dict_encoding_applicable(
            vec![Some("a"), Some("b"), Some("c"), Some("a")],
            3,
        ));
    }

    #[test]
    fn test_dict_encoding_should_not_be_applied_for_empty_arrays() {
        assert!(!is_dict_encoding_applicable(vec![], 3));
    }

    #[test]
    fn test_dict_encoding_should_not_be_applied_for_smaller_than_threshold_arrays() {
        assert!(!is_dict_encoding_applicable(vec![Some("a"), Some("a")], 3));
    }

    fn is_fixed_size_encoding_applicable(
        arrays: Vec<Vec<Option<&str>>>,
        version: LanceFileVersion,
    ) -> bool {
        let mut final_arrays = Vec::new();
        for arr in arrays {
            let arr = StringArray::from(arr);
            let arr = Arc::new(arr) as ArrayRef;
            final_arrays.push(arr);
        }

        check_fixed_size_encoding(&final_arrays.clone(), version).is_some()
    }

    #[test]
    fn test_fixed_size_binary_encoding_applicable() {
        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![]],
            LanceFileVersion::V2_1
        ));

        assert!(is_fixed_size_encoding_applicable(
            vec![vec![Some("a"), Some("b")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some("abc"), Some("de")]],
            LanceFileVersion::V2_1
        ));

        assert!(is_fixed_size_encoding_applicable(
            vec![vec![Some("pqr"), None]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some("pqr"), Some("")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some(""), Some("")]],
            LanceFileVersion::V2_1
        ));
    }

    #[test]
    fn test_fixed_size_binary_encoding_applicable_multiple_arrays() {
        assert!(is_fixed_size_encoding_applicable(
            vec![vec![Some("a"), Some("b")], vec![Some("c"), Some("d")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some("ab"), Some("bc")], vec![Some("c"), Some("d")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some("ab"), None], vec![None, Some("d")]],
            LanceFileVersion::V2_1
        ));

        assert!(is_fixed_size_encoding_applicable(
            vec![vec![Some("a"), None], vec![None, Some("d")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![Some(""), None], vec![None, Some("")]],
            LanceFileVersion::V2_1
        ));

        assert!(!is_fixed_size_encoding_applicable(
            vec![vec![None, None], vec![None, None]],
            LanceFileVersion::V2_1
        ));
    }

    fn verify_array_encoder(
        array: ArrayRef,
        field_meta: Option<HashMap<String, String>>,
        version: LanceFileVersion,
        expected_encoder: &str,
    ) {
        let encoding_strategy = CoreArrayEncodingStrategy { version };
        let mut field = Field::new("test_field", array.data_type().clone(), true);
        if let Some(field_meta) = field_meta {
            field.set_metadata(field_meta);
        }
        let lance_field = lance_core::datatypes::Field::try_from(field).unwrap();
        let encoder_result = encoding_strategy.create_array_encoder(&[array], &lance_field);
        assert!(encoder_result.is_ok());
        let encoder = encoder_result.unwrap();
        assert_eq!(format!("{:?}", encoder).as_str(), expected_encoder);
    }

    #[test]
    fn test_choose_encoder_for_zstd_compressed_string_field() {
        verify_array_encoder(Arc::new(StringArray::from(vec!["a", "bb", "ccc"])),
                             Some(HashMap::from([(COMPRESSION_META_KEY.to_string(), "zstd".to_string())])),
                             LanceFileVersion::V2_1,
                             "BinaryEncoder { indices_encoder: BasicEncoder { values_encoder: ValueEncoder }, compression_config: Some(CompressionConfig { scheme: Zstd, level: None }), buffer_compressor: Some(ZstdBufferCompressor { compression_level: 0 }) }");
    }

    #[test]
    fn test_choose_encoder_for_zstd_compression_level() {
        verify_array_encoder(Arc::new(StringArray::from(vec!["a", "bb", "ccc"])),
                             Some(HashMap::from([
                                 (COMPRESSION_META_KEY.to_string(), "zstd".to_string()),
                                 (COMPRESSION_LEVEL_META_KEY.to_string(), "22".to_string())
                             ])),
                             LanceFileVersion::V2_1,
                             "BinaryEncoder { indices_encoder: BasicEncoder { values_encoder: ValueEncoder }, compression_config: Some(CompressionConfig { scheme: Zstd, level: Some(22) }), buffer_compressor: Some(ZstdBufferCompressor { compression_level: 22 }) }");
    }
}