lance_encoding/encodings/physical/
bitmap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The Lance Authors

use std::{ops::Range, sync::Arc};

use arrow_buffer::BooleanBufferBuilder;
use bytes::Bytes;

use futures::{future::BoxFuture, FutureExt};
use lance_core::Result;
use log::trace;

use crate::{
    buffer::LanceBuffer,
    data::{BlockInfo, DataBlock, FixedWidthDataBlock, UsedEncoding},
    decoder::{PageScheduler, PrimitivePageDecoder},
    EncodingsIo,
};

/// A physical scheduler for bitmap buffers encoded densely as 1 bit per value
/// with bit-endianness(e.g. what Arrow uses for validity bitmaps and boolean arrays)
///
/// This decoder decodes from one buffer of disk data into one buffer of memory data
#[derive(Debug, Clone, Copy)]
pub struct DenseBitmapScheduler {
    buffer_offset: u64,
}

impl DenseBitmapScheduler {
    pub fn new(buffer_offset: u64) -> Self {
        Self { buffer_offset }
    }
}

impl PageScheduler for DenseBitmapScheduler {
    fn schedule_ranges(
        &self,
        ranges: &[Range<u64>],
        scheduler: &Arc<dyn EncodingsIo>,
        top_level_row: u64,
    ) -> BoxFuture<'static, Result<Box<dyn PrimitivePageDecoder>>> {
        let mut min = u64::MAX;
        let mut max = 0;
        let chunk_reqs = ranges
            .iter()
            .map(|range| {
                debug_assert_ne!(range.start, range.end);
                let start = self.buffer_offset + range.start / 8;
                let bit_offset = range.start % 8;
                let end = self.buffer_offset + range.end.div_ceil(8);
                let byte_range = start..end;
                min = min.min(start);
                max = max.max(end);
                (byte_range, bit_offset, range.end - range.start)
            })
            .collect::<Vec<_>>();

        let byte_ranges = chunk_reqs
            .iter()
            .map(|(range, _, _)| range.clone())
            .collect::<Vec<_>>();
        trace!(
            "Scheduling I/O for {} ranges across byte range {}..{}",
            byte_ranges.len(),
            min,
            max
        );
        let bytes = scheduler.submit_request(byte_ranges, top_level_row);

        async move {
            let bytes = bytes.await?;
            let chunks = bytes
                .into_iter()
                .zip(chunk_reqs)
                .map(|(bytes, (_, bit_offset, length))| BitmapData {
                    data: bytes,
                    bit_offset,
                    length,
                })
                .collect::<Vec<_>>();
            Ok(Box::new(BitmapDecoder { chunks }) as Box<dyn PrimitivePageDecoder>)
        }
        .boxed()
    }
}

struct BitmapData {
    data: Bytes,
    bit_offset: u64,
    length: u64,
}

struct BitmapDecoder {
    chunks: Vec<BitmapData>,
}

impl PrimitivePageDecoder for BitmapDecoder {
    fn decode(&self, rows_to_skip: u64, num_rows: u64) -> Result<DataBlock> {
        let mut rows_to_skip = rows_to_skip;
        let mut dest_builder = BooleanBufferBuilder::new(num_rows as usize);

        let mut rows_remaining = num_rows;
        for chunk in &self.chunks {
            if chunk.length <= rows_to_skip {
                rows_to_skip -= chunk.length;
            } else {
                let start = rows_to_skip + chunk.bit_offset;
                let num_vals_to_take = rows_remaining.min(chunk.length);
                let end = start + num_vals_to_take;
                dest_builder.append_packed_range(start as usize..end as usize, &chunk.data);
                rows_to_skip = 0;
                rows_remaining -= num_vals_to_take;
            }
        }

        let bool_buffer = dest_builder.finish().into_inner();
        Ok(DataBlock::FixedWidth(FixedWidthDataBlock {
            data: LanceBuffer::from(bool_buffer),
            bits_per_value: 1,
            num_values: num_rows,
            block_info: BlockInfo::new(),
            used_encoding: UsedEncoding::new(),
        }))
    }
}

#[cfg(test)]
mod tests {

    use arrow_schema::{DataType, Field};
    use bytes::Bytes;

    use crate::decoder::PrimitivePageDecoder;
    use crate::encodings::physical::bitmap::BitmapData;
    use crate::testing::check_round_trip_encoding_random;
    use crate::version::LanceFileVersion;

    use super::BitmapDecoder;

    #[test_log::test(tokio::test)]
    async fn test_bitmap_boolean() {
        let field = Field::new("", DataType::Boolean, false);
        check_round_trip_encoding_random(field, LanceFileVersion::V2_0).await;
    }

    #[test]
    fn test_bitmap_decoder_edge_cases() {
        // Regression for a case where the row skip and the bit offset
        // require us to read from the second Bytes instead of the first
        let decoder = BitmapDecoder {
            chunks: vec![
                BitmapData {
                    data: Bytes::from_static(&[0b11111111]),
                    bit_offset: 4,
                    length: 4,
                },
                BitmapData {
                    data: Bytes::from_static(&[0b00000000]),
                    bit_offset: 4,
                    length: 4,
                },
            ],
        };

        let result = decoder.decode(5, 1);
        assert!(result.is_ok());
    }
}